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Supplementary Methods, Results, and Figures 

Methods 

Sample collection and neurobehavioral data 

Blood was collected in a PAXgeneTM Blood RNA tube. Of 204 possible samples 

(12 timepoints, 17 subjects), five blood draws were unsuccessful, resulting in 199 RNA 

extractions (Additional file 1: Table S1). 

As previously described [1], subjects were presented with the PVT for 10 min at 

2–4 h intervals during scheduled wakefulness. For the present report only the tests at 4 

h intervals corresponding to the timing of the blood draws were used (Fig. 1). On 

average, blood draws and PVT data were collected at approximately 8:00 h, 12:00 h, 

16:00 h, and 20:00 h. Subjects were asked to immediately press a button upon 

observing a visual stimulus on a computer screen, which appeared at random 2–10 s 

intervals. Stimulus-response times >500 ms were recorded as lapses, and data were 

recorded as the number of lapses per test bout. Significant differences in PVT lapses 

over time and between conditions were tested with generalized linear models using 

Poisson distribution and log link with PVT as the response variable, and progressively 

adding as predictors Treatment (TSD or C), Phase (Baseline, Experimental, Recovery), 
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Time of Day, and their interaction terms. In all models a random intercept was included 

for subject; also, a random term for observation was included to correct for 

overdispersion as in [2]. Models were constructed in R v. 3.2.1 using the glmer function 

in the lme4 v. 1.1-11 package [3], with the “nlminb” optimizer. 

 

RNA isolation and microarray data collection 

Blood samples in PAXgeneTM tubes were shipped to CAMI and thawed. Total 

RNA was isolated with a QIAcube robotic workstation using reagents from the 

PAXgeneTM Blood miRNA Kit and the manufacturer’s instructions. Following isolation, 

aliquots were used for quantification on a NanoDrop 1000 Spectrophotometer 

(ThermoFisher), and quality assessment including calculation of the RNA Integrity 

Number on an Agilent Technologies 2100 Bioanalyzer®. Total RNA samples were 

reverse transcribed and amplified with the NuGEN Inc. Ovation® Pico WTA System V2 

kit. Concentration of the amplified cDNA was determined with the NanoDrop as above. 

Fragmentation and biotin labeling was performed using the Encore® Biotin module 

(NuGEN Inc.), followed by hybridization to GeneChip Human Gene 1.0 ST array 169 

format chips and scanning on an Affymetrix Scanner, according to the manufacturer’s 

protocol. Randomization was applied to RNA extractions and microarray preparations. 

 

Differential gene expression: Treatment and PVT effect 

Transcript Cluster-level expression values were derived by background 

correction, quantile normalization, and median polish summarization with the RMA 

algorithm [4] in the R/oligo package v. 1.32.0 [5]. Data were filtered for low expression, 
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only retaining a Transcript Cluster if at least 6 samples had log2 expression >6, 

corresponding to the median (and mean) expression of the antigenomic Transcript 

Clusters. Raw Affymetrix expression data, and results of the RMA algorithm post-

filtering, are archived at the NCBI GEO online repository accession GSE98582. Array 

data quality was assessed with hierarchical clustering and tools in R/arrayQualityMetrics 

v. 3.24.0 [6]. Six arrays from six different TSD subjects were considered outliers: one at 

noon and one at 20:00 h on day four (Experimental), one at noon and one at 20:00 h on 

day six (Recovery), and two at 16:00 h on day six. In tests of differential gene 

expression, outliers were included but de-emphasized using the internal array weighting 

function of limma [7]. For other analyses without an internal weighting function 

(WGCNA, Mfuzz, and RIF; see below), a separate RMA expression file was created 

omitting these six outliers altogether.  

Visual examination of the PVT data suggested that three of the 11 TSD subjects 

were fatigue resistant in terms of neurobehavioral (vigilance) performance (Fig. S1). 

These were subjects s6093, s6125, and s6311 (Additional file 1: Table S1). It was 

hypothesized that the inter-individual variability could impede detection of a gene 

expression Treatment effect between C and TSD persons, as the fatigue resistant 

subjects are outliers to the average TSD response, at least in terms of PVT lapses. 

