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1 Results of Multi-class Disease Classification
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(a) Confusion matrix of VBM (b) Confusion matrix of ROI (c) Confusion matrix of DSML-1

(d) Confusion matrix of DSML (e) Confusion matrix of DM2L-1 (f) Confusion matrix of DM2L

Fig. S1. Confusion matrices achieved by six different methods in multi-class (NC vs. sMCI vs. pMCI vs. AD) disease classification. The
classification models are trained on ADNI-1 and tested on ADNI-2.
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Fig. S1. Confusion matrices achieved by six different methods in multi-class (NC vs.
sMCI vs. pMCI vs. AD) disease classification.

We further show the multi-class classification (NC vs. sMCI vs. pMCI vs.
AD) achieved by our proposed deep multi-task multi-channel learning (DM2L)
approach and five competing methods (i.e., VBM [1], ROI [2], DSML-1, DSML,
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and DM2L-1). The confusion matrices achieved by different methods are reported
in Fig. S1. From Fig. S1, we can see that in terms of the overall classification
accuracy, the proposed DM2L method generally outperforms those competing
methods. It further suggests the effectiveness of the proposed method.
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