Supporting Information

Rhodium(III)-Catalyzed Imidoyl C–H Activation for Annulations to Azolopyrimidines

Kim Søholm Halskov, Michael R. Witten, Gia L. Hoang, Brandon Q. Mercado, and Jonathan A. Ellman*

Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States

Email: jonathan.ellman@yale.edu

Contents

1.	General Information	.S1
2.	Optimization Data	. S3
3.	Synthesis and Characterization of Azolo Imines 1	. S5
4.	Synthesis and Characterization of Sulfoxonium Ylides 2	.S10
5.	Synthesis and Characterization of Heterocycles 3	. S11
6.	Synthesis and Characterization of Heterocycles 5	. S22
7.	Synthesis and Characterization of Heterocycles 7	. S27
8.	Experiments with Rhodacycle 8	. S34
9.	Studies with Deuterated 1a-D.	. S36
10.	Catalytic Cycles	. S44
11.	¹ H and ¹³ C NMR Spectra of New Imines, Ylides, Heterocycles, and Rhodacycle 8	S45
12.	X-Ray Crystallography Information	S107

1. General Information

Flasks were fitted with rubber septa. Reactions were conducted under air unless noted. Stainless steel syringes were used to transfer air- and moisture-sensitive liquids. Flash chromatography was performed using silica gel 60 (230–400 mesh). Commercial reagents were used as received with the following exceptions: dichloromethane, 1,4-dioxane, and tetrahydrofuran were dried by passing through columns of activated alumina. Triethylamine was distilled from CaH₂ at 760 Torr. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent. Data are represented as follows: chemical shift (multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, hept = heptet, m = multiplet), coupling constants in Hertz (Hz), integration). The mass spectral data were obtained on an Agilent 6550A quadrupole time-of-flight LC/MS spectrometer (ESI-TOF).

2. Optimization Data

Optimization of reaction between (*E*)-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine (1a) and 2-(dimethyl(∞o)- λ^6 -sulfanylidene)-1-(m-tolyl)ethan-1-one (2a):

Optimization of the reaction was performed with iminyl azole 1a and sulfoxonium ylide 2a (Table S1). Beginning at 80 °C in THF, low but measurable yield of heterocycle 3a was obtained (entry 1). The inclusion of 2.0 equiv PivOH was next found to be beneficial (entry 2). In three separate experiments, we observed yield improvements with the additional inclusion of NaOAc (entry 3), the additional inclusion of 3Å molecular sieves (entry 4), and an increase in temperature to 100 °C (entry 5). Taken together, these three changes in conditions improved the yield to 75% (entry 6). Although the exclusion of PivOH (entry 7) was not detrimental for the parent reaction, we found its inclusion to significantly help for many other ylides and imines. AcOH was inferior to PivOH as an acid additive (entry 8). Based on precedent by the Li group in C-H functionalization with sulfoxonium vlides followed by cyclodehydration, we attempted to use Zn(OTf)₂ as a Lewis acid additive with no success (entry 11).¹ We confirmed that the process was indeed Rh(III)-catalyzed by excluding catalyst altogether (entry 10), and the catalyst system [Cp*RhCl2]2/AgSbF6 also facilitated the reaction in a good yield (entry 11, next page). Wishing to run the reaction in a solvent at or below its boiling temperature, we switched to 1,4-dioxane (entries 12 and 13), with no appreciable change in yield. The conditions in entry 13 were taken as standard for the substrate scope experiments.

Table S1. Reaction of Azolo	Imine 1a with	Sulfoxonium	Ylide 2a. ^a
-----------------------------	----------------------	-------------	------------------------

Entry	Temperature	Variation from Initial Conditions	Yield 3a (%) ^{b}
1	80 °C	None	10
2	80 °C	PivOH (2.0 equiv)	28
3	80 °C	PivOH (2.0 equiv) + NaOAc (1.0 equiv)	50
4	80 °C	PivOH (2.0 equiv) + 3Å molecular sieves	35
5	100 °C	PivOH (2.0 equiv)	44
6	100 °C	PivOH (2.0 equiv) + NaOAc (1.0 equiv) + 3Å molecular sieves	75
7	100 °C	NaOAc (1.0 equiv) + 3Å molecular sieves	69
8	100 °C	AcOH (2.0 equiv) + NaOAc (1.0 equiv) + 3Å molecular sieves	62
9	100 °C	Zn(OTf) ₂ (50 mol%) + 3Å molecular sieves	<5

10	100 °C	As entry 6, excluded [Cp*Rh(MeCN) ₃][SbF ₆] ₂	<5
11	100 °C	As entry 6 with [Cp*RhCl2]2 (5 mol%), AgSbF ₆ (20 mol%) as catalyst system	71
12	100 °C	As entry 6 with [Cp*RhCl2]2 (5 mol%), AgSbF6 (20 mol%) as catalyst system in 1,4-dioxane	66
13	100 °C	As entry 6 in 1,4-dioxane	76 (80) ^c

^{*a*}Conditions: **1a** (0.10 mmol), **2a** (1.5 equiv), 0.1 M, 16 h. ^{*b*}Yield determined by ¹H-NMR relative to 1,3,5-trimethoxybenzene as external standard. ^{*c*}0.30 mmol **1a**, isolated yield after chromatography on silica.

Optimization of reaction between (*E*)-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine (1a) and ethyl 2-diazo-3-oxobutanoate (4):

Optimization of the reaction was performed with iminyl azole **1a** and diazoketone **4** (Table S2). The reaction conditions employed for the coupling between imines **1** and sulfoxonium ylides **2** were employed as a starting point (entry 1). The exclusion of PivOH (entry 2) or NaOAc (entry 3) both resulted in diminished yields. A slight decrease in yield was also observed when the reaction was performed at 80 °C (entry 4). The catalyst system $[Cp^*RhCl_2]_2/AgSbF_6$, in which AgSbF₆ acts as a halide abstractor, also facilitated the reaction in a good yield (entry 5). In the absence of a rhodium catalyst, no product formation was observed (entry 6).

Ph N N N N H	+	Me CO ₂ Et	[Cp*Rh(MeCN) ₃][SbF ₆] ₂ (10 mol %) 3Å molecular sieves PivOH (2.0 equiv) <u>NaOAc (1.0 equiv)</u> 1,4-dioxane, 100 °C, 16 h	Ph CO ₂ Et
1a		4		5a

Table S2. Reaction of Azolo Imine 1a with diazoketone 4.^a

Entry	Variation from Optimized Conditions	Yield 5a (%) ^b
1	None	66 (79) ^c
2	Excluded PivOH	52
3	Excluded NaOAc	43
4	Reaction performed at 80 °C	61
5	[Cp*RhCl2]2 (5 mol%), AgSbF6 (20 mol%) as catalyst system	62
6	Excluded [Cp*Rh(MeCN)3][SbF6]2	<5

^{*a*}Conditions: **1a** (0.10 mmol), **4** (1.5 equiv), 0.1 M, 16 h. ^{*b*}Yield determined by ¹H-NMR relative to 1,3,5-trimethoxybenzene as external standard. ^{*c*}0.30 mmol **1a**, isolated yield after chromatography on silica.

Optimization of reaction between (*E*)-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine (1a) and 3-hexyne (6a):

Optimization of the reaction was performed with iminyl azole **1a** and 3-hexyne **6a** (Table S3). A solvent screen revealed that THF (entry 2) and 1,4-dioxane (entry 3) gave low yields in the coupling with alkynes, despite being efficient solvents in the couplings with sulfoxonium ylides and diazoketones. Other solvents that are commonly employed in rhodium(III)-catalyzed C–H functionalization were then tested. 1,2-DCE (entry 5) and MeOH (entry 6) gave improved yields, with TFE giving the highest yield (entry 1). Using [Cp*RhCl2]2/AgSbF6 as the catalyst system resulted in similar yields (7). No product formation was observed, when the rhodium catalyst (entry 8) or the copper(II) oxidant (entry 9) were excluded.

Table S3. Reaction of Azolo Imine 1a with 3-hexyne 6a.^a

	$\begin{array}{c} Ph \\ N \\ $	Et
	1a 6a 7a	
Entry	Variation from Optimized Conditions	Yield 7a (%) ^b
1	None	65 (66) ^c
2	THF as solvent	31
3	1,4-dioxane as solvent	21
4	PhMe as solvent	36
5	1,2-DCE as solvent	58
6	MeOH as solvent	62
7	[Cp*RhCl2]2 (5 mol%), AgSbF6 (20 mol%) as catalyst system	67
8	Excluded [Cp*Rh(MeCN) ₃][SbF ₆] ₂	<5
9	Excluded Cu(OAc) ₂	<5

^{*a*}Conditions: **1a** (0.10 mmol), **6a** (1.5 equiv), 0.1 M, 16 h. ^{*b*}Yield determined by ¹H-NMR relative to 1,3,5-trimethoxybenzene as external standard. ^{*c*}0.30 mmol **1a**, isolated yield after chromatography on silica.

3. Synthesis and Characterization of Azolo Imines 1

Iminyl azoles 1a-c were formed according to literature procedures.² Imines 1d-f,h-j,l were synthesized in analogous fashion by coupling of the appropriate amine and aldehyde. Imine 1g was synthesized according to a literature procedure.³ Synthesis of imine 1k is described below. Spectral data for imines 1a-c,g matched those reported in the literature.

General Procedure A: Synthesis of azolo imines 1

To a solution of aldehyde (1.0 equiv) in dichloromethane (1 M) were added sequentially aminoazole sulfate (1.0 equiv), titanium(IV) ethoxide (1.6 equiv), and triethylamine (2 equiv). The reaction mixture was stirred at ambient temperature for 18 h. The reaction mixture was quenched with H₂O (2 x volume of dichloromethane). The resulting solid was filtered and washed with dichloromethane. The filtrate was transferred to a separatory funnel, and the layers were separated. The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. Then the crude material was filtered through a plug of silica with 50% EtOAc/hexanes. Subsequently, the imine was recrystallized in EtOAc/hexanes (yields for imines were not optimized).

General Procedure B: Synthesis of azolo imines 1

To a solution of aldehyde (1.5 equiv) in tetrahydrofuran (1 M) were added sequentially amine (1.0 equiv) and titanium(IV) ethoxide (1.6 equiv). The reaction mixture was stirred at ambient temperature for 18 h. N,N,N',N'-Tetrakis(2-hydroxyethyl)ethylenediamine was then added to the solution (equal volume to tetrahydrofuran) and the mixture was stirred at 55 °C for 15 min. The mixture was cooled to room temperature and transferred to a separatory funnel where it was quenched with NH₄OH and brine and extracted with EtOAc. The organic phases were combined, dried with MgSO₄ and concentrated *in vacuo*. The product was purified by silica gel column chromatography (yields for imines were not optimized).

Methyl (E)-4-(((1H-imidazol-2-yl)imino)methyl)benzoate (1d)

Synthesized according to General Procedure A: Methyl 4-formylbenzoate (2.6 mL, 20 mmol, 1.0 equiv), 2-aminoimidazole sulfate (2.64 g, 20.0 mmol, 1.0 equiv), triethylamine (5.6 mL, 40 mmol, 2.0 equiv), titanium(IV) ethoxide (6.7 mL, 32 mmol, 1.6 equiv), and dichloromethane (20 mL). Recrystallization (EtOAc/hexanes) afforded **1d** (353 mg, 8%) as a yellow solid. FTIR (neat) 1723, 1281, 1110, 737, 729, 718, 436 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 12.45 (s, 1H), 9.21 (s, 1H), 8.09–8.07 (m, 4H), 7.21 (s, 1H), 6.97 (s, 1H), 3.89 (s, 3H). ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 165.8, 157.8, 150.2, 139.8, 131.7, 129.7, 128.8, 128.1, 117.6, 52.4. HRMS (ESI/[M+H]⁺): calcd for C₁₂H₁₂N₃O₂⁺: 230.0924; Found 230.0924.

(E)-1-(3-Bromophenyl)-N-(1H-imidazol-2-yl)methanimine (1e)

Synthesized according to General Procedure A: *m*-Bromobenzaldehyde (3.3 mL, 29 mmol, 1.0 equiv), 2-aminoimidazole sulfate (3.88 g, 28.6 mmol, 1.0 equiv), triethylamine (8.0 mL, 57 mmol, 2.0 equiv), titanium(IV) isopropoxide (13.6 mL, 57.4 mmol, 1.6 equiv), and dichloromethane (30 mL). Recrystallization (EtOAc/hexanes) afforded **1e** (2.88 g, 39%) as a grey solid. FTIR (neat) 1614, 1560, 1451, 1427, 1344, 1265, 1204, 1106, 1068, 996, 889, 784, 739, 678 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 11.59 (bs, 1H), 9.19 (s, 1H), 8.13 (d, *J* = 1.9 Hz, 1H), 7.91 (dt, *J* = 7.8; 1.2 Hz, 1H), 7.68 (ddd, *J* = 7.9; 1.9; 1.2 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.11 (bs, 2H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 158.1, 151.1, 139.0, 134.6, 131.3, 131.2, 128.5, 123.0. Note: two carbons were not observed due the slow exchange of the N-H proton, which causes these signals of the imidazole carbons to be broadened.⁴ HRMS (ESI/[M+H]⁺): calcd for C₁₀H₉BrN₃⁺: 249.9974 and 251.9954; Found 249.9975 and 251.9956.

(E)-1-(2-Chlorophenyl)-N-(1H-imidazol-2-yl)methanimine (1f)

Synthesized according to General Procedure A: 2-Chlorobenzaldehyde (1.1 mL, 10 mmol, 1.0 equiv), 2-aminoimidazole sulfate (1.32 g, 10.0 mmol, 1.0 equiv), triethylamine (2.8 mL, 20 mmol, 2.0 equiv), titanium(IV) ethoxide (3.4 mL, 16 mmol, 1.6 equiv), and dichloromethane (10 mL). Recrystallization (EtOAc/hexanes) afforded **1f** (527 mg, 26%) as a yellow solid. FTIR (neat) 1607, 1452, 1107, 754, 742, 730, 687 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 12.48 (s, 1H), 9.49 (s, 1H), 8.15 (dd, *J* = 7.8; 1.8 Hz, 1H), 7.60 (dd, *J* = 7.8; 1.2 Hz, 1H), 7.56 (dt, *J* = 7.2; 1.8 Hz, 1H), 7.49 (tt, *J* = 7.2; 1.2 Hz, 1H), 7.21 (s, 1H), 6.96 (s, 1H). ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 154.5, 150.3, 135.3, 133.1, 132.4, 130.3, 128.0, 127.8, 127.7, 117.6. HRMS (ESI/[M+H]⁺): calcd for C₁₀H₉ClN₃⁺: 206.0480; Found 206.0484.

(E)-1-(Furan-2-yl)-N-(1H-imidazol-2-yl)methanimine (1h)

Synthesized according to General Procedure A: Furfural (2.4 mL, 29 mmol, 1.0 equiv), 2aminoimidazole sulfate (3.88 g, 28.6 mmol, 1.0 equiv), triethylamine (8.0 mL, 57 mmol, 2.0 equiv), titanium(IV) isopropoxide (13.6 mL, 57.4 mmol, 1.6 equiv), and dichloromethane (30 mL). Recrystallization (EtOAc/hexanes) afforded **1h** (940 mg, 20%) as a brown solid. FTIR (neat) 1608, 1561, 1481, 1451, 1367, 1266, 1104, 1020, 934, 883, 749, 722 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 12.32 (bs, 1H), 8.91 (s, 1H), 7.96–7.94 (m, 1H), 7.23 (d, *J* = 3.5 Hz, 1H), 7.12 (bs, 1H), 6.91 (bs, 1H), 6.72 (dd, *J* = 3.5, 1.7 Hz, 1H). ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 151.7, 150.7, 146.9, 146.4, 127.6 (br), 118.4, 116.9 (br), 112.8. HRMS (ESI/[M+H]⁺): calcd for C₈H₈N₃O⁺: 162.0662; Found 162.0665.

(1E,2E)-N-(1H-Imidazol-2-yl)-3-phenylprop-2-en-1-imine (1i)

Synthesized according to General Procedure A: Cinnamaldehyde (2.5 mL, 20 mmol, 1.0 equiv), 2-aminoimidazole sulfate (2.64 g, 20.0 mmol, 1.0 equiv), triethylamine (5.6 mL, 40 mmol, 2.0 equiv), titanium(IV) ethoxide (6.7 mL, 32 mmol, 1.6 equiv), and dichloromethane (20 mL). Recrystallization (EtOAc/hexanes) afforded **1i** (581 mg, 17%) as a yellow solid. FTIR (neat) 1587, 1112, 986, 750, 721 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 12.20 (bs, 1H), 8.91 (d, *J* = 9.3 Hz, 1H), 7.68 (d, *J* = 7.3 Hz, 2H), 7.48–7.34 (m, 4H), 7.13 (bs, 1H), 7.12 (dd, *J* = 15.9; 9.3 Hz, 1H), 6.91 (bs, 1H). ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 160.5, 151.0 (br), 144.9, 135.5, 129.7, 128.9, 128.0, 127.7, 116.9 (br). HRMS (ESI/[M+H]⁺): calcd for C₁₂H₁₂N₃⁺: 198.1026; Found 198.1026.