Thus, to identify genes differentially expressed respective to Treatment, the three 

fatigue resistant subjects were excluded from the RMA expression file for Treatment 

effect analysis, and limma analyses (see below) were run to test for a difference 

between the 6 C and the remaining 8 TSD persons. A comparison was made by running 

this model of a Treatment effect, with one including the fatigue resistant individuals.  
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About 90% of genes different between TSD and C subjects at the Experimental 

phase in models with the fatigue resistant subjects also were significant in models 

without these subjects at FDR <0.05. However, models without these three subjects 

detected over three times as many differentially expressed Transcript Clusters. Some of 

these additional genes such as Interleukin 1B (IL1B) were known from literature review 

to respond to sleep levels [8, 9]. Hence for biomarker discovery, models without the 

fatigue resistant subjects were considered more comprehensive and potentially more 

accurate indicators of a Treatment response. In future studies if Control subjects are 

used that have previously been profiled for their fatigue resistance, fatigue susceptibility 

could be incorporated into the Treatment model as an additional variable rather than 

eliminating the resistant subjects. Alternatively, a cross-over design could be explored 

with each subject undergoing two study runs, one with Total Sleep Deprivation and one 

with the well-rested Control condition. 

Tests for differential expression were conducted for biomarker discovery with 

R/limma v. 3.24.15 using linear models [7]. All models included array weights, 

incorporation of the inter-subject correlation (using the duplicateCorrelation and block 

functions in limma), and a term to account for differences attributable to Time of Day. 

The Treatment list was defined as Transcript Clusters with a significant difference 

between C and TSD persons at the Experimental or Recovery phase (FDR <0.05), but 

not at Baseline. Plots of Transcript Clusters were reviewed to ensure mean log2 

expression ±1 SE overlapped between C and TSD subjects at all four Baseline 

timepoints, when no differences were expected. If plots showed separation in 
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expression between C and TSD at Baseline, the Transcript Cluster was discarded from 

the final Treatment list to reduce false positive discoveries. 

 Similarly, linear models were applied in limma to test for a significant relation of 

PVT lapses to gene expression. Here, data for all 11 TSD and 6 C subjects were 

included because PVT lapses inherently provided a means of incorporating inter-

individual variability in the response to sleep loss into the statistical models. Besides 

array weights, the inter-subject correlation, and PVT lapses, the model contained terms 

for Treatment (TSD or C) and Time of Day. No Transcript Clusters were associated with 

PVT lapses at a threshold of FDR <0.05. Because exploring biomarkers for 

neurobehavioral impairment from sleep deprivation was a primary aim, it was important 

to avoid missing candidate biomarkers in this first screening study. Hence the threshold 

for significance was relaxed from FDR <0.05 to FDR <0.10. As before, expression was 

plotted for TSD and C subjects, and Transcript Clusters were eliminated from the PVT 

list if the mean log2 expression ±1 SE showed separation at any Baseline timepoint.  

Models of the PVT effect were re-run with inclusion of additional factors, but 

these did not appear to improve results. Use of age in the model led to detection of a 

single Transcript Cluster at FDR<0.1, which was considered a potential false positive 

due to separation of mean ±1 SE log2 expression for C and TSD subjects at Baseline. 

Use of body mass index or BMI as calculated with the online tool at 

https://www.nhlbi.nih.gov/health/educational/lose_wt/BMI/bmi-m.htm [10] added seven 

new Transcript Clusters, but all were eliminated based on separation in expression at 

Baseline, and most were annotated as ribosomal RNA. While re-running the model 

accounting for gender added detection of an additional 19 Transcript Clusters (inclusive 
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of the 7 found in the model with BMI), 13 of them were deemed potential false positives 

due to separation of expression between C and TSD at baseline, and by that logic the 

false positive rate was increased by 11% from the original model without BMI, age, or 

gender. Hence the results reported here (for both PVT and Treatment) reflect the 

simpler design excluding factors of age, gender, and BMI. Future work is needed to 

more thoroughly evaluate the impact of such factors on biomarker detection, using a 

larger and more diverse population.  

