
The ‘Allosteron’ Model for Entropic Allostery of Self-Assembly:

Supplementary Information

T. C. B. McLeish,1, ∗ C. Schaefer,1, † and A. Von der Heydt1, ‡

1Department of Physics, Durham University, Durham, DH1 3LE, UK

(Dated: October 6, 2017)

∗Electronic address: t.c.b.mcleish@durham.ac.uk
†Electronic address: charley.schaefer@durham.ac.uk
‡Electronic address: alice.c.von-der-heydt@durham.ac.uk

1

mailto:t.c.b.mcleish@durham.ac.uk
mailto:charley.schaefer@durham.ac.uk
mailto:alice.c.von-der-heydt@durham.ac.uk


In the main text we have shown that the distribution of polymer chains can be calculated

using the equilibrium constant

KN =

√
wN−1

det ĤN(Kc)
(1)

The crucial properties of this equilibrium constant that we used in the main text are the

asymptotic limits

w ≡ lim
N→∞

KN+1/KN =
1

2
+Kc +

1

2

√
1 + 4Kc, (2)

and

lim
Kc→∞

KN ∝
1

N
. (3)

In this Supplementary Information we calculate KN analytically, and show that these limits

indeed hold. We finalise this section by providing an alternative expression for KN that has

the advantage of numerical stability.

Central in this derivation is the determinant det ĤN(Kc), which we calculate from the

Hamiltonian of the chain of length N . This Hamiltonian is defined in the main text, and is

in matrix notation given by

H =
1

2
κxTĤNx− ε(N − 1), (4)

with ĤN is a N ×N tridiagonal matrix given by [1]

ĤN ≡



1 +Kc −Kc 0 . . . . . . 0

−Kc 1 + 2Kc −Kc
...

0 −Kc 1 + 2Kc
. . .

...
...

. . . −Kc 0
... −Kc 1 + 2Kc −Kc

0 . . . . . . 0 −Kc 1 +Kc


. (5)

In this equation κ is the internal spring constant of the monomer and Kc is a dimensionless

coupling parameter that couples the monomers in the chain.

The determinant of this tridiagonal matrix may be calculated using the set of recurrence
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relations [2, 3]

p1 = 1 +Kc, (6)

p2 = 1 + 3Kc +K2
c , (7)

pn = (1 + 2Kc)pn−1 −K2
c pn−2, for 2 < n < N, (8)

det ĤN = (1 +Kc)pN−1 −K2
c pN−2, (9)

and obeys the polynomial form

det ĤN =
N+1∑
l=1

dNl K
l−1
c , (10)

of which the coefficients dNl we calculate below.

In order to do so, we also write pn in a polynomial form

pn =
n+1∑
l=1

cnl K
l−1
c , (11)

which after insertion into the recurrence relations above gives

pn = cn−11 + (cn−12 + 2cn−11 )Kc +
n∑
l=3

(cn−1l + 2cn−1l−1 − c
n−2
l−2 )K l−1

c + (2cn−1n − cn−2n−1)K
n
c , (12)

for 2 < n < N . The first three and last two coefficients are given by

cn1 = 1, cn2 = 2n− 1, cn3 = (2n− 3)(n− 1), (13)

and by

cnn = n(n+ 1)/2, cnn+1 = 1. (14)

Finally, we insert the so-obtained coefficients in Eq. (9) and obtain the determinant

det ĤN = cN−11 +(cN−12 +cN−11 )Kc +
N∑
l=3

(cN−1l +cN−1l−1 −c
N−2
l−2 )K l−1

c +(cN−1N −cN−2N−1)K
N
c . (15)

Comparing this relation to Eq. (10) yields the polynomial coefficients we were after. We

summarise these in Table I. Note that cnn+1 = 1 for all n and hence that the term of order

KN
c vanishes. Since the other terms are finite, this confirms the limit KN ∝ N−1 for large

Kc in Eq. (3).
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TABLE I: Values of coefficients diN .

1 2 3 4 5 6 . . . N

1 1 1 1 1 1 . . . d1N = 1

2 4 6 8 10 . . . d2N = 2N − 2

3 10 21 36 . . . d3N = (2N − 3)(N − 2)

4 10 56 . . .
...

5 35 . . .
...

6
...

. . . diN
...

dNN = N

The next task is to show that in the long-chain limit Eq. (2) holds. We do this through

a normal-mode analysis in which we express xn as the discrete Fourier transform [4]

xn = N−1/2
N−1∑
p=0

Xpe
i2πpn/N , (16)

and insert it into the Hamiltonian of Eq. (4). The Hamiltonian then reads H =
∑

n κx
2
i +∑

n κc(xi − xi−1)2 + (N − 1)ε, where the square term becomes∑
n

|xn|2 =
∑
n

N−1
∑
p,q

XpXqe
i2π(p+q)n/N =

∑
p,q

XpXqδpq =
∑
p

|Xp|2. (17)

In the last equality we make use of the fact that x−p = X∗p for real functions, with X∗p the

complex conjugate of Xp. Similarly, we find that the square-gradient term becomes∑
n

|xn − xn−1|2 =
∑
n

N−1
∑
p,q

XpXqe
i2π(p+q)n/N

(
1− e−i2πpn/N

) (
1− e−i2πqn/N

)
, (18)

=
∑
p

|Xp|2
(
1− e−i2πpn/N

) (
1− ei2πpn/N

)
(19)

= 2
∑
p

(
1− cos

(
2πp

N

))
|Xp|2. (20)

Hence, the long-chain limit of the Hamiltonian is given by

H ≈
N−1∑
p=0

κ

(
1 + 2Kc

(
1− cos

(
2πp

N

)))
|Xp|2. (21)
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In order to find the long-chain limit of the determinant, det ĤN , we calculate the partition

function Z from the Hamiltonian H and equal it to Z = ZN1 (det ĤN)−1/2. Following these

steps, we find

det ĤN ≈
N−1∏
p=0

[
1 + 2

(
1− cos

(
2πp

N

))
Kc

]
. (22)

After taking the natural logarithm at both sides

ln(det ĤN) =
N−1∑
p=0

ln

[
1 + 2

(
1− cos

(
2πp

N

))
Kc

]
, (23)

and after approximating the summation by an integral, we find

ln(det ĤN) ≈ N − 1

2π

∫ 2π

0

dx ln [1 + 2(1− cos(x))Kc] = (N − 1) lnw. (24)

From this relation we confirm Eq. (2), in which w = 1/2 +Kc + (1/2)
√

1 + 4Kc.

Now that we have shown that KN has all asymptotic properties that we have claimed in

the main text, we note that the expression in the main text to calculate KN is numerically

instable. This is caused by the fact that we have to take the products of exponentially big

with exponentially small numbers. We remedy this by rephrasing the expression for the

mass action as given in the main text into

X(φ, T ; ε,Kc) =
a

(1− a)2
σ +

∞∑
N=1

N(KN − σ)aN , (25)

where a ≡ exp(−βµ̃) and where the series in the right-hand side of this equation converges

for N �
√
Kc. For those large values of N , KN asymptotically decreases from unity to the

constant cooperativity factor σ. Finally, we calculate the equilibrium constant as

KN =

(
w

Kc

)N−1
2

[
N∑
i=1

diNK
i−N
c

]−1/2
. (26)
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