(E)-N-(2H-Indazol-3-yl)-1-phenylmethanimine (1j)

Synthesized according to General Procedure B: Benzaldehyde (2.3 mL, 23 mmol, 1.5 equiv), 2*H*-indazol-3-amine (2.00 g, 15.0 mmol, 1.0 equiv), titanium(IV) ethoxide (7.1 mL, 24 mmol, 1.6 equiv), and tetrahydrofuran (15 mL). Purification by silica gel column chromatography (10%, then 20%, then 30% EtOAc/hexanes) afforded **1j** (1.71 g, 51%) as a yellow solid. In a solution of (CD₃)₂SO, this compound existed as a 3:1 ratio of its two tautomers. For characterization, *denotes minor isomer, + denotes overlap of signals of both isomers, whereas no sign denotes signal of major isomer. FTIR (neat) 1050, 1023, 1001, 823, 759, 499 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 13.01 (s, 1H), 11.63 (s, 1H)*, 9.24 (s, 1H), 9.16 (s, 1H)*, 8.09–8.04 (m, 2H), 8.04–8.00 (m, 2H)*, 7.98–7.93 (m, 2H)⁺, 7.85 (d, *J* = 9.4 Hz, 1H)*, 7.72 (d, *J* = 9.4 Hz, 1H)*, 7.59–7.16 (m, 9)⁺, 6.95 (ddd, *J* = 7.9; 6.2; 1.4 Hz, 1H)*. ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 160.3, 160.0, 150.6, 149.6, 147.4, 141.5, 141.0, 139.4, 136.2, 136.1, 131.60, 131.55, 128.9, 128.68, 128.66, 128.4, 126.8, 126.6, 121.2, 120.9, 120.7, 120.3, 120.0, 117.8, 117.7, 117.1, 113.4, 111.2, 110.6, 109.3. HRMS (ESI/[M+H]⁺): calcd for C₁4H₁₂N₃⁺: 222.1026; Found 222.1026.

(E)-N-(3-(tert-Butyl)-1H-pyrazol-5-yl)-1-phenylmethanimine (1k)

3-*tert*-Butyl-1*H*-pyrazol-5-amine (1.67 g, 12.0 mmol, 1.2 equiv) and benzaldehyde (1.0 mL, 10 mmol, 1.0 equiv) were dissolved in dichloromethane (20 mL) containing 3Å molecular sieves (approximately 10 g) in a flame-dried 100-mL flask. The mixture was stirred at ambient temperature for 18 h. The suspension was filtered through filter paper and then through basic alumina eluting with dichloromethane. Then it was concentrated *in vacuo*. Following concentration under high vacuum, the compound was obtained in a 94:6 ratio by weight with dichloromethane that could not be further removed, in 74% yield. The material was applied in this form in subsequent reactions. FTIR (neat) 1622, 1578, 1463, 1366, 1312, 1286, 1236, 1168, 1011,

1001, 757, 707, 691 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 12.47 (s, 1H), 8.84 (s, 1H), 7.90 (dd, J = 6.7; 3.0 Hz, 2H), 7.56–7.40 (m, 3H), 6.22 (s, 1H), 1.29 (s, 9H). ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 158.9, 158.1, 153.6, 136.4, 131.1, 128.8, 128.3, 91.8, 30.7, 30.0. HRMS (ESI/[M+H]⁺): calcd for C₁₄H₁₈N₃⁺: 228.1495; Found 228.1495.

(E)-1-Phenyl-N-(4-phenyl-1H-pyrazol-5-yl)methanimine (11)

Synthesized according to General Procedure B: Benzaldehyde (1.5 mL, 15 mmol, 1.5 equiv), 4-phenyl-1*H*-pyrazol-5-amine (1.59 g, 10.0 mmol, 1.0 equiv), titanium(IV) ethoxide (4.8 mL, 16 mmol, 1.6 equiv), and tetrahydrofuran (15 mL). Purification by silica gel column chromatography (10%, then 20%, then 30% EtOAc/hexanes) afforded **11** (1.38 g, 56%) as a white solid. FTIR (neat) 1989, 1265, 764, 731, 697 cm⁻¹. ¹H-NMR (400 MHz, (CD₃)₂SO) δ 12.87 (s, 1H), 9.06 (s, 1H), 8.19 (d, *J* = 1.6 Hz, 1H), 7.99 (dd, *J* = 6.7; 2.9 Hz, 2H), 7.92–7.81 (m, 2H), 7.64–7.48 (m, 3H), 7.38 (t, *J* = 7.7 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H). ¹³C-NMR (100 MHz, (CD₃)₂SO) δ 159.1, 154.3, 136.2, 132.9, 131.4, 128.9, 128.6, 128.4, 128.1, 126.8, 125.7, 114.7. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₄N₃⁺: 248.1182; Found 248.1183.

4. Synthesis and Characterization of Sulfoxonium Ylides 2

The syntheses of all sulfoxonium ylides other than 2a have been previously reported. Ylides 2b and 2c were formed according to Wu *et al.*⁵ Ylides 2d-f were formed according to Phelps *et al.*⁶ Ylide 2a was synthesized in analogous fashion, as detailed below. Ylides 2g and 2h were formed according to Barday *et al.*⁷ Spectral data for ylides 2b-h matched those reported in the literature.

2-(Dimethyl(oxo)-λ⁶-sulfanylidene)-1-(m-tolyl)ethan-1-one (2a)

Trimethylsulfoxonium iodide (9.90 g, 45.0 mmol, 3.0 equiv) was dissolved in anhydrous THF (150 mL) in a flame-dried 250-mL round-bottom flask equipped with a magnetic stir bar and reflux condenser. To this reaction mixture was added solid sodium tert-butoxide (4.54 g, 47.3 mmol, 3.15 equiv), and the suspension was heated to reflux for 2 h. The flask was cooled to room temperature, and *m*-toluoyl chloride (1.98 mL, 2.32 g, 15.0 mmol, 1.0 equiv) was added dropwise by syringe. The reaction mixture was stirred at room temperature for 18 h, then the reaction was quenched with H₂O (250 mL). The aqueous layer was extracted with EtOAc (3 x 150 mL), then the pooled organic extracts were washed with brine (150 mL). The organic layer was dried over NaSO4, filtered, and concentrated *in vacuo*. The resulting solid was added to a 50-mL round-bottom flask, suspended in 16 mL EtOAc, and heated to 50 °C for 1 h, resulting in full dissolution of solids. The mixture was then cooled to room temperature with constant stirring, resulting in precipitation of pure ylide 2a, which was filtered through a Buchner funnel under vacuum and washed with cold EtOAc. Drying *in vacuo* afforded **2a** (1.49 g, 47%) as a white solid. FTIR (neat) 1531, 1420, 1390, 1174, 1076, 1037, 867, 736, 438 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ 7.62 (s, 1H), 7.57 (d, J = 7.3Hz, 1H), 7.28–7.22 (m, 2H), 4.96 (s, 1H), 3.49 (s, 6H), 2.37 (s, 3H). ¹³C-NMR (125 MHz, CDCl₃) δ 182.6, 138.9, 137.9, 131.6, 128.2, 127.3, 123.8, 68.3, 42.6, 21.5. HRMS (ESI/[M+H]⁺): calcd for C₁₁H₁₅O₂S⁺: 211.0787; Found 211.0788.

5. Synthesis and Characterization of Heterocycles 3

General Procedure C: Rh(III)-catalyzed coupling of imines with sulfoxonium ylides

To a flame-dried microwave tube in a glove box was added the imine (1, 1.0 equiv), the sulfoxonium ylide (2, 1.5 equiv), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (0.1 equiv), pivalic acid (2.0–4.0 equiv), sodium acetate (1.0 equiv), 3Å molecular sieves and 1,4-dioxane or tetrahydrofuran (0.1 M). The tube was capped, and the reaction mixture was stirred at the indicated temperature for 16 h. The reaction mixture was cooled to ambient temperature and filtered through a plug of Celite with dichloromethane. The solvent was removed *in vacuo* and the crude reaction mixture was subjected to silica gel column chromatography to yield the product.

7-Phenyl-5-(*m*-tolyl)imidazo[1,2-*a*]pyrimidine (3a)

Synthesized according to General Procedure C: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (95 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3a** (69 mg, 80%) as a yellow foam. FTIR (neat) 1614, 1599, 1581, 1528, 1505, 1483, 1388, 1352, 1294, 1272, 1248, 1151, 1138, 907, 792, 779, 764, 727, 701, 650 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 7.1 Hz, 2H), 7.81 (s, 1H), 7.65 (s, 1H), 7.55–7.47 (m, 6H), 7.42 (d, *J* = 7.5 Hz, 1H), 7.33 (s, 1H), 2.49 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 157.0, 150.1, 146.5, 139.6, 137.3, 135.8, 132.7, 131.9, 130.5, 129.5, 129.0, 128.6, 127.5, 125.1, 109.2, 105.8, 21.6. HRMS (ESI/[M+H]⁺): calcd for C₁₉H₁₆N₃⁺: 286.1339; Found 286.1340.

7-Phenyl-5-(m-tolyl)imidazo[1,2-a]pyrimidine (3a) – 1 mmol Benchtop Preparation

To a flame-dried 10-20 mL microwave tube was added (*E*)-*N*-(1*H*-Imidazol-2-yl)-1phenylmethanimine **1a** (171 mg, 1.00 mmol, 1.00 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (315 mg, 1.50 mmol, 1.50 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (83.3 mg, 0.100 mmol, 0.100 equiv), pivalic acid (204 mg, 2.00 mmol, 2.00 equiv), sodium acetate (82.0 mg, 1.00 mmol, 1.00 equiv), 3Å molecular sieves (approximately 250 mg), and 1,4-dioxane (10.0 mL). The tube was capped with a teflon-lined septum, and the reaction mixture was flushed under nitrogen for ten minutes. The nitrogen line was removed, and the reaction mixture was stirred at 100 °C for 16 h. The reaction mixture was cooled to ambient temperature and filtered through a plug of Celite with dichloromethane. The solvent was removed *in vacuo* and the crude reaction mixture was subjected to silica gel column chromatography (40% acetone/hexanes) to afford **3a** (235 mg, 82%) as a yellow foam. Spectroscopic data agreed with that reported above.

7-(4-Methoxyphenyl)-5-(*m*-tolyl)imidazo[1,2-*a*]pyrimidine (3b)

C: Synthesized according to General Procedure (E)-N-(1H-Imidazol-2-yl)-1-(4methoxyphenyl)methanimine **1b** (60 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 sulfanylidene)-1-(*m*-tolyl)ethan-1-one 2a (95 mg. 0.45 mmol. 1.5 equiv). [Cp*Rh(MeCN)3][SbF6]2 (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3b** (70 mg, 74%) as a yellow foam. FTIR (neat) 1599, 1579, 1531, 1509, 1484, 1274, 1239, 1173, 1151, 1137, 1028, 906, 832, 789, 724, 700, 644, 571, 523 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.8 Hz, 2H), 7.76 (s, 1H), 7.60 (s, 1H), 7.55-7.47 (m, 3H), 7.42 (d, J = 7.1 Hz, 1H), 7.27 (s, 1H), 7.02 (d, J = 8.9 Hz, 2H), 3.89(s, 3H), 2.49 (s, 3H). ¹³C-NMR (126 MHz, CDCl₃) δ 161.8, 156.6, 150.3, 146.3, 139.6, 135.4, 132.8, 131.8, 129.9, 129.4, 129.0, 128.6, 125.1, 114.3, 109.0, 105.3, 55.6, 21.6. HRMS $(ESI/[M+H]^+)$: calcd for C₂₀H₁₈N₃O⁺: 316.1444; Found 316.1444.

5-(*m*-Tolyl)-7-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyrimidine (3c)

Synthesized according General Procedure C: (E)-N-(1H-Imidazol-2-yl)-1-(4to (trifluoromethyl)phenyl)methanimine 1c (72 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 sulfanylidene)-1-(*m*-tolyl)ethan-1-one 2a (95 mg. 0.45 mmol, 1.5 equiv). [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded 3c (86 mg, 81%) as a vellow solid. FTIR (neat) 1618, 1532, 1324, 1274, 1165, 1124, 1075, 1065, 704 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 8.1 Hz, 2H), 7.86 (s, 1H), 7.76 (d, J = 8.2 Hz, 2H), 7.69 (s, 1H), 7.57–7.49 (m, 3H),

7.44 (d, J = 7.2 Hz, 1H), 7.34 (s, 1H), 2.50 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 155.1, 149.8, 146.9, 140.6, 139.8, 136.4, 132.4, 132.1, 132.0 (q, J = 33.4 Hz), 129.5, 128.6, 127.7, 125.9 (q, J = 3.6 Hz), 125.1, 124.1 (q, J = 272.2 Hz), 109.5, 105.6, 21.6. ¹⁹F-NMR (376 MHz, CDCl₃) δ –62.8. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₁₅F₃N₃⁺: 354.1213; Found 354.1214.

Methyl 4-(5-(*m*-tolyl)imidazo[1,2-*a*]pyrimidin-7-yl)benzoate (3d)

Synthesized according to General Procedure C: Methyl (E)-4-(((1H-imidazol-2yl)imino)methyl)benzoate **1d** (69 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(m-tolyl)ethan-1-one 2a (95 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded 3d (76 mg, 74%) as an orange solid. FTIR (neat) 1720, 1612, 1530, 1484, 1435, 1273, 1149, 1140, 1108, 779, 728, 704 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ 8.30 (d, J = 8.3 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 7.68 (s, 1H), 7.55–7.49 (m, 3H), 7.43 (d, J = 7.4 Hz, 1H), 7.36 (s, 1H), 3.95 (s, 3H), 2.49 (s, 3H). 13 C-NMR (126 MHz, CDCl₃) δ 166.8, 155.5, 150.0, 146.7, 141.4, 139.7, 136.5, 132.5, 132.1, 131.7, 130.2, 129.5, 128.6, 127.4, 125.1, 109.5, 105.8, 52.4, 21.6. HRMS (ESI/ $[M+H]^+$): calcd for C₂₁H₁₈N₃O₂⁺: 344.1394; Found 344.1394.

7-(3-Bromophenyl)-5-(*m*-tolyl)imidazo[1,2-*a*]pyrimidine (3e)

Synthesized according to General Procedure C: (*E*)-1-(3-Bromophenyl)-*N*-(1*H*-imidazol-2yl)methanimine **1e** (75 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(∞o)- λ^6 -sulfanylidene)-1-(*m*tolyl)ethan-1-one **2a** (95 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3e** (85 mg, 78%) as a yellow solid. FTIR (neat) 1597, 1525, 1504, 1474, 1281, 1267, 1150, 1139, 1072, 907, 847, 770, 725, 702, 690, 674, 644, 609 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ 8.39 (s, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.82 (s, 1H), 7.66 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.557.48 (m, 3H), 7.43 (d, J = 7.5 Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.27 (s, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 155.2, 149.9, 146.7, 139.7, 139.3, 136.3, 133.3, 132.5, 132.0, 130.48, 130.46, 129.5, 128.6, 126.0, 125.1, 123.3, 109.4, 105.5, 21.6. HRMS (ESI/[M+H]⁺): calcd for C₁₉H_{15Br}N₃⁺: 364.0444 and 366.0423; Found 364.0444 and 366.0425.

7-(2-Chlorophenyl)-5-(*m*-tolyl)imidazo[1,2-*a*]pyrimidine (3f)

Synthesized according to General Procedure C: (*E*)-1-(2-Chlorophenyl)-*N*-(1*H*-imidazol-2yl)methanimine **1f** (75 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*tolyl)ethan-1-one **2a** (62 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and tetrahydrofuran (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3f** (49 mg, 51%) as an orange foam. FTIR (neat) 1613, 1524, 1503, 1475, 1274, 1150, 1139, 1093, 1048, 906, 793, 759, 728, 703, 644, 609 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 7.88–7.85 (m, 2H), 7.72 (d, *J* = 1.6 Hz, 1H), 7.56–7.53 (m, 2H), 7.51–7.47 (m, 2H), 7.44–7.37 (m, 3H), 7.31 (s, 1H), 2.48 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 157.0, 149.9, 145.3, 139.6, 137.7, 136.0, 132.5, 132.3, 132.1, 132.0, 130.7, 130.4, 129.5, 128.6, 127.4, 125.2, 110.0, 109.3, 21.6. HRMS (ESI/[M+H]⁺): calcd for C₁₉H₁₅ClN₃⁺: 320.0949; Found 320.0949.

7-(Furan-2-yl)-5-(*m*-tolyl)imidazo[1,2-*a*]pyrimidine (3g)

Synthesized according to General Procedure C: (*E*)-1-(Furan-2-yl)-*N*-(1*H*-imidazol-2-yl)methanimine **1h** (48 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (62 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3g** (41 mg, 50%) as a brown oil. FTIR (neat) 1615, 1593, 1522, 1477, 1279, 1223, 1151, 1139, 1093, 1015, 908, 884, 790, 727, 700, 635 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 1.5 Hz, 1H), 7.62 (d, *J* = 1.5 Hz, 1H), 7.59 (d, *J* = 0.9 Hz, 1H), 7.54–7.46 (m, 3H), 7.43–7.38 (m, 2H), 7.30 (s, 1H), 6.60 (dd, *J* = 3.5; 1.7 Hz, 1H), 2.48 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ

152.5, 149.8, 148.8, 146.5, 144.7, 139.6, 135.9, 132.5, 131.9, 129.4, 128.6, 125.1, 113.0, 111.9, 109.4, 104.4, 21.6. HRMS (ESI/ $[M+H]^+$): calcd for C₁₇H₁₄N₃O⁺: 276.1131; Found 276.1133.

2-Phenyl-4-(*m*-tolyl)pyrimido[1,2-*b*]indazole (3h)

Synthesized according to General Procedure C: (*E*)-*N*-(2*H*-Indazol-3-yl)-1-phenylmethanimine **1j** (66 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (62 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (20% acetone/hexanes) afforded **3h** (81 mg, 81%) as a yellow solid. FTIR (neat) 1634, 1581, 1540, 1484, 1461, 1358, 1187, 1161, 1136, 1119, 907, 857, 767, 752, 728, 689, 642, 633, 616, 579, 478, 440 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.43 (d, *J* = 8.2 Hz, 1H), 8.29 (d, *J* = 7.1 Hz, 2H), 8.01–7.99 (m, 2H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.73 (s, 1H), 7.62 (ddd, *J* = 8.3; 6.6; 1.1 Hz, 1H), 7.57 (t, *J* = 7.5 Hz, 2H), 7.50–7.55 (m, 2H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.33–7.30 (m, 1H), 2.53 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 152.7, 151.7, 145.7, 145.1, 138.8, 137.5, 132.0, 131.9, 130.3, 130.0, 129.9, 129.2, 128.9, 127.3, 126.8, 121.4, 120.8, 116.8, 114.0, 108.8, 21.8. HRMS (ESI/[M+H]⁺): calcd for C₂₃H₁₈N₃⁺: 336.1495; Found 336.1495.