Fifteen Transcript Clusters significantly related to PVT lapses were not found in 

the Treatment list (Additional file 5: Table S4). To verify that this result was not simply 

a reflection of the Treatment data set excluding the fatigue resistant individuals while 

the PVT analysis included them, the Treatment analysis was run again with all 17 

subjects. During the Experimental phase, the lowest FDR for the difference between 

TSD and C subjects in these 15 Transcript Clusters was 0.35, suggesting that the 

finding was robust to inclusion or exclusion of the fatigue resistant subjects. Sample 

plots were made of a Transcript Cluster significantly related to PVT lapses and 

Treatment, as well as a Transcript Cluster significantly related to PVT but not Treatment 

using R package ggplot2 v. 2.2.1 [11]. Data from outlier arrays (see above) was omitted 

in creating these plots. 

Co-expression and temporal networks 

Weighted Gene Co-expression Network Analysis was performed using 

R/WGCNA v. 1.47 and data from all 17 subjects. This approach has been described in 

detail by Langfelder and Horvath [12]. Essentially the analysis serves to group genes 

based on similarity of expression across samples (n=193; 199 successful blood draws 
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minus 6 outliers). All Transcript Clusters passing the low-expression filter were included, 

not just those differentially expressed, for a complementary approach to the limma 

models above. Signed networks were constructed, allowing for positive or inverse 

relationships based on Pearson correlations among genes. Using internal functions 

plotting scale free topology, a soft power threshold of 13 was selected, and the 

minimum number of Transcript Clusters per group was set to 30. Each group of co-

expressed Transcript Clusters was termed a module, which the package designated by 

a color. Pearson correlations were computed separately between each module’s 

eigengene and three variables: Treatment, PVT lapses, and Time of Day. The 

eigengene was a representative metric of the expression profile of Transcript Clusters in 

the module [12]. The WGCNA software also allowed identification of the top hub 

Transcript Cluster for each module, namely, the most highly connected Transcript 

Cluster within the module. Here, connectivity was based on the correlation of 

expression among genes [12]. 

 A second temporal clustering approach was performed using R/Mfuzz v. 2.28.0 

[13]. This analysis was not designed to test for treatment differences, but rather focuses 

on portraying time series. Hence the three fatigue resistant individuals and the Controls 

were omitted, and Mfuzz was used to cluster and plot the mean log2 expression of the 8 

TSD subjects across the 12 timepoints. Expression values for the differentially 

expressed Treatment effect Transcript Clusters were z-transformed and then clustered 

across timepoints using fuzzy c-means clustering. An internal function was used to 

select the fuzzification parameter (m=1.33). A combination of internal functions and 

plotting was used to decide on the number of clusters, which was set to three. The 



8 
 

same clustering strategy was employed on the Transcript Clusters associated with PVT 

lapses, based on the average data from the 8 TSD subjects, to show temporal changes 

in expression of these Transcript Clusters during TSD. The fuzzification parameter was 

m=1.76, again with creation of three clusters. Plotting was re-run using the same 

approach, on the Control subjects’ data. Fuzzification parameters were the same 

(m=1.33 for the Treatment list run, and m=1.76 for PVT), and the number of clusters 

was set to three. 

 

Transcription factor regulators 

Regulatory Impact Factor (RIF) scores were assigned to known human 

transcription factors as a means of ranking potential regulators of the differentially 

expressed genes in a differential co-expression analysis [14]. In synopsis, transcription 

factors were separately correlated to all differentially expressed genes in each of two 

conditions (fatigue resistant subjects were omitted). Then the difference between the 

correlation of the transcription factor to gene expression in the first condition, and its 

correlation to gene expression in the second condition, was computed and squared. 

The result was weighted by the average abundance of the differentially expressed gene 

across all samples, and its difference in expression between the two conditions. The 

final value was converted to a z-score and reported for each transcription factor to rank 

their regulatory potential. Based on the differences in correlation and in expression 

between the two conditions (here, C and TSD), the RIF z-scores were either positive or 

negative. Larger absolute values of the z-scores were interpreted as stronger evidence 

for a regulatory role. 
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Three input sets of data were necessary for running this analysis: (1) a list of 

transcription factors, (2) a list of differentially expressed genes (Transcript Clusters), 

and (3) the expression values of the transcription factors and differentially expressed 

genes in each condition. The list of transcription factors (1) consisted of all human 

transcription factors in QIAGEN BIOBASE TRANSFAC v. 2015.4 for which there was 

data in the present study, after filtering for low expression levels (see above). For the 

second item two lists of differentially expressed genes were used running the RIF 

analysis twice. In one run the Treatment effect Transcript Clusters were used (2a), and 

in the other run the PVT effect Transcript Clusters were employed (2b) as the 

differentially expressed gene list. Finally, averages were computed for each of the 12 

timepoints for C and for TSD individuals, and these 12 values served as the input 

expression data (3) for each of the two conditions (C, TSD). (It was necessary 

computationally to have the same number of expression data points for both conditions, 

making it impossible to use the raw data for the 6 C vs. 8 TSD subjects.) The script 

published in the supplemental material of Uyhelji et al. [15] was run to compute RIF z-

scores, with minor modifications including use of Pearson rather than Spearman 

correlations.  

