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1 Supplementary Methods

1.1 Generation of Elastic Network Models

The Elastic Network Models (ENMs) were generated using the open-access ∆∆PT toolbox described in
detail by Rodgers et al. [1]. PDB structures were reduced to Cα-atoms only and springs set between atoms
i and j with an equilibrium distance, R, separated by a distance, r, and within a cut-o� radius, Rc. The
corresponding potentials are

Vij =

{
kij
2 (rij −Rij)2 R2

ij ≤ R2
c

0 R2
ij > R2

c

, (1)

where kij is the spring constant of the potential. Unless otherwise stated, spring constants were set k =

1 kcal mol−1Å−2 for all atom pairs, and the cut-o� radius was set to Rc = 12. The calculated potential is
used to construct a mass-weighted Hessian matrix, D, with elements

Diα,jβ =
∂2V

∂riα
√
mi∂rjβ

√
mj

∣∣∣∣
R

, (2)

where m is the mass of the respective atom and α and β refer to the direction of motion. D is then
diagonalized
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and the eigenvectors of this matrix, e, are the normal modes, ν, while the eigenvalues are the squares of the
associated frequencies, ων .

The frequencies from the eigenvalues can be used to calculate the free energy and entropy of each mode
using

Gν = −kBT ln
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(4)

and
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, (5)

where kB is the Boltzmann constant and T the temperature which is set to T = 298K [1].
Using the root mean square deviations (RMSDs) of the lowest 25 vibrational modes (ignoring the lowest

6 modes that account for rotation and translation) of an atom i, one can obtain a similar quantity to the
crystallographic B-factor using

Bi =
8kBTπ

2

3mi

∑
ν

|e2i (ν)|
ω2
ν

. (6)

Here, kBT only functions as a scaling factor. Bi gives a measure of the atom �uctuation about their
equilibrium position, but since damping due to solvent or water does not exist, these �uctuations are very
large. Therefore, they are scaled using average experimental and ENM B-factors of the whole structure
and their respective root mean square displacements. The Pearson's Correlation Coe�cient, r, between
theoretical and experimental B-factors is used as a measure of the goodness of �t of the model to the
experimental data, and are usually found to be > 0.5 [1, 2].

1.2 Qualitative comparison of protein dynamics

The ∆∆PT toolbox can also be used to calculate the collectivity and cross-correlation of atoms within one
protein [1]. Together they permit a qualitative description of atom motion, either with respect to other
atoms or with respect to a normal mode.

The collectivity, κ, of a given mode, can be described using [3]:

κν =
1

N
exp

(
−

N∑
i

α|e2i (ν)|log(α|e2i (ν)|)

)
, (7)

where N is the total number of atoms and α is the collectivity constant de�ned by
∑N

i α|e2i (ν)| = 1. Using
κν , it is possible to determine the fraction of atoms most a�ected by a mode ν. The lowest frequency modes
tend to have κν > 0.4 [1].

The cross-correlation, Cij , of atoms i and j over the lowest modes indicates how much they move into
the same direction, and can be calculated using [4]:

Cij =
∑
ν

(
ei(ν) · ej(ν)

(|ei(ν)|2 |ej(ν)|2)0.5

)
. (8)

For perfect correlation or anti-correlation Cij = 1 or Cij = −1, respectively. A value in between can arise
from motion that is less correlated in terms of phase and/or period, or motions of atoms that are not
(anti)parallel. If Cij = 0, the atoms move with the same period and phase but their motions are orthogonal.

1.3 Quantitative comparison between ENM dynamics and conformational changes

The ENM eigenvectors of a given structure were compared to (i) the eigenvectors of, and (ii) the conforma-
tional changes between di�erent structures. To calculate conformational changes in the backbones, structures
were aligned and an RMSD was calculated using PyMol [5]. If this RMSD was signi�cantly larger than the
uncertainty in the backbone position (estimated by

√
〈u2〉 =

√
B/(8π2) averaged over all backbone atoms,

where B is the B-factor), a displacement vector, ∆Rij , was obtained by simple vector addition ∆Rij = rj−ri
[6], where ri and rj are the crystal coordinates of two di�erent structures.