3,5-Diphenyl-7-(*m*-tolyl)pyrazolo[1,5-*a*]pyrimidine (3i)

Synthesized according to General Procedure C: (*E*)-1-Phenyl-*N*-(4-phenyl-1*H*-pyrazol-5yl)methanimine **11** (74 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*tolyl)ethan-1-one **2a** (62 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (20% acetone/hexanes) afforded **3i** (96 mg, 88%) as a yellow solid. FTIR (neat) 1606, 1583, 1561, 1521, 1489, 1369, 1247, 1189, 907, 880, 847, 788, 764, 728, 691, 663, 648, 602 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.50 (s, 1H), 8.26–8.23 (m, 4H), 7.88–7.85 (m, 2H), 7.56 (t, *J* = 7.2 Hz, 2H), 7.54–7.49 (m, 4H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.38 (s, 1H), 7.33–7.92 (m, 1H), 2.51 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 156.0, 147.3, 146.0, 143.0, 138.7, 137.5, 132.6, 131.9, 131.5, 130.5, 129.8, 129.0, 128.84, 128.77, 127.5, 126.5, 126.4, 126.2, 110.7, 105.3, 21.7. HRMS (ESI/[M+H]⁺): calcd for C₂₅H₂₀N₃⁺: 362.1652; Found 362.1653.

Synthesized according to General Procedure C: (E)-N-(3-(tert-Butyl)-1H-pyrazol-5-yl)-1phenylmethanimine 1k (73 mg, 94% mass purity, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 sulfanylidene)-1-(*m*-tolyl)ethan-1-one 2a (62 mg, 0.45 mmol. 1.5 equiv). [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (123 mg, 1.20 mmol, 4.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 120 °C. Purification by silica gel column chromatography (20% acetone/hexanes) afforded 3i (59 mg, 57%) as a yellow oil. FTIR (neat) 1599, 1583, 1551, 1510, 1485, 1459, 1363, 1240, 1151, 770, 734, 692, 627 cm⁻¹. ¹H-NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta 8.12 \text{ (dd}, J = 8.3; 1.5 \text{ Hz}, 2\text{H}), 8.05 \text{ (d}, J = 7.8 \text{ Hz}, 1\text{H}), 8.01 \text{ (s}, 1\text{H}), 7.52 \text{ (t}, 1000 \text{ Hz})$ J = 7.4 Hz, 2H), 7.50–7.44 (m, 2H), 7.39–7.37 (m, 1H), 7.30 (s, 1H), 6.64 (s, 1H), 2.49 (s, 3H), 1.44 (s, 9H). ¹³C-NMR (150 MHz, CDCl₃) δ 168.1, 155.6, 150.6, 146.3, 138.2, 138.1, 131.8, 131.7, 130.2, 130.1, 129.0, 128.4, 127.3, 126.8, 104.2, 93.2, 33.2, 30.6, 21.7. HRMS (ESI/[M+H]⁺): calcd for C₂₃H₂₄N₃⁺: 342.1965; Found 342.1963.

5-(4-Methoxyphenyl)-7-phenylimidazo[1,2-*a*]pyrimidine (3k)

Synthesized according to General Procedure C: (E)-N-(1H-Imidazol-2-yl)-1-phenylmethanimine 0.30 mmol. 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(4-**1**a (51 mg, methoxyphenyl)ethan-1-one **2b** (102 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3k** (70 mg, 78%) as a vellow solid. FTIR (neat) 1607, 1533, 1510, 1501, 1491, 1464, 1440, 1296, 1254, 1180, 1161, 1141, 1027, 908, 834, 779, 766, 730, 689, 646, 637, 576 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 7.8; 1.9 Hz, 2H), 7.78 (s, 1H), 7.70–7.64 (m, 3H), 7.51–7.45 (m, 3H), 7.27 (s, 1H), 7.10 (d, J = 8.7 Hz, 2H), 3.91 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) δ 161.7, 156.9, 150.2, 146.2, 137.4, 135.8, 130.4, 129.6, 128.9, 127.4, 124.9, 114.9, 109.0, 105.4, 55.7. HRMS (ESI/[M+H]⁺): calcd for C₁₉H₁₆N₃O⁺: 302.1288; Found 302.1288.

Synthesized according to General Procedure C: (E)-N-(1H-Imidazol-2-yl)-1-phenylmethanimine mmol. equiv). 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(4-**1**a (51 mg, 0.30 1.0 (trifluoromethyl)phenyl)ethan-1-one 2c (119 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **31** (42 mg, 41%) as a yellow solid. FTIR (neat) 1610, 1533, 1324, 1271, 1169, 1128, 1065, 1019, 845, 766, 689 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 8.23–8.19 (m, 2H), 7.93–7.87 (m, 4H), 7.83 (d, J = 1.5 Hz, 1H), 7.57 (d, J = 1.5 Hz, 1H), 7.53–7.49 (m, 3H), 7.35 (s, 1H). ¹³C-NMR (101 MHz, CDCl₃) δ 156.9, 150.0, 144.6, 137.0, 136.4, 136.2, 133.2 (d, J = 33.0Hz), 130.8, 129.1, 128.7, 127.5, 126.7 (g, J = 3.7 Hz), 123.6 (d, J = 272.5 Hz), 108.9, 106.2. ¹⁹F-NMR (376 MHz, CDCl₃) δ –63.0. HRMS (ESI/[M+H]⁺): calcd for C₁₉H₁₃F₃N₃⁺: 340.1056; Found 340.1056.

5-(4-Bromophenyl)-7-phenylimidazo[1,2-*a*]pyrimidine (3m)

Synthesized according to General Procedure C: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 1-(4-bromophenyl)-2-(dimethyl(oxo)- λ^6 -sulfanylidene)ethan-1-one **2d** (124 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and tetrahydrofuran (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3m** (76 mg, 73%) as a yellow solid. FTIR (neat) 1612, 1588, 1527, 1482, 1382, 1352, 1272, 1156, 1141, 1069, 1011, 906, 827, 778, 765, 726, 696, 643 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.18 (dd, *J* = 7.8; 1.8 Hz, 2H), 7.80 (s, 1H), 7.70–7.74 (m, 2H), 7.63–7.60 (m, 2H), 7.56 (d, *J* = 1.5 Hz, 1H), 7.51–7.46 (m, 3H), 7.29 (s, 1H). ¹³C-NMR (150 MHz, CDCl₃) δ 156.9, 150.0, 145.0, 137.0, 136.1, 132.9, 131.5, 130.6, 129.6, 129.0, 127.4, 125.6, 108.9, 105.8. HRMS (ESI/[M+H]⁺): calcd for C₁₈H₁₃BrN₃⁺: 350.0287 and 352.0267; Found 350.0287 and 352.0267.

7-Phenyl-5-(thiophen-2-yl)imidazo[1,2-a]pyrimidine (3n)

Synthesized according to General Procedure C: (E)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(thiophen-2-yl)ethan-1one **2e** (91 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3n** (64 mg, 76%) as a yellow solid. FTIR (neat) 1603, 1581, 1531, 1491, 1469, 1428, 1396, 1377, 1359, 1291, 1271, 1243, 1147, 909, 856, 776, 763, 696, 656 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 8.21 (dd, *J* = 7.8; 1.9 Hz, 2H), 7.98 (d, *J* = 1.6 Hz, 1H), 7.87 (d, *J* = 1.6 Hz, 1H), 7.76 (dd, *J* = 3.7; 1.2 Hz, 1H), 7.65 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.53–7.46 (m, 4H), 7.30 (dd, *J* = 5.1; 3.7 Hz, 1H). ¹³C-NMR (101 MHz, CDCl₃) δ 156.6, 150.3, 139.7, 137.1, 136.3, 133.6, 130.6, 129.35, 129.34, 129.0, 128.5, 127.5, 109.5, 105.6. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₂N₃S⁺: 278.0746; Found 278.0748.

5-Isopropyl-7-phenylimidazo[1,2-*a*]pyrimidine (30)

Synthesized according to General Procedure C: (E)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 1-(dimethyl(0x0)- λ^6 -sulfanylidene)-3-methylbutan-2-one **2f** (73 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3o** (49 mg, 69%) as a colorless oil. FTIR (neat) 1614, 1528, 1508, 1495, 1465, 1406, 1347, 1271, 1248, 1145, 911, 782, 766, 729, 689 cm⁻¹. ¹H-NMR (400 MHz, CDCl₃) δ 8.18 (dd, *J* = 8.0; 1.7 Hz, 2H), 7.84 (d, *J* = 1.5 Hz, 1H), 7.53 (d, *J* = 1.5 Hz, 1H), 7.52–7.44 (m, 3H), 7.20 (s, 1H), 3.30 (hept, *J* = 6.9 Hz, 1H), 1.48 (d, *J* = 6.9 Hz, 6H). ¹³C-NMR (126 MHz, CDCl₃) δ 157.1, 153.1, 149.9, 137.6, 135.8, 130.4, 128.9, 127.5, 107.7, 101.4, 30.5, 19.9. HRMS (ESI/[M+H]⁺): calcd for C₁₅H₁₆N₃⁺: 238.1339; Found 238.1342.

5-Methyl-7-phenylimidazo[1,2-*a*]pyrimidine (3p)

Synthesized according to General Procedure C: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 1-(dimethyl(oxo)- λ^6 -sulfanylidene)propan-2-one **2g** (60 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3p** (32 mg, 51%) as a yellow solid. FTIR (neat) 1620, 1530, 1506, 1496, 1467, 1450, 1370, 1349, 1289, 1273, 1146, 908, 781, 762, 725, 693, 650 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.18–8.15 (m, 2H), 7.83 (d, *J* = 1.4 Hz, 1H), 7.50–7.45 (m, 3H), 7.43 (d, *J* = 1.4 Hz, 1H), 7.18 (s, 1H), 2.68 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 156.6, 149.7, 143.5, 137.3, 136.0, 130.4, 128.9, 127.4, 107.7, 105.5, 18.8. HRMS (ESI/[M+H]⁺): calcd for C₁₃H₁₂N₃⁺: 210.1026; Found 210.1029.

tert-Butyl 4-(7-phenylimidazo[1,2-*a*]pyrimidin-5-yl)piperidine-1-carboxylate (3q)

Synthesized according to General Procedure C: (E)-N-(1H-Imidazol-2-yl)-1-phenylmethanimine **1**a (51 mg, 0.30 mmol. 1.0 equiv), *tert*-butyl 4-(2-(dimethyl(oxo)- λ^6 sulfanylidene)acetyl)piperidine-1-carboxylate **2h** (137 0.45 mmol, 1.5 equiv), mg, [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and tetrahydrofuran (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **3q** (84 mg, 74%) as a yellow solid. FTIR (neat) 1683, 1616, 1528, 1451, 1424, 1366, 1273, 1235, 1166, 1131, 1118, 912, 766, 731, 696 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.16 (dt, J = 7.8; 1.5 Hz, 2H), 7.84 (s, 1H), 7.54 (s, 1H), 7.51–7.46 (m, 3H), 7.16 (d, J = 2.3 Hz, 1H), 4.38 (br s, 2H), 3.08 (tt, J = 12.0; 3.4 Hz, 1H), 2.94 (s, 2H), 2.16 (apparent d, J = 12.6 Hz, 2H), 1.82–1.72 (m, 2H), 1.49 (s, 9H). ¹³C-NMR (150 MHz, CDCl₃) & 157.0, 154.7, 150.0, 149.9, 137.4, 136.2, 130.5, 129.0, 127.5, 107.4, 102.0, 80.2, 43.9 (br), 38.9, 29.4, 28.6. HRMS (ESI/[M+H]⁺): calcd for C₂₂H₂₇N₄O₂⁺: 379.2129; Found 379.2129.

7-(4-Methoxyphenyl)-3,5-diphenylpyrazolo[1,5-*a*]pyrimidine (3r)

Synthesized according to General Procedure C: (*E*)-1-Phenyl-*N*-(4-phenyl-1*H*-pyrazol-5-yl)methanimine **11** (74 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(4-methoxyphenyl)ethan-1-one **2b** (102 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (20%

acetone/hexanes) afforded **3r** (97 mg, 85%) as a yellow solid. FTIR (neat) 1606, 1561, 1507, 1494, 1377, 1296, 1258, 1231, 1179, 1028, 907, 828, 765, 729, 709, 692, 668 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 8.26–8.22 (m, 4H), 8.10 (d, *J* = 8.8 Hz, 2H), 7.58–7.54 (m, 2H), 7.53–7.48 (m, 3H), 7.38 (s, 1H), 7.29 (t, *J* = 7.4 Hz, 1H), 7.12 (d, *J* = 8.8 Hz, 2H), 3.92 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 161.9, 156.0, 146.9, 146.2, 143.0, 137.7, 132.7, 131.1, 130.5, 129.1, 128.9, 127.5, 126.5, 126.2, 123.8, 114.3, 110.6, 104.6, 55.7. HRMS (ESI/[M+H]⁺): calcd for C₂₅H₂₀N₃O⁺: 378.1601; Found 378.1605.

3,5-Diphenyl-7-(4-(trifluoromethyl)phenyl)pyrazolo[1,5-a]pyrimidine (3s)

Synthesized according to General Procedure C: (*E*)-1-Phenyl-*N*-(4-phenyl-1*H*-pyrazol-5yl)methanimine **11** (74 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(4-(trifluoromethyl)phenyl)ethan-1-one **2c** (119 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (20% acetone/hexanes) afforded **3s** (109 mg, 87%) as an orange solid. FTIR (neat) 1608, 1565, 1497, 1376, 1323, 1169, 1126, 1067, 1018, 925, 909, 852, 834, 766, 732, 692, 677 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ 8.48 (s, 1H), 8.25–8.18 (m, 6H), 7.87 (d, *J* = 8.1 Hz, 2H), 7.59–7.53 (m, 3H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.41 (s, 1H), 7.40–7.29 (m, 1H). ¹³C-NMR (126 MHz, CDCl₃) δ 156.0, 146.0, 145.5, 143.3, 137.2, 135.0, 133.0, 132.7, 132.2, 130.8, 129.9, 129.2, 128.9, 127.5, 126.6, 126.5, 125.9 (q, *J* = 3.7 Hz), 111.3, 105.6. ¹⁹F-NMR (376 MHz, CDCl₃) δ –63.0. HRMS (ESI/[M+H]⁺): calcd for C₂₅H₁₇F₃N₃⁺: 416.1369; Found 416.1368.

tert-Butyl 4-(3,5-diphenylpyrazolo[1,5-a]pyrimidin-7-yl)piperidine-1-carboxylate (3t)

Synthesized according to General Procedure C: (*E*)-1-Phenyl-*N*-(4-phenyl-1*H*-pyrazol-5yl)methanimine **11** (74 mg, 0.30 mmol, 1.0 equiv), *tert*-butyl 4-(2-(dimethyl(oxo)- λ^6 sulfanylidene)acetyl)piperidine-1-carboxylate **3h** (137 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (20% acetone/hexanes) afforded **3t** (102 mg, 75%) as a yellow solid. FTIR (neat) 1687, 1613, 1566, 1523, 1449, 1425, 1388, 1366, 1295, 1276, 1235, 1167, 1125, 946, 767, 732, 693 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.45 (s, 1H), 8.20–8.17 (m, 4H), 7.56–7.47 (m, 5H), 7.28 (tt, *J* = 7.3; 1.3 Hz, 1H), 7.14 (s, 1H), 4.37 (br s, 2H), 3.80 (tt, *J* = 12.2; 3.4 Hz, 1H), 3.00 (br s, 2H), 2.28–2.23 (m, 2H), 1.78 (br s, 2H), 1.51 (s, 9H). 13 C-NMR (150 MHz, CDCl₃) δ 156.1, 154.8, 152.3, 145.2, 142.5, 137.6, 132.5, 130.5, 129.1, 128.9, 127.5, 126.4, 126.2, 110.9, 101.6, 79.9, 44.0 (br), 36.8, 29.5, 28.6. HRMS (ESI/[M+H]⁺): calcd for C₂₈H₃₁N₄O₂⁺: 455.2442; Found 455.2442.

6. Synthesis and Characterization of Heterocycles 5

General Procedure D: Rh(III)-catalyzed coupling of imines with diazoketones

To a flame-dried microwave tube in a glove box was added the imine (1, 1.0 equiv), the diazoketone (4, 1.5 equiv), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (0.1 equiv), pivalic acid (2.0-4.0 equiv), sodium acetate (1.0 equiv), 3Å molecular sieves and 1,4-dioxane (0.1 M). The tube was capped, and the reaction mixture was stirred at the indicated temperature for 16 h. The reaction mixture was cooled to ambient temperature and the solvent was removed *in vacuo*. The crude reaction mixture was subjected to silica gel column chromatography to yield the product.

Ethyl 5-methyl-7-phenylimidazo[1,2-*a*]pyrimidine-6-carboxylate (5a)

Synthesized according to General Procedure D: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **5a** (67 mg, 79%) as a brown oil. FTIR (neat) 1716, 1607, 1503, 1292, 1202, 1144, 1056 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 7.93 (d, *J* = 1.5 Hz, 1H), 7.85 (d, *J* = 1.5 Hz, 1H), 7.69–7.64 (m, 2H), 7.53–7.47 (m, 3H), 4.16 (q, *J* = 7.1 Hz, 2H), 2.85 (s, 3H), 1.00 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 167.6, 156.9, 148.4, 145.6, 140.3, 137.3, 130.1, 129.2, 128.9, 115.7, 110.6, 62.5, 16.6, 13.8. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₆N₃O₂⁺: 282.1237; Found 282.1237.

Ethyl 7-(4-methoxyphenyl)-5-methylimidazo[1,2-a]pyrimidine-6-carboxylate (5b)

Synthesized according to General Procedure D: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-(4methoxyphenyl)methanimine **1b** (60 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **5b** (68 mg, 73%) as a yellow oil. FTIR (neat) 1717, 1600, 1502, 1289, 1248, 1175 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 7.88 (s, 1H), 7.81 (s, 1H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.06 (d, *J* = 8.2 Hz, 2H), 4.22 (q, *J* = 7.2 Hz, 2H), 3.87 (s, 3H), 2.82 (s, 3H), 1.09 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 167.8, 161.8, 156.3, 148.6, 145.2, 137.1, 132.4, 130.5, 115.6, 114.6, 110.3, 62.6, 55.8, 16.5, 14.0. HRMS (ESI/[M+H]⁺): calcd for C₁₇H₁₈N₃O₃⁺: 312.1343; Found 312.1345.