 In addition to the RIF differential co-expression analysis, the BIOBASE F-match 

tool at http://www.biobase-international.com [16] was utilized to search for regulatory 

transcription factors based on the promoter sequence of differentially expressed genes. 

Analysis was based on the BIOBASE TRANSFAC® v. 2015.4 vertebrate non-redundant 

profile [17], with default settings modified to minSum for optimization of both false 

positive and false negative errors, and a P-value threshold of 0.05. 
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The BIOBASE tool was applied to scan for over-represented binding sites, first in 

Treatment effect Transcript Clusters, and then in PVT effect Transcript Clusters. For the 

Treatment effect, a background set was randomly selected from Transcript Clusters with 

raw P-values >0.10 (FDR>0.337) in the limma differential expression analysis between 

C and TSD subjects at the Experimental phase. For the PVT effect, the background set 

was randomly selected from Transcript Clusters with raw P-values >0.10 (FDR>0.513) 

for PVT lapses. Each background list contained the same number of Transcript Clusters 

as the foreground list (Treatment or PVT effect Transcript Clusters), per the 

manufacturer’s recommendations. Ten background lists were created for each 

foreground set, and only transcription factors appearing on at least nine iterations of F-

match were considered for further analysis.  

 

Functional enrichment and pathway analysis 

Affymetrix’s online tool NetAffx™ [18] was used to annotate gene lists, with 

emphasis on the first annotation provided for genes with mixed hybridization targets per 

Affymetrix’s recommendation (pers. comm.). Also, the DAVID v. 6.7 bioinformatics tool 

[19] was used to characterize functional enrichment. For DAVID, Transcript Clusters in 

the list of interest served as the foreground input, with all Transcript Clusters in the 

corresponding RMA expression set passing the low-expression filter as the background. 

As suggested by [20], such user-defined backgrounds can be important to reduce bias 

toward tissue-specific expression (e.g., detection of pathways found in blood due to 

using blood as the RNA source). Analysis focused on DAVID functional clusters with 

enrichment scores >1.3, corresponding to P <0.05. 
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The Ingenuity Pathway Analysis® (IPA®, QIAGEN Redwood City, 

http://www.qiagen.com/ingenuity) Core Analysis tool was used to explore molecular 

pathways and networks based on previously published interactions among genes. 

Parameters used included consideration of both direct and indirect relationships, 

exclusion of endogenous chemicals, inclusion of Causal Network analysis, use of 

Ingenuity expert and Ingenuity supported third party information from experimentally 

observed data (vs. predictions), and restriction of species to mammals (human, mouse, 

rat). The foreground in these IPA® runs consisted of the gene list of interest (e.g., 

Treatment or PVT effect Transcript Clusters, converted internally by IPA® to genes), 

and as with DAVID, the background was all microarray genes passing the log2 >6 low-

expression threshold in at least six samples.  

 Because PVT lapses are ordinal rather than binary, fold changes for the PVT 

effect could not be computed directly for use in IPA®. Instead, the log2 fold change 

values were used for TSD relative to C subjects (omitting the three fatigue resistant 

persons) at the Experimental phase, taken from the Treatment effect analysis. Based on 

the sign of the correlation coefficient of a Pearson correlation between PVT lapses and 

gene expression, it was confirmed that the direction of expression indicated by the 

Treatment effect fold change reflected the direction relative to PVT. That is, Transcript 

Clusters with a positive Pearson correlation between PVT and gene expression (higher 

expression with more PVT lapses) also showed a positive fold change for the Treatment 

effect (higher expression in TSD than C subjects). This information was used by IPA® 

to depict whether a given gene was up-regulated or down-regulated, and whether 

connected molecules and biological functions were activated or inhibited. Causal 
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Network pathways of interest were reviewed for connections between differentially 

expressed genes and upstream regulatory molecules [21]. Fisher’s exact tests were 

used to check for the presence of a greater number of differentially expressed genes 

related to the Causal Network than would be expected due to chance. 