2



Comparisons between data sets (that is between (i) two eigenvectors ei(ν) and ej(ν) or (ii) an eigenvector,
ei(ν) or ej(ν), and a conformational change, ∆Rij) were made using the overlap, O, which is a measure of
alignment between two vectors, as de�ned by:

O =
|M ·N |
||M || ||N ||

, (9)

where M and N are placeholders for any of the vectors ei(ν), ej(ν) or ∆Rij [6, 7]. If the directions align
either in an antiparallel or parallel fashion, the overlap is 1; if they are exactly orthogonal, the overlap is 0.
The cumulative overlap, CO, as de�ned by Yang et al. [7] is

CO(k) =

 k∑
j=1

O2

 1
2

(10)

which gives a measure of how well k normal modes overlap with a single vector, such as ∆Rij . We chose
to measure the cumulative overlap of the lowest �ve normal modes with conformational changes due to the
mode swapping seen among di�erent ENMs (see Fig. S3).

1.4 Preparation of PDB Structure �les and optimization of ENMs

PDB �les had to be modi�ed to be suitable for ∆∆PT programs. If not speci�ed otherwise, the binding
partners and the peptide were removed to construct ENMs of RapH, RapF and RapJ, respectively. The
structures had to be cut to their �nal size, which depended largely on which residues were shared among
di�erent structures of one protein. A particular challenge is imposed by downstream calculations such as
overlap analyses, which require the ENMs to have the same number of atoms. The four Rap proteins share
a large structural homology, particularly within the TPR domain [8]. Therefore, all four structures were
aligned using PROMALS3D using both sequence and structural information (see Fig. S1) [9]. Missing
residues that are conserved but not present in the structure were modelled using MODELLER [10]. Based
on the PROMALS3D alignment, residues that (a) are �exible and cannot be modelled meaningfully using
ENMs, (b) are not conserved and not represented in the crystal structure, or (c) are present in some structures
but not others, were removed [1]. The �nal selection is displayed in Fig. S1 and Tab. 1. ENMs were also
built for the TPR repeats only (Tab. 1).

Some structures had atoms with multiple possible positions between di�erent crystal unit cells, e.g. due
to di�erent side chain rotamers. This is indicated by the occupancy, n, the likelihood of the atom adopting
a given position. If n 6= 1, the atom position with the highest occupancy was kept and set to n = 1, while
all others were deleted. If the occupancies for both positions equal to 0.50, the �rst position was kept, while
the second one was deleted. Atoms with occupancies with n 6= 1 but only one given coordinate were kept
and set to n = 1.

Optimal values for k and Rc were explored in the intervals of 0.5 < k < 2.0 and 5 < Rc < 15, respectively,
by maximising the correlation between crystallographic and predicted B-factors. The spring constant was
found to not have a measurable e�ect and correlations were maximal for Rc > 11Å for all proteins but
RapJ. Correlations for the more extended conformations are consistently lower than 0.5, indicating that the
experimental B-factors do not exhibit the large global �exibility seen in the network model, possibly due
to crystallographic packing [11]. Therefore, �nal ENMs for all structures were built using default cut-o� of
Rc = 12Å for reasons of consistency and for �nding an all-over optimum.

Table 1: The construct speci�c residues used to compute ENMs. See Fig. S1 for the corresponding structural alignment. The
numbering is based on Uniprot sequences.

Protein Chain PDB ID Residues removed prior to ENM TPR domain

RapI B 4i1a 1-13, 75-82, 375-391 100-391

RapJ B 4gyo 1-7, 69-78, 88 96-373

RapH A 3q15 1-7, 69-78, 88, 372-376 96-376

RapF A 3ulq 1-7, 69-80, 90, 257, 375-381 98-381
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2 Supplementary Figures

Figure S1: PROMALS3D structure-based sequence alignment of all four Rap proteins. The black boxes indicate residues that
were removed before construction of ENMs, while the green line and arrow indicate the start of the TPR repeats.