Ethyl 5-methyl-7-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyrimidine-6-carboxylate (5c)

Synthesized according to General Procedure D: (E)-N-(1H-Imidazol-2-yl)-1-(4-(trifluoromethyl)phenyl)methanimine 1c (72 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate 4 (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (40% acetone/hexanes) afforded 5c (92 mg, 88%) as a white solid. FTIR (neat) 1713, 1604, 1503, 1324, 1105 cm⁻¹. ¹H-NMR (600 MHz, $(CD_3)_2CO$ δ 7.99 (s, 1H), 7.89 (m, 5H), 4.18 (q, J = 7.1 Hz, 2H), 2.89 (s, 3H), 1.01 (t, J = 7.1 Hz, 2H) 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 167.2, 155.4, 148.2, 146.4, 144.20 (q, *J* = 1.8 Hz), 137.7, 131.3 (q, J = 32.2 Hz), 129.7, 126.2 (q, J = 3.8 Hz), 125.2 (q, J = 272.1 Hz), 115.4, 111.0, 62.7, 16.7, 13.8. ¹⁹F NMR (376 MHz, (CD₃)₂CO): δ -63.1. HRMS (ESI/[M+H]⁺): calcd for C₁₇H₁₅F₃N₃O₂⁺: 350.1111; Found 350.1112.

Ethyl 7-(4-(methoxycarbonyl)phenyl)-5-methylimidazo[1,2-a]pyrimidine-6-carboxylate (5d)

Synthesized according to General Procedure D: Methyl (*E*)-4-(((1*H*-imidazol-2yl)imino)methyl)benzoate **1d** (69 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 μ L, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (25%, then 40% acetone/hexanes) afforded **5d** (77 mg, 75%) as a yellow solid. FTIR (neat) 1717, 1279, 1196, 751 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 8.15–8.12 (m, 2H), 7.97 (d, *J* = 1.5 Hz, 1H), 7.89 (d, *J* = 1.5 Hz, 1H), 7.80–7.77 (m, 2H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.93 (s, 3H), 2.88 (s, 3H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 167.3, 166.8, 155.7, 148.2, 146.2, 144.6, 137.7, 131.6, 120.2, 129.2, 115.4, 110.9, 62.7, 52.5, 16.7, 13.9. HRMS (ESI/[M+H]⁺): calcd for $C_{18}H_{18}N_3O_4^+$: 340.1292; Found 340.1292.

Ethyl 7-(3-bromophenyl)-5-methylimidazo[1,2-a]pyrimidine-6-carboxylate (5e)

Synthesized according to General Procedure D: (*E*)-1-(3-Bromophenyl)-*N*-(1*H*-imidazol-2-yl)methanimine **1e** (75 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (25%, then 40% acetone/hexanes) afforded **5e** (78 mg, 72%) as brown solid. FTIR (neat) 1721, 1504, 1292, 1148, 685 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.89 (bs, 1H), 7.82 (t, *J* = 1.9 Hz, 1H), 7.60–7.50 (m, 3H), 7.28 (t, *J* = 7.9 Hz, 1H), 4.15 (q, *J* = 7.2 Hz, 2H), 2.76 (s, 3H), 1.02 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 166.7, 155.2, 147.5, 144.2, 140.7, 137.2, 132.5, 131.3, 130.0, 126.9, 122.5, 115.2, 109.0, 62.4, 16.6, 13.7. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₅BrN₃O₂⁺: 360.0342 and 362.0322; Found 360.0343 and 362.0323.

Ethyl 7-(furan-2-yl)-5-methylimidazo[1,2-a]pyrimidine-6-carboxylate (5f)

Synthesized according to General Procedure D: (*E*)-1-(Furan-2-yl)-*N*-(1*H*-imidazol-2-yl)methanimine **1h** (48 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 μ L, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (30%, then 50% acetone/hexanes) afforded **5f** (63 mg, 77%) as a white solid. FTIR (neat) 1729, 1293, 1180, 739, 720 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 7.89 (d, *J* = 1.5 Hz, 1H), 7.83 (d, *J* = 1.5 Hz, 1H), 7.80 (dd, *J* = 1.8; 0.9 Hz, 1H), 7.26 (dd, *J* = 3.5; 0.8 Hz, 1H), 6.69 (dd, *J* = 3.5; 1.8 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 2.77 (s, 3H), 1.31 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 167.0, 152.8, 148.2, 145.9, 145.0, 144.7, 137.6, 113.6, 113.3, 113.0, 110.8, 62.8, 16.4, 14.4. HRMS (ESI/[M+H]⁺): calcd for C₁₄H₁₄N₃O₃⁺: 272.1030; Found 272.1030.

Ethyl (E)-5-methyl-7-styrylimidazo[1,2-a]pyrimidine-6-carboxylate (5g)

Synthesized according to General Procedure D: (1E,2E)-*N*-(1H-Imidazol-2-yl)-3-phenylprop-2en-1-imine **1i** (59 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (30%, then 40% acetone/hexanes) afforded **5g** (46 mg, 50%) as a yellow solid. FTIR (neat) 1719, 1600, 1195, 1147, 1060, 687 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 8.03 (d, *J* = 15.4 Hz, 1H), 7.94–7.88 (m, 2H), 7.71–7.67 (m, 2H), 7.45–7.40 (m, 2H), 7.39–7.32 (m, 2H), 4.56 (q, *J* = 7.1 Hz, 2H), 2.81 (s, 3H), 1.45 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 166.9, 152.8, 148.0, 145.5, 138.1, 136.9, 136.1, 130.2, 129.8, 128.6, 123.8, 116.4, 110.9, 63.1, 16.9, 14.5. HRMS (ESI/[M+H]⁺): calcd for C₁₈H₁₈N₃O₂⁺: 308.1394; Found 308.1394.

Ethyl 4-methyl-2-phenylpyrimido[1,2-b]indazole-3-carboxylate (5h)

Synthesized according to General Procedure D: (*E*)-*N*-(2*H*-Indazol-3-yl)-1-phenylmethanimine **1j** (66 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 μ L, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 100 °C. Purification by silica gel column chromatography (5%, then 10%, then 30% ethyl acetate/hexanes) afforded **5h** (61 mg, 61%) as a yellow crystalline solid. FTIR (neat) 1718, 1634, 1267, 1181, 755 cm^{-1. 1}H-NMR (600 MHz, (CD₃)₂CO) δ 8.28–8.21 (m, 1H), 7.87–7.80 (m, 1H), 7.78 (d, *J* = 7.7 Hz, 2H), 7.69–7.61 (m, 1H), 7.60–7.49 (m, 3H), 7.35–7.26 (m, 1H), 4.26 (q, *J* = 7.5 Hz, 2H), 3.03 (s, 3H), 1.08 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 167.1, 152.7, 152.6, 145.4, 143.1, 139.8, 130.9, 130.2, 129.3, 129.2, 121.8, 121.7, 118.7, 117.4, 114.7, 62.9, 15.8, 13.9. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₁₈N₃O₂⁺: 332.1394; Found 332.1393.

Synthesized according to General Procedure D: (*E*)-*N*-(3-(*tert*-Butyl)-1*H*-pyrazol-5-yl)-1phenylmethanimine **1k** (73 mg, 94% mass purity, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (123 mg, 1.20 mmol, 4.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 120 °C. Purification by silica gel column chromatography (2.5%, then 5% ethyl acetate/hexanes) afforded **5i** (43 mg, 43%) as a yellow oil. FTIR (neat) 2962, 1720, 1606, 1290, 1192, 1157, 1053, 781, 696 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.61–7.55 (m, 2H), 7.46–7.39 (m, 3H), 6.59 (s, 1H), 4.09 (q, *J* = 7.1 Hz, 2H), 2.92 (s, 3H), 1.43 (s, 9H), 0.94 (t, *J* = 7.1 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 169.5, 167.2, 155.8, 148.0, 146.5, 139.7, 129.2, 128.5, 128.0, 113.4, 94.2, 61.9, 33.3, 30.5, 15.1, 13.6. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₂₄N₃O₂⁺: 338.1863; Found 338.1863.

Ethyl 7-methyl-3,5-diphenylpyrazolo[1,5-a]pyrimidine-6-carboxylate (5j)

Synthesized according to General Procedure D: (*E*)-1-Phenyl-*N*-(4-phenyl-1*H*-pyrazol-5yl)methanimine **11** (74 mg, 0.30 mmol, 1.0 equiv), ethyl diazoacetoacetate **4** (62 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), pivalic acid (123 mg, 1.20 mmol, 4.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The reaction mixture was stirred at 120 °C. Purification by silica gel column chromatography (10%, then 20% ethyl acetate/hexanes) afforded **5j** (101 mg, 94%) as a yellow solid. FTIR (neat) 1712, 1601, 1180, 1049, 766, 694 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.55 (s, 1H), 8.16–8.07 (m, 2H), 7.76–7.68 (m, 2H), 7.51–7.47 (m, 3H), 7.47–7.42 (m, 2H), 7.27 (tt, *J* = 7.3; 1.3 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 2.97 (s, 3H), 1.00 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 167.0, 156.1, 146.6, 144.1, 143.7, 139.4, 131.9, 129.6, 128.9, 128.6, 128.3, 126.6, 126.5, 114.6, 111.7, 62.2, 15.1, 13.7. HRMS (ESI/[M+H]⁺): calcd for C₂₂H₂₀N₃O₂⁺: 358.1550; Found 358.1550.

7. Synthesis and Characterization of Heterocycles 7

General Procedure E: Rh(III)-catalyzed coupling of imines with alkynes

To a flame-dried microwave tube in a glove box was added the imine (1, 1.0 equiv), the alkyne (6, 1.5 equiv), $[Cp*Rh(MeCN)_3][SbF_6]_2$ (0.1 equiv), $Cu(OAc)_2 \cdot H_2O$ (2.2 equiv), and trifluoroethanol (0.1 M). The tube was capped and the reaction mixture was stirred at the indicated temperature for the indicated amount of time. The reaction mixture was cooled to rt and concentrated. The crude reside was diluted with 28% aq. NH₃ (10 mL) and brine (10 mL) and extracted with CH₂Cl₂ (4 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The product was purified by silica gel column chromatography.

5,6-Diethyl-7-phenylimidazo[1,2-*a*]pyrimidine (7a)

Synthesized according to General Procedure E: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 μ L, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (50% acetone/hexanes) afforded **7a** (48 mg, 65%) as a white crystalline solid. FTIR (neat) 3105, 2973, 1606, 1505, 1282, 702 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.89 (bs, 1H), 7.64–7.38 (m, 6H), 3.09 (q, *J* = 7.6 Hz, 2H), 2.70 (q, *J* = 7.6 Hz, 2H), 1.40 (t, *J* = 7.6 Hz, 3H), 1.04 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 161.2, 148.2, 146.0, 139.8, 135.9, 128.6, 128.5, 128.3, 119.8, 107.7, 22.7, 21.3, 15.7, 10.7. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₈N₃⁺: 252.1495; Found 252.1498.

5,6-Diethyl-7-(4-methoxyphenyl)imidazo[1,2-a]pyrimidine (7b)

Synthesized according to General Procedure E: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-(4methoxyphenyl)methanimine **1b** (60 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (50%, then 60% acetone/hexanes) afforded **7b** (58 mg, 69%) as a white solid. FTIR (neat) 3125, 2973, 1599, 1244, 1023, 640 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 7.84 (d, *J* = 1.5 Hz, 1H), 7.71 (d, *J* = 1.5 Hz, 1H), 7.53–7.49 (m, 2H), 7.09–7.02 (m, 2H), 3.88 (s, 3H), 3.21 (q, *J* = 7.6 Hz, 2H), 2.79 (q, *J* = 7.6 Hz, 2H), 1.39 (t, *J* = 7.6 Hz, 3H), 1.06 (t, J = 7.6 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 161.1, 160.8, 148.7, 147.1, 135.9, 133.6, 130.8, 120.2, 114.2, 108.9, 55.6, 22.9, 21.7, 15.8, 11.0. HRMS (ESI/[M+H]⁺): calcd for C₁₇H₂₀N₃O⁺: 282.1601; Found 282.1602.

5,6-Diethyl-7-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyrimidine (7c)

Synthesized according to General Procedure E: (E)-N-(1H-Imidazol-2-yl)-1-(4-(trifluoromethyl)phenyl)methanimine 1c (72 mg, 0.30 mmol, 1.0 equiv), 3-hexyne 6a (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (40%, then 50% acetone/hexanes) afforded 7c (67 mg, 70%) as a white solid. FTIR (neat) 2938, 1495, 1323, 1120, 1106, 1068, 856 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂CO) δ 7.94 (bs, 1H), 7.88 (d, J = 8.0 Hz, 2H), 7.81 (bs, 1H), 7.80 (d, J = 8.0 Hz, 2H), 3.26 (q, J = 7.6 Hz, 2H), 2.76 (q, J = 7.6 Hz, 2H), 1.41 (t, J = 7.6 Hz, 3H), 1.06 (t, J= 7.6 Hz, 3H). ¹³C-NMR (150 MHz, (CD₃)₂CO) δ 159.8, 147.8, 145.2, 136.4, 130.6 (g, J = 32.9) Hz), 130.2, 125.9 (q, J = 3.6 Hz), 125.3, (q, J = 271.3 Hz), 119.9, 109.5, 23.0, 21.6, 15.7, 10.9. ¹⁹F NMR (376 MHz, (CD₃)₂CO): δ –63.0. HRMS (ESI/[M+H]⁺): calcd for C₁₇H₁₇F₃N₃⁺: 320.1369; Found 320.1369.

Methyl 4-(5,6-diethylimidazo[1,2-a]pyrimidin-7-yl)benzoate (7d)

Synthesized according to General Procedure E: Methyl (*E*)-4-(((1*H*-Imidazol-2-yl)imino)methyl)benzoate **1d** (69 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **7d** (77 mg, 83%) as a white solid. FTIR (neat) 1722, 1279, 1103, 763 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.13 (d, *J* = 8.0 Hz, 2H), 7.86 (s, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.53 (s, 1H), 3.95 (s, 3H), 3.09 (q, *J* = 7.6 Hz, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.41 (t, *J* = 7.6 Hz, 3H), 1.03 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 166.9, 160.0, 147.8, 146.2, 144.1, 136.2, 130.3, 129.6, 128.8, 119.6,

107.8, 52.4, 22.7, 21.2, 15.7, 10.7. HRMS (ESI/[M+H]⁺): calcd for $C_{18}H_{20}N_3O_2^+$: 310.1550; Found 310.15490.

7-(3-Bromophenyl)-5,6-diethylimidazo[1,2-*a*]pyrimidine (7e)

Synthesized according to General Procedure E: (*E*)-1-(3-Bromophenyl)-*N*-(1*H*-imidazol-2-yl)methanimine **1e** (75 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (30%, then 50% acetone/hexanes) afforded **7e** (68 mg, 68%) as a white solid. FTIR (neat) 3123, 1596, 1499, 1283, 1252, 1145, 1053, 763 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.86 (s, 1H), 7.68 (t, *J* = 2.0 Hz, 1H), 7.58 (ddd, *J* = 7.9; 2.0; 1.1 Hz, 1H), 7.52 (s, 1H), 7.45 (dt, *J* = 7.9; 1.1 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 1H), 3.09 (q, *J* = 7.6 Hz, 2H), 2.70 (q, *J* = 7.5 Hz, 2H), 1.41 (t, *J* = 7.6 Hz, 3H), 1.07 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 159.4, 147.8, 146.3, 141.7, 136.2, 131.8, 129.9, 127.3, 122.4, 119.6, 107.8, 22.7, 21.3, 15.8, 10.7. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₇BrN₃⁺: 330.0600 and 332.0580; Found 330.0599 and 332.0581.

7-(2-Chlorophenyl)-5,6-diethylimidazo[1,2-a]pyrimidine (7f)

Synthesized according to General Procedure E: (*E*)-1-(2-Chlorophenyl)-*N*-(1*H*-imidazol-2yl)methanimine **1f** (75 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (25%, then 50% acetone/hexanes) afforded **7f** (41 mg, 47%) as a white solid. FTIR (neat) 2970, 2934, 1604, 1501, 1282, 1148, 727, 700 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.88 (s, 1H), 7.55 (d, *J* = 1.4 Hz, 1H), 7.49–7.45 (m, 1H), 7.42–7.35 (m, 3H), 3.09 (q, *J* = 7.6 Hz, 2H), 2.64 (dq, *J* = 14.9; 7.6 Hz, 1H), 2.49 (dq, *J* = 14.9; 7.6 Hz, 1H), 1.43 (t, *J* = 7.6 Hz, 3H), 0.97 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 159.1, 147.9, 145.8, 138.4, 135.9, 132.6, 130.5, 130.0, 129.6, 126.9, 120.6, 107.9, 22.7, 21.3, 15.8, 10.7. HRMS (ESI/[M+H]⁺): calcd for C₁₆H₁₇ClN₃⁺: 286.1106; Found 286.1108.

3,4-Diethyl-2-phenylbenzo[4,5]imidazo[1,2-a]pyrimidine (7g)

Synthesized according to General Procedure E: (*E*)-N-(1*H*-Benzo[*d*]imidazol-2-yl)-1-phenylmethanimine **1g** (66 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (10, then 20, then 30% Et₂O/CH₂Cl₂) afforded **7g** (84 mg, 93%) as a yellow crystalline solid. FTIR (neat) 2964, 2932, 1590, 1490, 1307, 723, 702 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.58–7.54 (m, 2H), 7.51 (ddd, *J* = 8.4; 7.1; 1.1 Hz, 1H), 7.48–7.39 (m, 3H), 7.32 (ddd, *J* = 8.4; 7.1; 1.1 Hz, 1H), 3.42 (q, *J* = 7.6 Hz, 2H), 2.76 (q, *J* = 7.6 Hz, 2H), 1.51 (t, *J* = 7.6 Hz, 3H), 1.07 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 166.2, 150.7, 150.6, 145.6, 139.6, 128.9, 128.4, 128.2, 127.1, 125.6, 121.4, 120.5, 118.6, 115.0, 22.5, 21.0, 15.8, 11.7. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₂₀N₃⁺: 302.1652; Found 302.1653.