 

microRNA quantitative PCR 

A 300 ng aliquot of total RNA from each blood sample was used for analysis of 

microRNA (miRNA) expression with 30 TaqMan® assays (Life Technologies, Grand 

Island NY) according to the recommendations from Fluidigm® for miRNA analysis on 

the BioMark system. The TaqMan microRNA Reverse Transcription kit (Life 

Technologies) and KAPA Probe Fast qPCR Kit Master Mix Universal (KAPA 

Biosystems) were used with custom reverse transcription and preamplification primer 

pool. Following a 17 cycle preampflication, the product was diluted 1:10 with 10 mM Tris 

pH 8.0, 0.1 mM EDTA. The qPCR amplification reaction was prepared according to the 

manufacturer’s 96x96 protocol using KAPA Probe Fast qPCR Kit Master Mix Universal 

(KAPA Biosystems) on Biomark IFC Controller and HD instruments (Fluidigm Corp.).    

Initial analysis of the miRNA plate assays was done with settings as 

recommended (Fluidgm Real-Time PCR Analysis software, ver. 4.1.2):  0.65 quality 

threshold, Linear (Derivative) baseline correction, and Auto (Global) Ct threshold 

method. Efficiencies for each gene were determined via duplicate standard curves run 

on the same plate. The miRNAs microRNA let-7a-1 (MIRLET7A1) and microRNA let-7d 

(MIRLET7D) were chosen as Normalizers using GeNorm and Normfinder. Finally, 

normalized gene expression values were analyzed via linear mixed-effects models with 
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R package nlme v. 3.1-126, using marginal Type III sum of squares. Models predicted 

expression of each miRNA as a function of PVT lapses, Treatment (TSD or C), and 

Time of Day (encoded as factor), including a random intercept for subject. Plots of 

expression of miRNAs significantly related to PVT were made using R packages 

ggplot2 v. 2.2.1 [11] and gridExtra v. 2.3 (https://cran.r-

project.org/web/packages/gridExtra/index.html). 

 

Results 

Comparison of gene lists with published datasets 

Four publications with lists of differentially expressed genes responding to total 

sleep deprivation, as identified from human blood samples, were compared to the 

Treatment and PVT gene lists in the current study (Additional file 4: Table S3). For 

genes with multiple possible annotations, only the first listed gene symbol in the current 

study’s supplemental Treatment and PVT datasets was used (Additional file 3: Table 

S2, Additional file 5: Table S4), and compared for a perfect match with the gene 

symbol or identifier reported in literature. In a study by Pellegrino and colleagues [22], a 

supplemental data file was provided of genes with a difference between both baseline 

vs. sleep deprivation, as well as during sleep deprivation vs. recovery. None of these 

genes were found in the Treatment or PVT lists reported here. Likewise, neither of the 

two genes related to duration of sleep deprivation in a study by Arnadottir et al. [23] 

were found in the Treatment or PVT lists. However when analysed for a difference 

among states (phases) of normal sleep, sleep deprivation, and recovery, Arnadottir et 

al. reported 48 differentially expressed genes in a supplemental file [23], of which one 
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(CAMP) was also found in the Treatment list. There was no overlap with the PVT list. 

There was only one Treatment gene (ABCA1) but no PVT list members that overlapped 

with the condition of control sleep followed by total sleep deprivation in Möller-Levet et 

al. 2013 [24]. Finally, of the 1855 genes with rhythmic expression in the control 

condition in [24], 62 were found in the Treatment list, and another six in the PVT list. Of 

the six genes overlapping with PVT, three genes were found in both Treatment and PVT 

analyses (LITAF, IPMK, and AQP9), and the remainder were unique to the PVT list 

(LPCAT2, KCNJ15,  and MSL1).  