Figure S2: Collectivity of the lowest 25 normal modes, indicating the fraction of a protein involved in the motion of that
particular normal mode. The collectivity is highest for the lowest normal modes. Values for RapJ and RapJ+PhrC models are
consistently lower as some springs are set between sequence distant repeats due to the compact conformation, giving rise to a
closed network and more isolated movements of the N- and C-termini.
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Figure S3: Overlaps between ENM normal modes of Rap proteins, for the whole proteins and TPR repeats only. If the
normal modes of two proteins are nearly identical, the overlap matrix will have diagonal elements with O → 1 and o�-diagonal
elements with O → 0 (e.g. RapH vs RapF and Fig. S4). If normal modes are close in frequency their order can switch,
giving rise to o�-diagonal elements with a large overlap (e.g. RapI vs RapF/H). As expected, the structurally most similar Rap
proteins, RapF and RapH, also exhibit large similarities in their dynamics. Due to its extended conformation RapI overlaps
with RapF and RapH are high and concentrate in the diagonal. The dynamics of RapJ change dramatically upon compression
of the superhelix and only the lowest normal modes overlap to a signi�cant degree with the other structures (O > 0.5). When
comparing ENMs of the TPR repeats only, similarities in motion are generally higher. This is expected, considering that the
orientation and dynamics of the 3-helix bundle with respect to the TPR repeats di�ers between structures. The �rst six normal
modes corresponding to rotational and translational motion have been omitted from this analysis.
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Figure S4: Overlaps between normal modes of ENMs of RapJ only and RapJ bound to the PhrC peptide. The presence of
the peptide does not signi�cantly in�uence the collective motion of the lowest 7 normal modes, most of them with overlaps of
> 0.99. The peptide moderately a�ects the dynamics of the higher modes, which are localized to a few repeats at a time. Its
presence is therefore negligible in comparisons of global dynamics between di�erent Rap proteins.

Figure S5: Free energy contribution of each mode for the respective Rap ENMs.
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(a) Cross-correlation calculated over the slowest 10 normal modes

(b) Cross-correlation calculated over the slowest 3 normal modes

Figure S6: Di�erent cross-correlation maps of Rap con�gurations calculated from the lowest 10 or lowest 3 vibrational normal
modes. N-terminal helix bundle and TPR repeats are divided by grey dashed lines. The TPR repeats exhibit correlated motions
only with their nearest neighbours, giving rise to the distinctive pattern of squares along the diagonal. However, the cross-
correlations calculated from the lowest three modes exhibit a pattern in which the protein is divided into di�erent subdomains,
the borders of which shift depending on the conformational state. Most notably, the open conformation of RapI displays nearly
symmetric correlation that are mirrored about the centre of the protein. As mentioned in the main text, movements of the
rotated N-terminal 3-helix bundle, linker domain and �rst TPR motif (blue box) are non-TPR-like. However, the fewer high
frequency modes are included to calculate the cross-correlation, (a) the more pronounced is the reversal in correlations once the
N-terminal domain rotates (arrows), and (b) the less recognisable are any e�ects of peptide binding (purple box).
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3 Supplementary Movies

3.1 RapI_mode1.mpg

This clip shows the motion of RapI along the lowest vibrational mode. The whole molecule bends along the
central superhelical axis, changing the distance between the N- and C-terminal ends of the molecule.

3.2 RapI_mode2.mpg

This clip shows the motion of RapI along the second lowest vibrational mode. The whole molecule moves in
a screw-like motion that loosens and tightens the superhelical twist.

3.3 RapI_mode3.mpg

This clip shows the motion of RapI along the third lowest vibrational mode. This motion involves largely
the N-terminal three-helix bundle which twists in a screw-like manner orthogonal to the superhelical axis,
while the C-terminal repeats simply open and close with respect to the superhelix.
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