5,6-Diethyl-7-(furan-2-yl)imidazo[1,2-a]pyrimidine (7h)

Synthesized according to General Procedure E: (*E*)-1-(Furan-2-yl)-*N*-(1*H*-imidazol-2-yl)methanimine **1h** (48 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (30%, then 50% acetone/hexanes) afforded **7h** (51 mg, 71%) as a yellow oil. FTIR (neat) 2975, 2931, 1599, 1512, 1454, 1153, 1011, 744 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.82 (d, *J* = 1.4 Hz, 1H), 7.61 (dd, *J* = 1.8; 0.9 Hz, 1H), 7.47 (d, *J* = 1.4 Hz, 1H), 7.32 (dd, *J* = 3.5; 0.9 Hz, 1H), 6.58 (dd, *J* = 3.5; 1.8 Hz, 1H), 3.08 (q, *J* = 7.5 Hz, 2H), 3.04 (q, *J* = 7.5, 2H), 1.38 (t, *J* = 7.5 Hz, 3H), 1.28 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 153.6, 148.7, 148.3, 146.2, 144.1, 136.3, 118.7, 114.0, 112.2, 107.8, 22.4, 21.0, 15.8, 10.7. HRMS (ESI/[M+H]⁺): calcd for C₁₄H₁₆N₃O⁺: 242.1288; Found 242.1290.

(E)-5,6-Diethyl-7-styrylimidazo[1,2-a]pyrimidine (7i)

Synthesized according to General Procedure E: (1E,2E)-*N*-(1H-Imidazol-2-yl)-3-phenylprop-2en-1-imine **1i** (59 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (25%, then 40% acetone/hexanes) afforded **7i** (62 mg, 75%) as a yellow oil. FTIR (neat) 2968, 1592, 1514, 1449, 718, 691 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 15.4 Hz, 1H), 7.80 (s, 1H), 7.64–7.61 (m, 2H), 7.45 (s, 1H), 7.42–7.37 (m, 2H), 7.36–7.31 (m, 2H), 3.04 (q, *J* = 7.7 Hz, 2H), 2.86 (q, *J* = 7.6 Hz, 2H), 1.36 (t, *J* = 7.7 Hz, 3H), 1.29 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 154.6, 148.5, 144.9, 137.9, 136.7, 135.8, 129.0, 128.9, 127.8, 122.2, 119.4, 107.7, 22.5, 20.5, 15.7, 10.9. HRMS (ESI/[M+H]⁺): calcd for C_{18H20N3⁺}: 278.1652; Found 278.1652.

5,6,7-Triphenylimidazo[1,2-*a*]pyrimidine (7j)

Synthesized according to General Procedure E: (*E*)-*N*-(1*H*-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), diphenylacetylene **6b** (80 mg, 0.45 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (25 mg, 0.03 mmol, 0.10 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (40% acetone/hexanes) afforded **7j** (79 mg, 75%) as a white crystalline solid. FTIR (neat) 1476, 1262, 1145, 763, 694 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.76 (bs, 1H), 7.41–7.31 (m, 5H), 7.27–7.19 (m, 4H), 7.18–7.14 (m, 2H), 7.09–7.01 (m, 3H), 6.91–6.87 (m, 2H). ¹³C-NMR (150 MHz, CDCl₃) δ 159.2, 148.6, 144.1, 138.9, 135.8, 135.3, 131.7, 131.6, 130.0, 129.9, 129.2, 129.0, 128.6, 128.0, 127.7, 127.3, 121.4, 109.7. HRMS (ESI/[M+H]⁺): calcd for C₂₄H₁₈N₃⁺: 348.1495; Found 348.1495.

6-Ethyl-5,7-diphenylimidazo[1,2-a]pyrimidine (7k)

Synthesized according to General Procedure E: (E)-N-(1H-Imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 1-phenyl-1-butyne **6c** (64 μ L, 0.45 mmol, 1.5 equiv),

 $[Cp*Rh(MeCN)_3][SbF_6]_2$ (25 mg, 0.03 mmol, 0.10 equiv), $Cu(OAc)_2$ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The reaction mixture was stirred at 60 °C for 16 h. Purification by silica gel column chromatography (25%, then 40% acetone/hexanes) afforded **7k** (70 mg, 78%) as mixture of regioisomers in a 2.8:1 ratio. The mixture appeared as a yellow oil. The two isomers would partially overlap; however, it was found that by preparative TLC (50% acetone/hexanes), it was possible to obtain each isomer for analysis. The structures were assigned by ¹H-NMR NOESY experiments.

6-Ethyl-5,7-diphenylimidazo[1,2-a]pyrimidine (7ka)

Major isomer, R_f (50% acetone/hexanes) = 0.53. FTIR (neat) 2921, 1482, 1259, 696 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.70 (s, 1H), 7.67–7.57 (m, 5H), 7.52–7.39 (m, 5H), 6.96 (s, 1H), 2.57 (q, *J* = 7.5 Hz, 2H), 0.76 (t, *J* = 7.4 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 161.5, 148.1, 143.7, 139.6, 135.3, 131.8, 130.4, 129.8, 128.8, 128.67, 128.65, 128.4, 121.1, 109.5, 21.8, 15.1. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₁₈N₃⁺: 300.1495; Found 300.1495.

5-Ethyl-6,7-diphenylimidazo[1,2-a]pyrimidine (7kb)

Minor isomer, R_f (50% acetone/hexanes) = 0.40. FTIR (neat) 2919, 1486, 1267, 695 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.92 (s, 1H), 7.56 (s, 1H), 7.39–7.30 (m, 5H), 7.24–7.09 (m, 5H), 2.88 (q, *J* = 7.6 Hz, 2H), 1.30 (t, *J* = 7.6 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 159.0, 148.6, 146.6, 139.0, 136.3, 135.9, 131.0, 130.0, 128.7, 128.5, 128.0, 127.7, 121.1, 108.1, 23.7, 10.8. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₁₈N₃⁺: 300.1495; Found 300.1495.

2-(*tert*-Butyl)-6,7-diethyl-5-phenylpyrazolo[1,5-*a*]pyrimidine (7l)

Synthesized according to General Procedure E: (E)-N-(3-(*tert*-Butyl)-1*H*-pyrazol-5-yl)-1phenylmethanimine **1k** (73 mg, 94% purity by mass, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*RhCl₂]₂ (9 mg, 0.015 mmol, 0.05 equiv), AgOAc (110 mg, 0.66 mmol, 2.2 equiv), pivalic acid (123 mg, 1.20 mmol, 4.0 equiv), and tetrahydrofuran (3 mL). The reaction mixture was stirred at 100 °C for 16 h. Purification by silica gel column chromatography (2.5%, then 5% ethyl acetate/hexanes) afforded 7I (42 mg, 46%) as a yellow oil. FTIR (neat) 2960, 1602, 1501, 1358, 798, 701 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 7.48–7.39 (m, 5H), 6.46 (s, 1H), 3.29 (q, *J* = 7.5 Hz, 2H), 2.66 (q, *J* = 7.5 Hz, 2H), 1.44 (t, *J* = 7.5 Hz, 3H), 1.43 (s, 9H), 1.03 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 167.2, 159.5, 148.4, 147.3, 140.4, 128.42, 128.39, 128.35, 118.2, 92.1, 33.0, 30.7, 21.3, 21.2, 15.9, 11.3. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₂₆N₃⁺: 308.2121; Found 308.2122.

6,7-Diethyl-3,5-diphenylpyrazolo[1,5-*a*]pyrimidine (7m)

Synthesized according to General Procedure E: (*E*)-1-Phenyl-*N*-(4-phenyl-1*H*-pyrazol-5yl)methanimine **11** (74 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 µL, 0.45 mmol, 1.5 equiv), [Cp*RhCl₂]₂ (9 mg, 0.015 mmol, 0.05 equiv), AgOAc (110 mg, 0.66 mmol, 2.2 equiv), pivalic acid (123 mg, 1.20 mmol, 4.0 equiv), and tetrahydrofuran (3 mL). The reaction mixture was stirred at 100 °C for 16 h. Purification by silica gel column chromatography (5% ethyl acetate/hexanes) afforded **7m** (81 mg, 83%) as a yellow solid. FTIR (neat) 2978, 1602, 1496, 1300, 763, 693 cm⁻¹. ¹H-NMR (600 MHz, CDCl₃) δ 8.44 (s, 1H), 8.10 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.61–7.55 (m, 2H), 7.54–7.44 (m, 3H), 7.39 (t, *J* = 7.8 Hz, 2H), 7.21 (tt, *J* = 7.3; 1.3 Hz, 1H), 3.35 (q, *J* = 7.5 Hz, 2H), 2.76 (q, *J* = 7.5 Hz, 2H), 1.48 (t, *J* = 7.5 Hz, 3H), 1.09 (t, *J* = 7.5 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃) δ 160.2, 148.6, 143.4, 141.9, 140.3, 132.7, 128.8, 128.7, 128.3, 126.2, 125.9, 119.7, 110.2, 21.4, 21.3, 15.7, 11.6. HRMS (ESI/[M+H]⁺): calcd for C₂₂H₂₂N₃⁺: 328.1808; Found 328.1807.

8. Experiments with Rhodacycle 8

Generation of Rh(III) imine complex

To a flame-dried microwave tube in a glove box was added (*E*)-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine (34 mg, 0.20 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (62 mg, 0.10 mmol, 0.5 equiv), NaOAc (16 mg, 0.20 mmol, 1.0 equiv) and dichloromethane (5 mL). The tube was capped, and the reaction mixture was stirred at 40 °C for 18 h. The reaction mixture was cooled to ambient temperature, and the mixture was filtered through a pad of dry celite into a 20 mL vial inside the glovebox. The solvent was slowly removed to yield the desired complex (85 mg, 96%) as a brown solid. FTIR (neat) 1707, 1563, 1450, 1022, 699 cm⁻¹. ¹H-NMR (500 MHz, CDCl₃) δ 7.81–7.78 (m, 2H), 7.46–7.39 (m, 3H), 6.93 (d, *J* = 1.7 Hz, 1H), 6.63 (d, *J* = 1.7 Hz, 1H), 1.47 (s, 15H). ¹³C-NMR (150 MHz, CDCl₃) δ 159.1 (d, *J* = 1.9 Hz), 146.6, 129.53, 129.52 (d, *J* = 113.3 Hz) 127.8, 127.2, 123.3, 115.5, 97.1 (d, *J* = 6.2 Hz), 9.1. HRMS (ESI/[M+H]⁺): calcd for C₂₀H₂₄ClN₃Rh⁺: 444.0708; Found 444.0707.

Reaction of imine 1a and sulfoxonium ylide 2a

To a flame-dried microwave tube in a glove box was added (*E*)-*N*-(1*H*-imidazol-2-yl)-1phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (95 mg, 0.45 mmol, 1.5 equiv), rhodacycle **8a** (13 mg, 0.03 mmol, 0.1 equiv), AgSbF₆ (10 mg, 0.03 mmol, 0.1 equiv), pivalic acid (61 mg, 0.60 mmol, 2.0 equiv), sodium acetate (25 mg, 0.30 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (3 mL). The tube was capped, and the reaction mixture was stirred at 100 °C for 16 h. The reaction mixture was cooled to ambient temperature and filtered through a plug of Celite with dichloromethane. The solvent was removed *in vacuo* and the crude reaction mixture was subjected to silica gel column chromatography (40% acetone/hexanes) to afford **3a** (50 mg, 58%) as a yellow foam. Spectroscopic data agreed with that reported above.

Reaction of imine 1a and alkyne 6a

To a flame-dried microwave tube in a glove box was added (*E*)-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine **1a** (51 mg, 0.30 mmol, 1.0 equiv), 3-hexyne **6a** (51 μ L, 0.45 mmol, 1.5 equiv), rhodacycle **8a** (13 mg. 0.03 mmol, 0.1 equiv), AgSbF₆ (10 mg, 0.03 mmol, 0.1 equiv), Cu(OAc)₂ (120 mg, 0.66 mmol, 2.2 equiv), and trifluoroethanol (3 mL). The tube was capped and the reaction mixture was stirred at 60 °C for 16 h. The reaction mixture was cooled to room temperature and concentrated *in vacuo*. The crude reside was diluted with 28% aq. NH₃ (10 mL) and brine (10 mL) and extracted with CH₂Cl₂ (4 x 10 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The product was purified by silica gel column chromatography (50% acetone/hexanes) to afford **7a** (59 mg, 78%) as a white crystalline solid. Spectroscopic data agreed with that reported above.

9. Studies with Deuterated 1a-D Synthesis of Azolo imine 1a-D

To a solution of deuterobenzaldehyde (278 mg, 2.60 mmol, 1.0 equiv) in dichloromethane (8 mL) were added sequentially 2-aminoimidazole sulfate (344 mg, 2.60 mmol, 1.0 equiv), titanium(IV) ethoxide (0.87 mL, 4.2 mmol, 1.6 equiv), and triethylamine (0.73 mL, 5.2 mmol, 2 equiv). The reaction mixture was stirred at ambient temperature for 18 h. The reaction was quenched with H₂O (2 x volume of dichloromethane). The resulting solid was filtered and washed with dichloromethane. The filtrate was transferred to a separatory funnel, and the layers were separated. The organic layer was dried over MgSO₄, filtered, and concentrated *in vacuo*. Then the crude material was filtered through a plug of silica with 50% EtOAc/hexanes. Subsequently, the imine was recrystallized in EtOAc/hexanes to afford (*E*)-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine-d **1a**-D (179 mg, 40%) as an off-white solid. FTIR (neat) 1593, 1575, 1542, 1450, 1231, 1107, 995, 738, 688, 581 cm⁻¹. ¹H-NMR (600 MHz, (CD₃)₂SO) δ 12.31 (br s, 1H), 7.95 (d, *J* = 7.3 Hz, 2H), 7.57–7.50 (m, 3H), 7.15 (s, 1H), 6.91 (s, 1H). ¹³C-NMR (150 MHz, (CD₃)₂SO) δ 158.9 (t, *J* = 25.0 Hz), 150.6, 135.6, 131.7, 129.0, 128.6, 127.6, 116.9. HRMS (ESI/[M+H]⁺): calcd for C₁₀H₉DN₃⁺: 173.0932; Found 173.0927.

Determination of Deuterium/Protium Exchange

Exchange experiments were performed using an indirect mass spectrometric assay. Reactions were run to partial conversion, then treated with (2,4-dinitrophenyl)hydrazine until all remaining imine 1a/1a-D had converted to protio- or deutero-(Z)-1-benzylidene-2-(2,4-dinitrophenyl)hydrazine S1a/S1a-D (Scheme S1). The ratio of isomers S1a/S1a-D was determined on the crude reaction mixture by LC/MS.

Scheme S1. Experimental Design for Exchange Studies

Reaction Procedure

To a flame-dried microwave tube in a glove box was added (*E*)-1-deutero-*N*-(1*H*-imidazol-2-yl)-1-phenylmethanimine **1a**-D (34 mg, 0.20 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (63 mg, 0.30 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (17 mg, 0.02 mmol, 0.10 equiv), pivalic acid (41 mg, 0.40 mmol, 2.0 equiv), sodium acetate (16 mg, 0.20 mmol, 1.0 equiv), 3Å molecular sieves (approximately 70 mg), and 1,4-dioxane (2 mL). The tube was capped, and the reaction mixture was stirred at 100 °C for 30 min (Figure S1) or 60 min (Figure S2). The reaction mixture was cooled to ambient temperature and filtered through a plug of Celite with exactly 2 mL 1,4-dioxane. The resultant solution was split in half. From the first half, the solvent was removed *in vacuo* and the crude reaction mixture was subjected to ¹H NMR analysis (with 1,3,5-trimethoxybenzene as an external standard) to determine conversion. The second half of the solution was treated with (2,4-dinitrophenyl)hydrazine (30% H₂O, 71 mg, 0.25 mmol, 2.5 equiv relative to starting imine), and stirred at reflux (80 °C) until TLC indicated consumption of all **1a**-D (150 minutes). The crude material was then loaded onto LC/MS and assessed for protium/deuterium exchange.

Figure S1. Reaction at 11% conversion. (a) Reaction set-up. (b) LC trace of crude reaction material at 226 nm. (c) Negative channel mass spectrum of **S1a/S1a-D** peak at 2.90 min with ion intensities.

Figure S2. Reaction at 33% conversion. (a) Reaction set-up. (b) LC trace of crude reaction material at 226 nm. (c) Negative channel mass spectrum of **S1a/S1a-D** peak at 2.90 min with ion intensities.

Control Experiment

As a control, deuteroimine **1a**-D (17 mg, 0.10 mmol, 1.0 equiv), (2,4-dinitrophenyl)hydrazine (30% H₂O, 70 mg, 0.25 mmol, 2.5 equiv), PivOH (20 mg, 0.20 mmol, 2.0 equiv), and NaOAc (8.0 mg, 0.10 mmol, 1.0 equiv) were dissolved in 1,4-dioxane (2.0 mL) and the reaction was stirred at reflux (80 °C) until TLC indicated consumption of all **1a**-D (150 minutes). The crude material was then loaded onto LC/MS and assessed for the presence of trace protioimine **1a** (Figure S3). This revealed less than 0.3% protioimine **1a** in the deuterated sample.

Figure S3. Reaction of **1a**-D with (2,4-dinitrophenyl)hydrazine. (a) Reaction scheme. (b) Negative channel mass spectrum of **S1a**-D peak at 2.90 min with ion intensities.