There were likely several reasons for the extremely low congruence between the 

results in the current study and the genes responding to sleep deprivation in these 

published datasets, not the least of which would be differences in study design and 

analytical models. Besides differences in the length of sleep deprivation, microarray 

platforms varied: Pellegrino et al. used a distinct Affymetrix array from the current study 

[22], Arnadottir et al. [23] used custom Affymetrix arrays, and Möller-Levet et al. used 

Agilent arrays [24]. Additionally, some genes possess multiple annotations (due to 

uncertainty of the best match of a Transcript Cluster or probeset to a gene, or the 

existence of multiple names for a single gene), which may have led to underestimation 

in the overlap of gene lists between studies. Moreover, in some cases distinct members 

of the same gene family were identified. For example, Arnadottir et al. [23] reported 

Dedicator of Cytokinesis 3 (DOCK3) among their 48 state-responsive genes, whereas 

the present study identified Dedicator of Cytokinesis 5 (DOCK5) in the Treatment list. 

Future analyses of the candidate Treatment and PVT biomarkers in the present study 

should include comparison to additional published datasets, but a complete review of 
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the literature was beyond the scope of this study. Also, it would be interesting to 

compare genes affected by sleep restriction in these and other studies.  
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Supplemental Figures 

 

 

Figure S1 

Mean (± 1 SE) Psychomotor Vigilance Test (PVT) lapses for Control (C) vs. susceptible 

and fatigue resistant Total Sleep Deprivation (TSD) subjects. One chart (top) compares 

the 6 C individuals to the 8 TSD subjects susceptible to the TSD treatment, whereas the 

other (bottom) compares the 6 C individuals to the 3 TSD subjects identified as fatigue 

resistant. 
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Figure S2  

Mean (± 1 SE) log2 expression of Transcript Cluster 8133209, a SPDY gene family 

member. This Transcript Cluster is shown as a sample Transcript Cluster present in 

both Treatment and PVT lists. 
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Figure S3  

Mean (± 1 SE) log2 expression of Transcript Cluster 8068583, representing gene 

KCNJ15, as measured on microarrays. This Transcript Cluster is shown as a sample 

Transcript Cluster present in the PVT list but not the Treatment list.  
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Figure S4 

Temporal expression of microarray Transcript Clusters that are significant for the 

Treatment effect. Gray lines represent individual Transcript Clusters, and the thick black 

line represents the group center. Values represent normalized expression based on 

data from Control (C) subjects during three of the seven consecutive study days, 

consisting of one day each during the Baseline, Experimental, and Recovery phases. 
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Figure S5 

Temporal expression of microarray Transcript Clusters significant for the Psychomotor 

Vigilance Test effect. Gray lines represent individual Transcript Clusters, and the thick 

black line represents the group center. Values represent normalized expression based 

on data from Control (C) subjects during three of the seven consecutive study days, 

consisting of one day each during the Baseline, Experimental, and Recovery phases. 
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Figure S6 

Ingenuity Pathway Analysis® Causal Network pathway B with master regulator BDKR 

for Treatment effect genes (top), and PVT effect genes (bottom). Lighter molecule color 
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(e.g., NR3C1, ADAM17) suggests less confidence in prediction of the direction of 

expression; darker indicates more confidence. In the PVT network, no prediction was 

made for APP, which was tested for differential expression but not significant. In the 

Treatment network, PKC complex prediction of light green reflects down-regulation of 

complex member PRKCB, but no differential expression for complex genes PRKCA, 

PRKCD, or PRKCQ.  
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Figure S7 

Ingenuity Pathway Analysis® Causal Network pathway P with purinergic receptor 

master regulator for Treatment (top), and Psychomotor Vigilance Test (PVT, bottom). 
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Lighter molecule color suggests less confidence in prediction of the direction of 

expression; darker indicates more confidence. In the PVT network, the software was 

unable to make predictions of direction of expression for P2RX7, ERK1/2, PTK2B, or 

PRKCD. Of these, PTK2B and PRKCD passed the low-expression thresholds but were 

not significantly related to PVT lapses. 

 

 

Figure S8 

Ingenuity Pathway Analysis® Causal Network pathway D for Psychomotor Vigilance 

Test (PVT) effect genes with master regulator DNAJ. Lighter molecule color (e.g., 

NR3C1) suggests less confidence in prediction of the direction of expression; darker 

indicates stronger prediction. 
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Figure S9 

Mean (± 1 SE) expression profile of three miRNAs significantly related to PVT lapses, 

based on efficiency-corrected, normalized qPCR data. 
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