Initial Rate Measurements for Kinetic Isotope Effect Studies

To an oven-dried J. Young NMR tube in a glove box was added imine (**1a**: 17.1 mg, 0.100 mmol, 1.0 equiv; or **1a**-D: 17.2 mg, 0.100 mmol, 1.0 equiv), 2-(dimethyl(oxo)- λ^6 -sulfanylidene)-1-(*m*-tolyl)ethan-1-one **2a** (31.5 mg, 0.150 mmol, 1.5 equiv), [Cp*Rh(MeCN)₃][SbF₆]₂ (8.3 mg, 0.010 mmol, 0.10 equiv), pivalic acid (20.4 mg, 0.200 mmol, 2.0 equiv), sodium acetate (8.2 mg, 0.100 mmol, 1.0 equiv), 1,3,5-trimethoxybenzene (5.6 mg, 0.033 mmol, 0.33 equiv), and 1,4-dioxane-*d*₈ (1 mL). The tube was sealed, removed from the glove box, and inserted into a 500 MHz NMR instrument that had been previously equilibrated to 100 °C. Once the magnet had been shimmed, measurements for imine disappearance, ylide disappearance, and product formation were recorded every 5 min, based on internal standard 1,3,5-trimethoxybenzene (Table S4). Each experiment was run twice. Measurements for imine consumption were not possible for **1a**-D as the diagnostic ¹H NMR signal for **1a** had been deuterated.

1a - Run 1				1a - Run 2			
Time (min)	yield (%)	1a (%)	2a (%)	Time (min)	yield (%)	1a (%)	2a (%)
0	1	82	93	0	5	95	80
5	3	83	86	5	8	92	76
10	7	78	82	10	12	87	73
15	10	76	78	15	15	79	70
20	12	74	75	20	18	80	72
1a- D - Run 1				1a- D - Run 2			
Time (min)	yield (%)	1a-D (%)	2a (%)	Time (min)	yield (%)	1a-D (%)	2a (%)
0	2	ND	95	0	1	ND	88
5	5	ND	91	5	3	ND	82
10	7	ND	89	10	5	ND	79
15	9	ND	86	15	7	ND	80
20	11	ND	84	20	8	ND	77

Table S4. Kinetics for Reactions of Imines 1a and 1a-D.

Initial rate data for each experiment was graphed and the averaged slopes of the linear fits were used to calculate a kinetic isotope effect of $k_{\rm H}/k_{\rm D} = 1.5 \pm 0.09$ (Figure S4).

10. Catalytic Cycles

Scheme S2. Proposed Mechanism of Rhodium(III)-Catalyzed C–H Functionalizations of Iminyl Azoles with Diazoketone 4

Scheme S3. Proposed Mechanism of Rhodium(III)-Catalyzed C–H Functionalizations of Iminyl Azoles with Alkynes 6

11. ¹H and ¹³C NMR Spectra of New Imines, Ylides, Heterocycles, and Rhodacycle 8

S50

S72

S86

S106

12. X-Ray Crystallography Information

Product 3c

Crystal growth

Single crystals of 3c were achieved by dissolving 3c (~15 mg) in acetone (0.5 mL) and slow evaporation of the solvent over the course of three days.

Data Collection

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Dectris Pilatus3R detector with Mo K α (λ = 0.71073 Å) for the structure of 007C-17038. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of compound 007C-17038 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1585369 (007C-17038) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S5. The complete numbering scheme of 007c-17038 with 50% thermal ellipsoid probability levels. The hydrogen atoms are shown as circles for clarity.

nt for 007c-17038
007c-17038
C20 H14 F3 N3
353.34
93(2) K
0.71073 Å
Triclinic
P-1
Unit cell dimensions
--
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Crystal color and habit
Diffractometer
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Observed reflections $(I > 2 \text{sigma}(I))$
Completeness to theta = 25.242°
Absorption correction
Max. and min. transmission
Solution method
Refinement method
Data / restraints / parameters
Goodness-of-fit on F ²
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

Table S6. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 007c-17038. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)
F(1)	176(1)	3976(1)	7961(1)	50(1)
F(2)	2636(1)	5310(1)	9490(1)	33(1)
F(3)	2782(2)	3483(1)	8754(1)	42(1)
N(1)	8049(1)	8720(1)	3576(1)	14(1)
N(2)	8029(2)	7396(1)	5207(1)	15(1)
N(3)	10945(2)	8447(1)	4554(1)	18(1)
C(1)	6023(2)	8498(1)	3326(1)	14(1)
C(2)	5032(2)	7740(1)	4041(1)	15(1)
C(3)	6096(2)	7219(1)	5003(1)	14(1)
C(4)	9008(2)	8133(1)	4490(1)	14(1)
C(5)	11225(2)	9246(1)	3680(1)	18(1)
C(6)	9496(2)	9433(1)	3064(1)	16(1)
C(7)	5047(2)	6471(1)	5844(1)	14(1)
C(8)	6086(2)	5932(1)	6760(1)	18(1)
C(9)	5155(2)	5266(1)	7578(1)	19(1)
C(10)	3166(2)	5126(1)	7485(1)	18(1)
C(11)	2107(2)	5649(1)	6577(1)	20(1)
C(12)	3047(2)	6316(1)	5763(1)	18(1)
C(13)	2189(2)	4470(1)	8409(1)	23(1)
C(14)	5034(2)	9086(1)	2320(1)	14(1)
C(15)	3381(2)	8252(1)	1321(1)	16(1)
C(16)	2302(2)	8762(1)	401(1)	17(1)
C(17)	2902(2)	10124(1)	517(1)	18(1)

C(18)	4552(2)	10964(1)	1507(1)	18(1)
C(19)	5639(2)	10452(1)	2410(1)	16(1)
C(20)	554(2)	7848(1)	-692(1)	23(1)

Table S7.	Bond lengths	[Å] and	angles [°]	for	007c-17038.

F(1)-C(13)	1.3344(16)
F(2)-C(13)	1.3426(15)
F(3)-C(13)	1.3374(16)
N(1)-C(1)	1.3738(15)
N(1)-C(6)	1.3787(15)
N(1)-C(4)	1.4063(14)
N(2)-C(3)	1.3226(15)
N(2)-C(4)	1.3494(15)
N(3)-C(4)	1.3304(15)
N(3)-C(5)	1.3708(15)
C(1)-C(2)	1.3643(16)
C(1)-C(14)	1.4841(15)
C(2)-C(3)	1.4297(15)
C(2)-H(2)	0.9500
C(3)-C(7)	1.4897(15)
C(5)-C(6)	1.3660(16)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-C(12)	1.3985(17)
C(7) - C(8)	1.4017(16)
C(8) - C(9)	1.3879(17)
C(8)-H(8)	0.9500
C(9)-C(10)	1.3916(18)
C(9)-H(9)	0.9500
C(10)-C(11)	1.3913(17)
C(10) - C(13)	1.4984(16)
C(11)-C(12)	1.3885(17)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(14)-C(15)	1.3974(15)
C(14)-C(19)	1.3977(16)
C(15)-C(16)	1.3972(16)
C(15)-H(15)	0.9500
C(16)-C(17)	1.3928(17)
C(16)-C(20)	1.5095(16)
C(17)-C(18)	1.3934(17)
C(17)-H(17)	0.9500
C(18)-C(19)	1.3902(16)
C(18)-H(18)	0.9500
C(19)-H(19)	0.9500
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(1)-N(1)-C(6)	132.52(10)
C(1)-N(1)-C(4)	120.66(10)
C(6)-N(1)-C(4)	106.80(9)
C(3)-N(2)-C(4)	117.35(10)
C(4)-N(3)-C(5)	104.81(10)

C(2)-C(1)-N(1)	116.92(10)
C(2)-C(1)-C(14)	123.56(10)
N(1)-C(1)-C(14)	119.52(10)
C(1)-C(2)-C(3)	120.28(10)
C(1)-C(2)-H(2)	119.9
C(3)-C(2)-H(2)	119.9
N(2)-C(3)-C(2)	122.42(10)
N(2)-C(3)-C(7)	117.33(10)
C(2)-C(3)-C(7)	120.24(10)
N(3)-C(4)-N(2)	127.01(10)
N(3)-C(4)-N(1)	110.72(10)
N(2)-C(4)-N(1)	122.24(10)
C(6)-C(5)-N(3)	112.60(10)
C(6)-C(5)-H(5)	123.7
N(3)-C(5)-H(5)	123 7
C(5)-C(6)-N(1)	105.06(10)
C(5)-C(6)-H(6)	127.5
N(1)-C(6)-H(6)	127.5
C(12)-C(7)-C(8)	118.67(11)
C(12)-C(7)-C(3)	12147(10)
C(8)-C(7)-C(3)	119.83(11)
C(9)-C(8)-C(7)	120.70(11)
C(9)-C(8)-H(8)	119.6
C(7)-C(8)-H(8)	119.6
C(8)-C(9)-C(10)	119.77(11)
C(8)-C(9)-H(9)	120.1
C(10)-C(9)-H(9)	120.1
C(11)-C(10)-C(9)	120.33(11)
C(11)-C(10)-C(13)	119.65(12)
C(9)-C(10)-C(13)	119.95(11)
C(12)-C(11)-C(10)	119.68(11)
C(12)-C(11)-H(11)	120.2
C(10)-C(11)-H(11)	120.2
C(11)-C(12)-C(7)	120.85(11)
C(11)-C(12)-H(12)	119.6
C(7)-C(12)-H(12)	119.6
F(1)-C(13)-F(3)	106.98(11)
F(1)-C(13)-F(2)	105.87(11)
F(3)-C(13)-F(2)	105.66(10)
F(1)-C(13)-C(10)	112.84(11)
F(3)-C(13)-C(10)	112.96(11)
F(2)-C(13)-C(10)	111.99(10)
C(15)-C(14)-C(19)	120.18(10)
C(15)-C(14)-C(1)	118.64(10)
C(19)-C(14)-C(1)	121.03(10)
C(16)-C(15)-C(14)	120.91(11)
C(16)-C(15)-H(15)	119.5
C(14)-C(15)-H(15)	119.5
C(17)-C(16)-C(15)	118.20(10)
C(17)-C(16)-C(20)	121.42(10)
C(15)-C(16)-C(20)	120.38(11)
C(16)-C(17)-C(18)	121.27(10)
C(16)-C(17)-H(17)	119.4
C(18)-C(17)-H(17)	119.4
C(19)-C(18)-C(17)	120.30(11)
C(19)-C(18)-H(18)	119.8

C(17)-C(18)-H(18)	119.8
C(18)-C(19)-C(14)	119.12(11)
C(18)-C(19)-H(19)	120.4
C(14)-C(19)-H(19)	120.4
C(16)-C(20)-H(20A)	109.5
C(16)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
C(16)-C(20)-H(20C)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5

Table S8. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for 007c-17038. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}$]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
F(1)	27(1)	72(1)	31(1)	21(1)	9(1)	-10(1)
F(2)	52(1)	29(1)	19(1)	4(1)	17(1)	11(1)
F(3)	71(1)	27(1)	47(1)	23(1)	38(1)	22(1)
N(1)	14(1)	15(1)	14(1)	3(1)	5(1)	6(1)
N(2)	16(1)	15(1)	14(1)	3(1)	4(1)	7(1)
N(3)	15(1)	22(1)	19(1)	4(1)	6(1)	9(1)
C(1)	14(1)	16(1)	14(1)	2(1)	4(1)	6(1)
C(2)	12(1)	17(1)	16(1)	4(1)	4(1)	6(1)
C(3)	15(1)	13(1)	14(1)	2(1)	4(1)	5(1)
C(4)	15(1)	16(1)	14(1)	2(1)	3(1)	8(1)
C(5)	16(1)	19(1)	21(1)	3(1)	8(1)	6(1)
C(6)	16(1)	18(1)	17(1)	4(1)	9(1)	6(1)
C(7)	16(1)	12(1)	13(1)	1(1)	4(1)	4(1)
C(8)	18(1)	18(1)	16(1)	4(1)	4(1)	7(1)
C(9)	24(1)	18(1)	15(1)	5(1)	4(1)	7(1)
C(10)	24(1)	14(1)	14(1)	1(1)	6(1)	1(1)
C(11)	16(1)	21(1)	20(1)	4(1)	7(1)	4(1)
C(12)	18(1)	19(1)	17(1)	5(1)	5(1)	6(1)
C(13)	27(1)	20(1)	18(1)	4(1)	8(1)	3(1)
C(14)	13(1)	20(1)	14(1)	6(1)	7(1)	8(1)
C(15)	15(1)	17(1)	17(1)	4(1)	7(1)	6(1)
C(16)	14(1)	23(1)	15(1)	4(1)	5(1)	8(1)
C(17)	19(1)	24(1)	15(1)	8(1)	6(1)	12(1)
C(18)	22(1)	16(1)	19(1)	6(1)	8(1)	9(1)
C(19)	15(1)	18(1)	15(1)	4(1)	5(1)	6(1)
C(20)	19(1)	26(1)	20(1)	4(1)	1(1)	7(1)

Table S9. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for 007c-17038.

	Х	у	Z	U(eq)
H(2)	3628	7556	3898	18
H(5)	12482	9629	3519	22
H(6)	9327	9944	2423	20
H(8)	7442	6023	6823	21

H(9)	5873	4907	8199	23
H(11)	748	5549	6514	23
H(12)	2322	6673	5143	22
H(15)	2986	7325	1266	19
H(17)	2171	10489	-91	22
H(18)	4937	11891	1566	22
H(19)	6778	11022	3078	20
H(20A)	1021	7742	-1434	34
H(20B)	-510	8222	-896	34
H(20C)	17	6989	-458	34

Table S10. Torsion angles [°] for 007c-17038.

C(6)-N(1)-C(1)-C(2)	-179.11(11)
C(4)-N(1)-C(1)-C(2)	2.84(16)
C(6)-N(1)-C(1)-C(14)	0.45(18)
C(4)-N(1)-C(1)-C(14)	-177.60(9)
N(1)-C(1)-C(2)-C(3)	0.29(16)
C(14)-C(1)-C(2)-C(3)	-179.25(10)
C(4)-N(2)-C(3)-C(2)	2.05(16)
C(4)-N(2)-C(3)-C(7)	-176.58(9)
C(1)-C(2)-C(3)-N(2)	-2.89(17)
C(1)-C(2)-C(3)-C(7)	175.70(10)
C(5)-N(3)-C(4)-N(2)	-177.49(11)
C(5)-N(3)-C(4)-N(1)	0.47(13)
C(3)-N(2)-C(4)-N(3)	178.96(11)
C(3)-N(2)-C(4)-N(1)	1.20(16)
C(1)-N(1)-C(4)-N(3)	178.14(10)
C(6)-N(1)-C(4)-N(3)	-0.37(13)
C(1)-N(1)-C(4)-N(2)	-3.78(16)
C(6)-N(1)-C(4)-N(2)	177.71(10)
C(4)-N(3)-C(5)-C(6)	-0.42(13)
N(3)-C(5)-C(6)-N(1)	0.20(13)
C(1)-N(1)-C(6)-C(5)	-178.16(11)
C(4)-N(1)-C(6)-C(5)	0.09(12)
N(2)-C(3)-C(7)-C(12)	175.25(10)
C(2)-C(3)-C(7)-C(12)	-3.41(16)
N(2)-C(3)-C(7)-C(8)	-3.19(15)
C(2)-C(3)-C(7)-C(8)	178.15(10)
C(12)-C(7)-C(8)-C(9)	-0.48(17)
C(3)-C(7)-C(8)-C(9)	178.01(10)
C(7)-C(8)-C(9)-C(10)	0.27(18)
C(8)-C(9)-C(10)-C(11)	0.08(18)
C(8)-C(9)-C(10)-C(13)	-176.84(11)
C(9)-C(10)-C(11)-C(12)	-0.22(18)
C(13)-C(10)-C(11)-C(12)	176.71(11)
C(10)-C(11)-C(12)-C(7)	0.01(18)
C(8)-C(7)-C(12)-C(11)	0.33(17)
C(3)-C(7)-C(12)-C(11)	-178.12(10)
C(11)-C(10)-C(13)-F(1)	26.20(17)
C(9)-C(10)-C(13)-F(1)	-156.86(12)
C(11)-C(10)-C(13)-F(3)	147.69(12)
C(9)-C(10)-C(13)-F(3)	-35.37(16)
C(11)-C(10)-C(13)-F(2)	-93.15(14)
C(9)-C(10)-C(13)-F(2)	83.79(14)

C(2)-C(1)-C(14)-C(15)	-57.84(15)
N(1)-C(1)-C(14)-C(15)	122.63(12)
C(2)-C(1)-C(14)-C(19)	117.65(13)
N(1)-C(1)-C(14)-C(19)	-61.88(15)
C(19)-C(14)-C(15)-C(16)	-0.35(17)
C(1)-C(14)-C(15)-C(16)	175.18(10)
C(14)-C(15)-C(16)-C(17)	-0.81(17)
C(14)-C(15)-C(16)-C(20)	178 37(11)
C(15)-C(16)-C(17)-C(18) C(20)-C(16)-C(17)-C(18)	1.07(17) 1.07(17) -178 10(11)
C(16)-C(17)-C(18)-C(19) C(16)-C(17)-C(18)-C(19)	-0.17(18)
C(17)-C(18)-C(19)-C(14) $C(15)-C(14)-C(19)-C(18)$ $C(1)-C(14)-C(19)-C(18)$	-1.00(17) 1.26(17) -174.16(10)

Product 7a

Crystal growth

Single crystals of 7a were achieved by dissolving 7a (~15 mg) in acetone (0.5 mL) and slow evaporation of the solvent over the course of three days.

Data Collection

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of 007-16124. The diffraction images were processed and scaled using the Rigaku CrystalClear software (CrystalClear and CrystalStructure; Rigaku/MSC: The Woodlands, TX, 2005). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The full numbering scheme of compound 007-16124 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1585370 (007-16124) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Figure S6. The complete numbering scheme 007-16124 with 50% thermal ellipsoid probability levels. The hydrogen atoms are shown as circles for clarity.

Table S11. Crystal data and structure refinement for	r 007-16124.		
Identification code	007-16124		
Empirical formula	C32 H34 N6		
Formula weight	502.65		
Temperature	93(2) K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	C2/c		
Unit cell dimensions	a = 29.205(2) Å	$\alpha = 90^{\circ}$.	
	b = 6.7028(5) Å	$\beta = 101.591(3)^{\circ}$.	
	c = 13.6630(10) Å	$\gamma = 90^{\circ}$.	
Volume	$2620.1(3) Å^3$		
Ζ	4		
Density (calculated)	1.274 Mg/m ³		
Absorption coefficient	0.601 mm ⁻¹		
F(000)	1072		
Crystal size	0.200 x 0.020 x 0.020 mm ³		
Theta range for data collection	6.187 to 67.766°.		
Index ranges	-34<=h<=34, -8<=k<=8, -16<=	=l<=16	
Reflections collected	44198		
Independent reflections	2364 [R(int) = 0.0678]		
Completeness to theta = 67.679°	99.8 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.000 and 0.777		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2364 / 0 / 174		
Goodness-of-fit on F ²	1.033		
Final R indices [I>2sigma(I)]	nal R indices [I>2sigma(I)] $R1 = 0.0326$, wR2 = 0.0867		
R indices (all data) $R1 = 0.0366$, wR2 = 0.0896			
Extinction coefficient n/a			
Largest diff. peak and hole	0.199 and -0.144 e.Å ⁻³		

	X	У	Z	U(eq)
N(1)	7108(1)	6440(2)	5738(1)	27(1)
N(2)	6915(1)	6847(1)	7240(1)	23(1)
N(3)	6515(1)	4335(1)	6152(1)	24(1)
C(1)	6833(1)	5800(2)	6338(1)	24(1)
C(2)	7370(1)	7923(2)	6265(1)	28(1)
C(3)	7263(1)	8210(2)	7184(1)	27(1)
C(4)	6677(1)	6395(2)	7990(1)	23(1)
C(5)	6345(1)	4915(2)	7803(1)	22(1)
C(6)	6274(1)	3908(2)	6852(1)	23(1)
C(7)	6816(1)	7580(2)	8935(1)	26(1)
C(8)	6620(1)	9708(2)	8833(1)	31(1)
C(9)	6084(1)	4304(2)	8609(1)	25(1)
C(10)	5700(1)	5751(2)	8765(1)	32(1)
C(11)	5943(1)	2211(2)	6581(1)	25(1)
C(12)	5476(1)	2281(2)	6674(1)	31(1)
C(13)	5184(1)	661(2)	6394(1)	37(1)
C(14)	5353(1)	-1053(2)	6026(1)	36(1)
C(15)	5814(1)	-1128(2)	5915(1)	32(1)
· /		× /	× /	× /

Table S12. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³) for 007-16124. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(16)	6106(1)	492(2)	6185(1)
Table S13. Bond leng	ths [Å] and angles [°]	for 007-16124.	
N(1)-C(1)	1.3290(14)	
N(1)-C(2)	1.3681(15)	
N(2)-C(3)	1.3801(15)	
N(2)-C(4)	1.3820(14	ý	
N(2)-C(1)	1.3959(14)	
N(3)-C(6)	1 3275(14)	
N(3)-C(1)	1 3395(15)	
C(2)-C(3)	1 3689(16)	
C(2) - H(2)	0.9500)	
C(3)-H(3)	0.9500		
C(4)- $C(5)$	1 3743(16)	
C(4) - C(7)	1.5008(15)	
C(5) - C(6)	1.3000(13)	
C(5) - C(9)	1.5170(14)	
C(5)-C(5)	1.001(14)	
C(0)-C(11) C(7)-C(8)	1.5321(17)	
C(7) = C(0) C(7) = H(7A)	0.0000)	
C(7) - H(7R)	0.9900		
C(8) - H(8A)	0.9900		
C(8) - H(8R)	0.9800		
C(8) - H(8C)	0.9800		
C(0)-C(10)	1 5310(16)	
$C(0) - H(0\Lambda)$	0.0000)	
C(9)-H(9R)	0.9900		
C(10)-H(10A)	0.9900		
C(10) - H(10R)	0.9800		
C(10) H(10D)	0.9800		
C(11)- $C(12)$	1 3963(16)	
C(11) - C(16)	1.3967(16)	
C(12)-C(13)	1.3860(18)	
C(12) - H(12)	0.9500)	
C(12) - C(14)	1.384(2)		
C(13)-H(13)	0.9500		
C(14)-C(15)	1 3848(18)	
C(14)-H(14)	0.9500)	
C(15)-C(16)	1.3849(17)	
C(15)-H(15)	0.9500	,	
С(16)-Н(16)	0.9500		
C(1)-N(1)-C(2)	104.73(9)		
C(3)-N(2)-C(4)	132.15(10)		
C(3)-N(2)-C(1)	106.40(9)		
C(4)-N(2)-C(1)	121.41(10)		
C(6)-N(3)-C(1)	117.92(9)		
N(1)-C(1)-N(3)	126.90(10)		
N(1)-C(1)-N(2)	111.37(10)		
N(3)-C(1)-N(2)	121.73(10)		
N(1)-C(2)-C(3)	112.18(10)		
N(1)-C(2)-H(2)	123.9		
C(3)-C(2)-H(2)	123.9		
C(2)-C(3)-N(2)	105.32(10)		
C(2)-C(3)-H(3)	127.3		

27(1)

N(2)-C(3)-H(3)	127.3
C(5)-C(4)-N(2)	117.43(10)
C(5)-C(4)-C(7)	126.91(10)
N(2)-C(4)-C(7)	115.66(10)
C(4)-C(5)-C(6)	118.33(10)
C(4)-C(5)-C(9)	119.88(10)
C(6)-C(5)-C(9)	121.71(10)
N(3)-C(6)-C(5)	123.15(10)
N(3)-C(6)-C(11)	113.37(9)
C(5)-C(6)-C(11)	123.39(10)
C(4)-C(7)-C(8)	112.53(9)
C(4)-C(7)-H(7A)	109.1
C(8)-C(7)-H(7A)	109.1
C(4)-C(7)-H(7B)	109.1
C(8)-C(7)-H(7B)	109.1
H(7A)-C(7)-H(7B)	107.8
C(7)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(5)-C(9)-C(10)	114.83(9)
C(5)-C(9)-H(9A)	108.6
C(10)-C(9)-H(9A)	108.6
C(5)-C(9)-H(9B)	108.6
C(10)-C(9)-H(9B)	108.6
H(9A)-C(9)-H(9B)	107.5
C(9)-C(10)-H(10A)	109.5
C(9)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
C(9)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5
C(12)-C(11)-C(16)	118.55(11)
C(12)-C(11)-C(6)	123.25(11)
C(16)-C(11)-C(6)	118.16(10)
C(13)-C(12)-C(11)	120.44(12)
C(13)-C(12)-H(12)	119.8
C(11)-C(12)-H(12)	119.8
C(14)-C(13)-C(12)	120.44(11)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(13)-C(14)-C(15)	119.63(12)
C(13)-C(14)-H(14)	120.2
C(15)-C(14)-H(14)	120.2
C(14)-C(15)-C(16)	120.23(12)
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-H(15)	119.9
C(15)-C(16)-C(11)	120.68(11)
C(15)-C(16)-H(16)	119.7
C(11)-C(16)-H(16)	119.7

Table S14. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 007-16124. The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	31(1)	32(1)	21(1)	1(1)	8(1)	-2(1)
N(2)	26(1)	26(1)	17(1)	0(1)	4(1)	1(1)
N(3)	28(1)	28(1)	17(1)	0(1)	5(1)	0(1)
C(1)	27(1)	27(1)	16(1)	1(1)	4(1)	2(1)
C(2)	29(1)	30(1)	25(1)	2(1)	7(1)	-3(1)
C(3)	28(1)	28(1)	24(1)	-1(1)	4(1)	-3(1)
C(4)	27(1)	25(1)	17(1)	2(1)	5(1)	5(1)
C(5)	26(1)	25(1)	17(1)	2(1)	4(1)	5(1)
C(6)	25(1)	25(1)	18(1)	2(1)	4(1)	4(1)
C(7)	32(1)	29(1)	17(1)	-1(1)	4(1)	-1(1)
C(8)	42(1)	29(1)	24(1)	-3(1)	9(1)	0(1)
C(9)	31(1)	27(1)	18(1)	1(1)	6(1)	-1(1)
C(10)	35(1)	35(1)	27(1)	-2(1)	13(1)	2(1)
C(11)	29(1)	30(1)	15(1)	2(1)	4(1)	0(1)
C(12)	31(1)	40(1)	22(1)	-4(1)	7(1)	0(1)
C(13)	31(1)	53(1)	28(1)	-6(1)	8(1)	-9(1)
C(14)	42(1)	40(1)	25(1)	-1(1)	4(1)	-15(1)
C(15)	42(1)	29(1)	25(1)	-1(1)	3(1)	-1(1)
C(16)	30(1)	31(1)	20(1)	2(1)	4(1)	1(1)
C(16)	30(1)	31(1)	20(1)	2(1)	4(1)	

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table S15. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 007-16124.

	х	У	Z	U(eq)
			·····	
H(2)	7600	8666	6020	33
H(3)	7399	9149	7679	32
H(7A)	7161	7642	9120	31
H(7B)	6702	6891	9481	31
H(8A)	6727	10390	8285	47
H(8B)	6730	10436	9458	47
H(8C)	6277	9657	8690	47
H(9A)	6312	4167	9248	30
H(9B)	5942	2976	8437	30
H(10Å)	5493	6029	8121	47
H(10B)	5841	6998	9053	47
H(10C)	5518	5151	9220	47
H(12)	5357	3447	6931	37
H(13)	4866	728	6456	44
H(14)	5154	-2172	5849	43
H(15)	5929	-2294	5653	39
H(16)	6421	433	6100	33

Table S16. Torsion angles [°] for 007-16124.

$\frac{C(2) N(1) C(1) N(2)}{C(2) N(2)}$	170 21(11)
C(2) - N(1) - C(1) - N(3) C(2) - N(1) - C(1) - N(2)	-1/9.51(11)
C(2)-N(1)-C(1)-N(2) C(6)-N(3)-C(1)-N(1)	179 77(11)
C(6)-N(3)-C(1)-N(2)	0.55(16)

C(3)-N(2)-C(1)-N(1)	-0.08(12)
C(4)-N(2)-C(1)-N(1)	-178.20(10)
C(3)-N(2)-C(1)-N(3)	179.26(10)
C(4)-N(2)-C(1)-N(3)	1.14(16)
C(1)-N(1)-C(2)-C(3)	0.11(13)
N(1)-C(2)-C(3)-N(2)	-0.16(13)
C(4)-N(2)-C(3)-C(2)	177.97(11)
C(1)-N(2)-C(3)-C(2)	0.14(12)
C(3)-N(2)-C(4)-C(5)	-179.59(11)
C(1)-N(2)-C(4)-C(5)	-2.02(15)
C(3)-N(2)-C(4)-C(7)	-0.14(17)
C(1)-N(2)-C(4)-C(7)	177.43(9)
N(2)-C(4)-C(5)-C(6)	1.29(15)
C(7)-C(4)-C(5)-C(6)	-178.10(10)
N(2)-C(4)-C(5)-C(9)	177.98(9)
C(7)-C(4)-C(5)-C(9)	-1.40(17)
C(1)-N(3)-C(6)-C(5)	-1.28(16)
C(1)-N(3)-C(6)-C(11)	-177.97(9)
C(4)-C(5)-C(6)-N(3)	0.36(16)
C(9)-C(5)-C(6)-N(3)	-176.27(10)
C(4)-C(5)-C(6)-C(11)	176.71(10)
C(9)-C(5)-C(6)-C(11)	0.08(16)
C(5)-C(4)-C(7)-C(8)	-104.76(13)
N(2)-C(4)-C(7)-C(8)	75.85(12)
C(4)-C(5)-C(9)-C(10)	76.58(13)
C(6)-C(5)-C(9)-C(10)	-106.85(12)
N(3)-C(6)-C(11)-C(12)	-131.62(11)
C(5)-C(6)-C(11)-C(12)	51.71(16)
N(3)-C(6)-C(11)-C(16)	46.28(14)
C(5)-C(6)-C(11)-C(16)	-130.40(11)
C(16)-C(11)-C(12)-C(13)	1.11(17)
C(6)-C(11)-C(12)-C(13)	179.00(11)
C(11)-C(12)-C(13)-C(14)	0.47(19)
C(12)-C(13)-C(14)-C(15)	-1.51(19)
C(13)-C(14)-C(15)-C(16)	0.94(18)
C(14)-C(15)-C(16)-C(11)	0.66(17)
C(12)-C(11)-C(16)-C(15)	-1.68(16)
C(6)-C(11)-C(16)-C(15)	-179.67(10)

Rhodacycle 8

Crystal growth

Single crystals of 8 were achieved by recrystallization in tetrahydrofuran.

Data Collection

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu Ka ($\lambda = 1.54178$ Å) for the structure of 007b-17101. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F^2 on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The THF molecule is disordered across crystallographic glide plane. The special position constraints were suppressed and the THF model extends past the asymmetric unit with all atoms at half occupancy. The full numbering scheme of compound 007b-17101 can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1585355 (007b-17101) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure S7. The complete numbering scheme of 007b-17101 with 50% thermal ellipsoid probability levels. The hydrogen atoms are shown as circles for clarity.

Table S17. Crystal data and structure refinement for 007b-17101.

Identification code	007b-17101	
Empirical formula	C22 H27 Cl N3 O0.50 Rh	
Formula weight	479.82	
Temperature	93(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 29.4841(9) Å	$\alpha = 90^{\circ}$.
	b = 9.3563(2) Å	$\beta = 91.787(3)^{\circ}$.
	c = 14.9795(5) Å	$\gamma = 90^{\circ}$.
Volume	4130.3(2) Å ³	
Ζ	8	
Density (calculated)	1.543 Mg/m ³	

Absorption coefficient	7.981 mm ⁻¹
F(000)	1968
Crystal size	0.100 x 0.050 x 0.010 mm ³
Crystal color and habit	Red Plate
Diffractometer	Rigaku Saturn 944+ CCD
Theta range for data collection	2.999 to 67.115°.
Index ranges	-35<=h<=35, -11<=k<=11, -17<=l<=17
Reflections collected	8567
Independent reflections	8567 [R(int) = 0.0951]
Observed reflections (I > 2sigma(I))	7343
Completeness to theta = 67.115°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.54567
Solution method	SHELXT-2014/5 (Sheldrick, 2014)
Refinement method	SHELXL-2014/7 (Sheldrick, 2014)
Data / restraints / parameters	8567 / 34 / 277
Goodness-of-fit on F ²	1.061
Final R indices [I>2sigma(I)]	R1 = 0.0583, $wR2 = 0.1572$
R indices (all data)	R1 = 0.0672, wR2 = 0.1636
Largest diff. peak and hole	3.775 and -1.248 e.Å ⁻³

-	
Table S18.	Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å ² x 10 ³)
for 007b-17	(101. U(eq) is defined as one third of the trace of the orthogonalized U ^{ij} tensor.

	Х	У	Z	U(eq)
$\frac{1}{Rh(1)}$	6338(1)	7018(1)	6060(1)	27(1)
Cl(1)	6544(1)	7745(2)	4594(1)	$\frac{27(1)}{32(1)}$
N(1)	5669(2)	7639(5)	5820(4)	$\frac{32(1)}{28(1)}$
N(2)	4985(2)	6906(5)	5411(4)	33(1)
N(2) N(3)	5616(2)	5237(5)	5319(4)	31(1)
C(1)	6054(2)	5248(6)	5499(4)	28(1)
C(1)	5421(2)	6542(6)	5516(4)	$\frac{20(1)}{30(1)}$
C(2)	4950(2)	8313(7)	5659(5)	33(1)
C(3)	5371(2)	8754(7)	5005(5)	33(1)
C(4)	6305(2)	3955(6)	5265(4)	$\frac{32(1)}{27(1)}$
C(5)	6126(2)	2598(7)	5203(4) 5438(4)	$\frac{27(1)}{30(1)}$
C(0)	6350(2)	2398(7) 1385(7)	5167(4)	32(1)
C(7)	6750(2)	1503(7) 1503(7)	4705(5)	32(1) 35(2)
C(0)	6033(2)	1303(7) 2847(7)	4703(3)	33(2) 33(1)
C(3)	6714(2)	2047(7)	4342(3)	33(1) 31(1)
C(10)	$\frac{0}{14(2)}$	4001(7) 8117(7)	4631(4)	31(1) 32(2)
C(11) C(12)	6520(2)	811/(7) 8200(7)	0/94(4) 7262(4)	33(2) 32(1)
C(12)	6329(2)	0399(7) 7020(7)	7203(4) 7470(4)	32(1) 22(1)
C(15)	0332(2)	7029(7)	7479(4)	33(1)
C(14) C(15)	0028(2)	5921(7)	7221(4) 6742(4)	33(1)
C(15)	0982(2) 7242(2)	0380(7)	6/42(4)	30(1) 42(2)
C(16)	/242(2)	9180(8)	6398(5)	42(2)
C(17)	6335(3)	9831(8)	7481(5)	43(2)
C(18)	5905(3)	6850(8)	8003(5)	41(2)
C(19)	6574(2)	4364(7)	7420(5)	37(2)
C(20)	7391(2)	5868(8)	6381(5)	38(2)
C(21)	5284(7)	1580(20)	7151(17)	77(6)
O(1)	4836(7)	1620(30)	6853(17)	121(7)
C(22)	5339(11)	2500(30)	7940(20)	96(12)
C(23)	4991(8)	3620(20)	7774(13)	75(6)
C(24)	4683(15)	2980(40)	7110(30)	150(20)

Rh(1)-C(1)	2.027(6)
Rh(1)-N(1)	2.077(5)
Rh(1)-C(13)	2 126(7)
Rh(1)-C(15)	2.128(7)
Ph(1) C(14)	2.100(0) 2.172(6)
$R_{1}(1) - C(14)$	2.172(0)
Rin(1)-C(11)	2.208(0)
Rh(1)-C(12)	2.2/4(6)
Rh(1)- $Cl(1)$	2.3945(16)
N(1)-C(2)	1.331(8)
N(1)-C(4)	1.373(8)
N(2)-C(2)	1.335(8)
N(2)-C(3)	1.373(8)
N(2)-H(2)	0.8800
N(3)-C(1)	1.310(8)
N(3)-C(2)	1.385(8)
C(1)-C(5)	1 467(9)
C(3) - C(4)	1.352(9)
C(3) - C(4)	1.352(7)
C(4) H(4)	0.9500
$C(4) - \Pi(4)$	0.9300
C(5) - C(10)	1.391(9)
C(5)-C(6)	1.402(9)
C(6)-C(7)	1.380(9)
C(6)-H(6)	0.9500
C(7)-C(8)	1.391(10)
C(7)-H(7)	0.9500
C(8)-C(9)	1.393(10)
C(8)-H(8)	0.9500
C(9)-C(10)	1.383(9)
C(9)-H(9)	0.9500
C(10)-H(10)	0.9500
C(11)-C(12)	1.406(10)
C(11)-C(15)	1.450(9)
$\dot{C}(1)$ - $\dot{C}(16)$	1.500(10)
C(12)-C(13)	1449(10)
C(12) - C(17)	1.497(10)
$C(12) \cdot C(14)$	1.197(10) 1.416(10)
C(13) - C(18)	1.110(10) 1.513(10)
C(14) - C(15)	1.313(10) 1.427(9)
C(14) - C(15)	1.427(9) 1.406(0)
C(14)-C(19)	1.490(9) 1.402(0)
C(13)-C(20)	1.493(9)
C(10)-H(10A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800

Table S19. Bond lengths [Å] and angles [°] for 007b-17101.

C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(21)-O(1)	1.38(2)
C(21)-C(22)	1.47(2)
C(21)-H(21A)	0.9900
C(21)-H(21B)	0.9900
O(1)-C(24)	1.40(3)
C(22)-C(23)	1.48(2)
C(22)-H(22A)	0.9900
C(22)-H(22B)	0.9900
C(23)-C(24)	1.45(2)
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(1)-Rh(1)-N(1)	77.2(2)
C(1)-Rh(1)-C(13)	113.7(2)
N(1)-Rh(1)-C(13)	97.7(2)
C(1)-Rh(1)-C(15)	112.7(3)
N(1)-Rh(1)-C(15)	161.4(2)
C(13)-Rh(1)-C(15)	64.2(3)
C(1)-Rh(1)-C(14)	95.3(2)
N(1)-Rh(1)-C(14)	128.2(2)
C(13)-Rh(1)-C(14)	38.5(3)
C(15)-Rh(1)-C(14)	38.4(2)
C(1)-Rh(1)-C(11)	150.6(3)
N(1)-Rh(1)-C(11)	131.6(2)
C(13)-Rh(1)-C(11)	62.8(3)
C(15)-Rh(1)-C(11)	38.1(2)
C(14)-Rh(1)-C(11)	63.3(2)
C(1)-Rh(1)-C(12)	151.9(2)
N(1)-Rh(1)-C(12)	100.9(2)
C(13)-Rh(1)-C(12)	38.3(3)
C(15)-Rh(1)-C(12)	62.7(2)
C(14)-Rh(1)-C(12)	63.4(3)
C(11)-Rh(1)-C(12)	36.1(3)
C(1)-Rh(1)-Cl(1)	88.01(17)
N(1)-Rh(1)-Cl(1)	91.65(16)
C(13)-Rh(1)-Cl(1)	157.75(19)
C(15)-Rh(1)-Cl(1)	104.04(18)
C(14)-Rh(1)-Cl(1)	139.83(18)
C(11)-Rh(1)-Cl(1)	96.00(18)
C(12)-Rh(1)-Cl(1)	120.10(18)
C(2)-N(1)-C(4)	105.8(5)
C(2)-N(1)-Rh(1)	110.6(4)
C(4)-N(1)-Rh(1)	143.4(4)
C(2)-N(2)-C(3)	107.1(5)
C(2)-N(2)-H(2)	126.4
C(3)-N(2)-H(2)	126.4
C(1)-N(3)-C(2)	111.2(5)
N(3)-C(1)-C(5)	116.5(5)
N(3)-C(1)-Rh(1)	118.9(4)
C(5)-C(1)-Rh(1)	124.6(4)
N(1)-C(2)-N(2)	111.1(5)

N(1)-C(2)-N(3)	121.7(6)
N(2)-C(2)-N(3)	127.1(6)
C(4)-C(3)-N(2)	106.8(6)
C(4)-C(3)-H(3)	126.6
N(2)-C(3)-H(3)	126.6
C(3)-C(4)-N(1)	109.1(6)
C(3)-C(4)-H(4)	125.5
N(1)-C(4)-H(4)	125.5
C(10)-C(5)-C(6)	119.2(6)
C(10)-C(5)-C(1)	120.3(5)
C(6)-C(5)-C(1)	120.5(6)
C(7)-C(6)-C(5)	120 3(6)
C(7)-C(6)-H(6)	119.9
C(5)-C(6)-H(6)	119.9
C(6)-C(7)-C(8)	120.1(6)
C(6)-C(7)-H(7)	119.9
C(8)-C(7)-H(7)	119.9
C(7)- $C(8)$ - $C(9)$	119.9(6)
C(7)-C(8)-H(8)	120.0
C(9)-C(8)-H(8)	120.0
C(10)-C(0)-C(8)	110 9(6)
C(10)-C(9)-H(9)	120.0
C(8) - C(9) - H(9)	120.0
C(0) C(10) C(5)	120.0
C(9)-C(10)-U(10)	120.3(0)
C(5)-C(10)-H(10)	119.7
C(12) - C(11) - C(15)	108 2(6)
C(12)-C(11)-C(15)	127.6(6)
C(12)-C(11)-C(16)	127.0(0) 124.1(6)
C(12)-C(11)-Bh(1)	72 2(4)
C(12)-C(11)-Rh(1)	67.2(4)
C(16)-C(11)-Rh(1)	125.7(5)
C(11)-C(12)-C(13)	125.7(5) 106.9(6)
C(11)-C(12)-C(17)	100.9(0) 127 4(7)
C(13)-C(12)-C(17)	127.4(7) 125.7(6)
C(11)-C(12)-Bh(1)	71.7(4)
C(13)-C(12)-Rh(1)	(1, 7(4))
C(17)-C(12)-Rh(1)	1265(5)
C(14) - C(12) - C(12)	120.3(5) 109 $4(6)$
C(14)-C(13)-C(12)	109.4(0) 126.1(6)
C(12)-C(13)-C(18)	120.1(0) 124 1(6)
C(12)-C(13)-C(10)	725(4)
C(12)-C(13)-Rh(1)	72.3(4) 76 $4(4)$
C(12)-C(13)-Rh(1)	1235(5)
C(13)-C(14)-C(15)	125.5(5) 106 7(6)
C(13)-C(14)-C(19)	126.1(6)
C(15)-C(14)-C(19)	120.1(0) 127.2(6)
C(13)-C(14)-B(1)	69.0(4)
C(15)-C(14)-Rh(1)	70.7(4)
C(19)-C(14)-Rh(1)	125.4(5)
C(14)- $C(15)$ - $C(11)$	108.3(6)
C(14)-C(15)-C(20)	127 0(6)
C(11)-C(15)-C(20)	124.0(6)
C(14)-C(15)-Rh(1)	70.9(4)
C(11)-C(15)-Rh(1)	74.7(4)
C(20)-C(15)-Rh(1)	1282(5)
, -, -, -, -, -, -, -,	==(-)

C(11)-C(16)-H(16A)	109.5
C(11)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(11)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(12)-C(17)-H(17A)	109.5
C(12)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(12)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(13)-C(18)-H(18A)	109.5
C(13)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(13)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(14)-C(19)-H(19A)	109.5
C(14)-C(19)-H(19R)	109.5
H(19A) - C(19) - H(19B)	109.5
C(14)-C(19)-H(19C)	109.5
H(10A) - C(10) - H(10C)	109.5
H(19R) - C(19) - H(19C)	109.5
C(15) C(20) H(20A)	109.5
C(15) - C(20) - H(20R)	109.5
U(20A) C(20) U(20B)	109.5
$\Gamma(20A)$ - $C(20)$ - $\Pi(20B)$	109.5
U(20A) C(20) H(20C)	109.5
H(20R) - C(20) - H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
O(1) - C(21) - C(22)	109.0(18)
O(1)-C(21)-H(21A)	109.9
C(22)-C(21)-H(21A)	109.9
O(1)-C(21)-H(21B)	109.9
C(22)-C(21)-H(21B)	109.9
H(21A)-C(21)-H(21B)	108.3
C(21)-O(1)-C(24)	104(2)
C(21)-C(22)-C(23)	102.7(19)
C(21)-C(22)-H(22A)	111.2
C(23)-C(22)-H(22A)	111.2
C(21)-C(22)-H(22B)	111.2
C(23)-C(22)-H(22B)	111.2
H(22A)-C(22)-H(22B)	109.1
C(24)-C(23)-C(22)	103.8(19)
C(24)-C(23)-H(23A)	111.0
C(22)-C(23)-H(23A)	111.0
C(24)-C(23)-H(23B)	111.0
C(22)-C(23)-H(23B)	111.0
H(23A)-C(23)-H(23B)	109.0
O(1)-C(24)-C(23)	111(2)
O(1)-C(24)-H(24A)	109.4
C(23)-C(24)-H(24A)	109.4
O(1)-C(24)-H(24B)	109.4
C(23)-C(24)-H(24B)	109.4
H(24A)-C(24)-H(24B)	108.0

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{Rh(1)}$	22(1)	30(1)	30(1)	-1(1)	2(1)	0(1)
Cl(1)	34(1)	30(1)	32(1)	1(1)	5(1)	-2(1)
N(1)	22(3)	25(2)	38(3)	1(2)	3(2)	-1(2)
N(2)	19(3)	32(3)	48(3)	-1(2)	1(2)	-4(2)
N(3)	24(3)	30(3)	40(3)	0(2)	1(2)	1(2)
C(1)	27(3)	31(3)	27(3)	3(2)	3(2)	-2(3)
C(2)	25(3)	24(3)	41(4)	2(3)	5(3)	-2(2)
C(3)	29(4)	27(3)	43(4)	1(3)	1(3)	3(3)
C(4)	22(3)	30(3)	46(4)	1(3)	3(3)	2(3)
C(5)	25(3)	29(3)	28(3)	0(2)	-2(2)	-1(2)
C(6)	24(3)	33(3)	32(3)	2(3)	1(3)	1(3)
C(7)	30(3)	30(3)	37(3)	2(3)	-1(3)	-2(3)
C(8)	35(4)	29(3)	41(4)	-4(3)	-1(3)	8(3)
C(9)	27(3)	34(3)	38(4)	-1(3)	4(3)	4(3)
C(10)	25(3)	29(3)	39(4)	2(3)	1(3)	1(3)
C(11)	25(3)	44(4)	31(3)	-4(3)	-7(3)	-3(3)
C(12)	33(4)	39(3)	25(3)	-8(3)	-5(3)	-2(3)
C(13)	26(3)	44(4)	30(3)	0(3)	1(3)	-2(3)
C(14)	26(3)	44(4)	28(3)	3(3)	-1(3)	0(3)
C(15)	25(3)	39(3)	27(3)	0(3)	-4(3)	0(3)
C(16)	34(4)	43(4)	48(4)	2(3)	-4(3)	-11(3)
C(17)	48(5)	44(4)	37(4)	-10(3)	-4(3)	6(3)
C(18)	32(4)	59(5)	31(4)	-2(3)	6(3)	3(3)
C(19)	39(4)	37(4)	35(4)	6(3)	-1(3)	-4(3)
C(20)	26(3)	50(4)	38(4)	0(3)	3(3)	5(3)
C(21)	64(10)	61(10)	107(15)	-49(11)	6(9)	21(8)
O(1)	84(11)	117(13)	163(18)	-47(12)	10(10)	12(9)
C(22)	95(16)	78(15)	113(17)	-53(15)	-2(15)	35(16)
C(23)	84(13)	54(8)	88(16)	-17(8)	24(13)	18(10)
C(24)	120(20)	130(20)	180(30)	-70(20)	-40(20)	54(17)

Table S20. Anisotropic displacement parameters (Å²x 10³) for 007b-17101. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

Table S21. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for 007b-17101.

	х	У	Z	U(eq)
	4762	(249	5210	40
H(2)	4/02	0348	5219	40
$\Pi(3)$	4080	8870 0697	5050	40
H(4)	5449	9687	6111	39
H(6)	5850	2513	5744	35
H(7)	6230	468	5295	39
H(8)	6899	669	4502	42
H(9)	7208	2930	4231	39
H(10)	6844	4975	4733	37
H(16A)	7307	8895	5785	62
H(16B)	7525	9211	6757	62
H(16C)	7101	10128	6392	62

H(17A)	6457	10554	7081	65
H(17B)	6416	10077	8101	65
H(17C)	6004	9798	7403	65
H(18A)	5680	7562	7804	61
H(18B)	5977	6984	8640	61
H(18C)	5782	5889	7903	61
H(19A)	6254	4097	7349	56
H(19B)	6681	4171	8034	56
H(19C)	6754	3803	7006	56
H(20A)	7328	4850	6289	57
H(20B)	7648	5979	6806	57
H(20C)	7465	6309	5810	57
H(21A)	5483	1919	6675	93
H(21B)	5371	588	7307	93
H(22A)	5647	2919	7983	115
H(22B)	5281	1966	8495	115
H(23A)	4832	3850	8327	90
H(23B)	5129	4500	7539	90
H(24A)	4378	2886	7365	175
H(24B)	4657	3606	6583	175

Table S22. Torsion angles [°] for 007b-17101.

-176.2(5)
3.3(7)
-0.2(8)
176.3(4)
177.7(6)
-5.8(8)
0.1(8)
-177.7(6)
2.0(9)
179.6(6)
0.0(8)
-0.1(8)
0.2(8)
-174.2(6)
134.6(6)
-44.9(8)
-42.4(8)
138.1(5)
-1.1(9)
175.9(6)
-1.1(10)
2.0(10)
-0.6(10)
-1.7(10)
2.6(10)
-174.5(6)
-1.8(7)
177.8(6)
56.0(4)
179.9(6)
-0.5(11)
-122.4(7)

C(15)-C(11)-C(12)-Rh(1)	-57.7(4)
C(16)-C(11)-C(12)-Rh(1)	121.8(7)
C(11)-C(12)-C(13)-C(14)	5.6(7)
C(17)-C(12)-C(13)-C(14)	-176.0(6)
Rh(1)-C(12)-C(13)-C(14)	65.6(5)
C(11)-C(12)-C(13)-C(18)	178.6(6)
C(17)-C(12)-C(13)-C(18)	-3.0(11)
Rh(1)-C(12)-C(13)-C(18)	-121.4(7)
C(11)-C(12)-C(13)-Rh(1)	-60.0(5)
C(17)-C(12)-C(13)-Rh(1)	118.4(6)
C(12)-C(13)-C(14)-C(15)	-7.2(7)
C(18)-C(13)-C(14)-C(15)	-180.0(6)
Rh(1)-C(13)-C(14)-C(15)	61.0(4)
C(12)-C(13)-C(14)-C(19)	172.7(6)
C(18)-C(13)-C(14)-C(19)	-0.1(11)
Rh(1)-C(13)-C(14)-C(19)	-119.2(7)
C(12)-C(13)-C(14)-Rh(1)	-68.2(5)
C(18)-C(13)-C(14)-Rh(1)	119.1(7)
C(13)-C(14)-C(15)-C(11)	6.0(7)
C(19)-C(14)-C(15)-C(11)	-173.8(6)
Rh(1)-C(14)-C(15)-C(11)	65.9(4)
C(13)-C(14)-C(15)-C(20)	176.1(6)
C(19)-C(14)-C(15)-C(20)	-3.8(11)
Rh(1)-C(14)-C(15)-C(20)	-124.0(6)
C(13)-C(14)-C(15)-Rh(1)	-59.9(4)
C(19)-C(14)-C(15)-Rh(1)	120.2(7)
C(12)-C(11)-C(15)-C(14)	-2.6(7)
C(16)-C(11)-C(15)-C(14)	177.8(6)
Rh(1)-C(11)-C(15)-C(14)	-63.5(4)
C(12)-C(11)-C(15)-C(20)	-173.1(6)
C(16)-C(11)-C(15)-C(20)	7.3(10)
Rh(1)-C(11)-C(15)-C(20)	126.1(6)
C(12)-C(11)-C(15)-Rh(1)	60.8(5)
C(16)-C(11)-C(15)-Rh(1)	-118.7(6)
C(22)-C(21)-O(1)-C(24)	29(4)
O(1)-C(21)-C(22)-C(23)	-30(4)
C(21)-C(22)-C(23)-C(24)	19(5)
C(21)-O(1)-C(24)-C(23)	-16(5)
C(22)-C(23)-C(24)-O(1)	-3(6)

Table S23. Hydrogen bonds for 007b-17101 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(2)-H(2)N(3)#1	0.88	2.01	2.871(7)	165.4

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y + 1, -z + 1

- ⁴ Tan, K. L.; Park, S.; Ellman, J. A.; Bergman, R. G. J. Org. Chem. 2004, 69, 7329–7335.
- ⁵ Wu, Y.; Zhou, X.; Zheng, G.; Li, X. Org. Lett. 2017, 19, 5256–5259.

¹ (a) Zheng, G.; Tian, M.; Xu, Y.; Chen, X.; Li, X. Org. Chem. Front. DOI: 10.1039/c7qo01033h. (b) Xu, Y.;

Zheng, G.; Yang, X.; Li, X. Chem. Commun. DOI: 10.1039/c7cc07753j.

² Li, H.; Zhao, J.; Zeng, L.; Hu, W. J. Org. Chem. 2011, 76, 8064–8069.

³ Li, F.; Kang, Q.; Shan, H.; Chen, L.; Xie, J. Eur. J. Org. Chem. 2012, 5085–5092

⁶ Phelps, A. M.; Chan, V. S.; Napolitano, J. G.; Krabbe, S. W.; Schomaker, J. M.; Shekhar, S. J. Org. Chem. 2016, 81, 4158–4169.

⁷ Barday, M.; Janot, C.; Halcovitch, N. R.; Muir, J.; Aïssa, C. Angew. Chem. Int. Ed. 2017, 56, 13117–13121.