

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes and chronic kidney disease: a population-based cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019950
Article Type:	Research
Date Submitted by the Author:	04-Oct-2017
Complete List of Authors:	Hamada, Shota; Institute for Health Economics and Policy, Research Department Gulliford, Martin; King's College London, UK,
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	General practice / Family practice
Keywords:	cardiovascular diseases, chronic kidney disease, mortality, type 2 diabetes

BMJ Open

Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes
and chronic kidney disease: a population-based cohort study
Shota Hamada ^{1,2} , Martin C Gulliford ^{1,3}
1 Department of Primary Care and Public Health Sciences, King's College London, London, UK
2 Research Department, Institute for Health Economics and Policy, Association for Health
Economics Research and Social Insurance and Welfare, Tokyo, Japan
3 National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas'
National Health Service Foundation Trust, London UK
Correspondence to: Shota Hamada
Research Department, Institute for Health Economics and Policy, Association for Health
Economics Research and Social Insurance and Welfare
No.11 Toyo-kaiji Bldg, 1-5-11, Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003 Japan
Tel: +81 3-3506-8529, Fax: +81 3-3506-8528, E-mail: <u>shota.hamada@ihep.jp</u>
1
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

OBJECTIVES: This study aimed to evaluate the effectiveness of multiple risk factor control (MRFC) at reducing mortality and cardiovascular events in diabetes and chronic kidney disease (CKD) in clinical practice.

DESIGN: Population-based cohort study.

SETTING: Primary care database in the UK, linked with inpatient and mortality data. PARTICIPANTS: Participants aged 40 to 79 years with type 2 diabetes and valid serum creatinine measurements, including 11,431 participants with CKD (eGFR 15–59 mL/min/1.73 m²) and 36,429 participants with non-CKD (eGFR \geq 60 mL/min/1.73 m²). EXPOSURES: MRFC consisted of four components: HbA1c <53 mmol/mol (<7.0%), blood pressure <140/90 mmHg, total cholesterol <5 mmol/L and no smoking. The main exposure variable was the number of risk factors controlled at the same time at baseline. OUTCOME MEASURES: All-cause and cardiovascular mortality in the overall participants. Cardiovascular events, including coronary heart disease and stroke, in participants limited to those without a history of cardiovascular diseases at baseline (CKD N=7,216; non-CKD N=28,569).

RESULTS: In participants with CKD, 37% or 13% met three or four MRFC criteria, respectively. Increasing MRFC was associated with lower relative hazards for all

outcomes studied compared with those meeting no or one criterion. For participants with CKD meeting four criteria, the adjusted hazard ratio (HR) for all-cause mortality was 0.59 (95% confidence interval (CI) 0.52 to 0.67) and the adjusted subdistribution HR for cardiovascular mortality was 0.58 (0.49 to 0.69), considering a competing risk of non-cardiovascular death. Participants meeting four criteria also had lower relative hazards for coronary heart disease (adjusted subdistribution HR 0.73, 95% CI 0.59 to 0.91) and stroke (0.61, 0.43 to 0.86), considering death as a competing risk.

CONCLUSIONS: MRFC may attenuate the increased risks for mortality and cardiovascular events in people with diabetes and CKD. The implementation of MRFC is suboptimal and should be ensured in this high-risk population.

Strengths and limitations of this study

- This study included >11,000 participants with type 2 diabetes and CKD sampled from a representative general population with about 6 years of follow-up, which enabled to determine the associations of cardiovascular risk factors with mortality and cardiovascular events.
- Linked data for hospital care and death registration with a primary care database enhanced the validity of the study to evaluate mortality and cardiovascular events.

- We could not determine the causal relationships between MRFC and mortality and cardiovascular events from this non-randomised study.
- There is a possibility of confounding by indication; thus, healthier participants were • managed more successfully and resulted in being categorised as those with greater er of risk factors number of risk factors controlled.

Introduction

Diabetes and chronic kidney disease (CKD) are growing health problems worldwide, contributing to increased mortality [1]. Diabetes and CKD also impose a substantial economic burden on society, with particularly high costs relating to cardiovascular complications and renal replacement therapy [2,3]. The prevalence of CKD in patients with diabetes is between 4.2% and 17.9% (CKD stages 3 to 5) in European countries [4]. The leading cause of death in people with type 2 diabetes or CKD is cardiovascular disease rather than renal complications [5,6]. Prevention of cardiovascular events is a key focus in the management of patients with these conditions.

Recent epidemiological studies have demonstrated additional risks of CKD on mortality and cardiovascular diseases in people with diabetes [7], but treatment approaches in this population have not been well studied. Multifactorial interventions to reduce cardiovascular risks were shown to be effective at reducing mortality and cardiovascular events in patients with type 2 diabetes and persistent microalbuminuria in the Steno-2 randomised trial [8,9]. This study provided a high level of evidence, but included a relatively small number of participants with diabetes who were managed in specialist centres. Recently, the implementation and effectiveness of this approach have been evaluated in patients with diabetes in clinical practice settings [10-12]. However, no studies focused on multiple risk factor control (MRFC) in patients with both diabetes and CKD in a wide clinical practice setting. Generally, patients with kidney disease have been underrepresented in cardiovascular clinical trials [13]. This population may have an altered risk-benefit profile, and extrapolation of data based on patients with normal kidney function into patients with CKD may be unreliable [13]. We aimed to conduct a pragmatic evaluation of the effectiveness of MRFC on mortality and cardiovascular events in participants with type 2 diabetes and CKD in a ê. R population-based cohort study.

Methods

Data sources

This study employed a linked dataset derived from the UK Clinical Practice Research Datalink (CPRD), the UK National Health Service Hospital Episodes Statistics (HES) inpatient data, and the UK Office for National Statistics (ONS) mortality data. The CPRD contains anonymised electronic health records from general practices across the UK [14]. The CPRD collects data for diagnoses and clinical assessment, prescriptions and laboratory test results, such as HbA1c and serum creatinine. The HES inpatient data

were comprised of inpatient records from all National Health Service hospitals in England. Information on the date of death and the causes of death were available in the ONS mortality data file. Diagnoses and clinical evaluation in the CPRD were coded with the Read codes, a hierarchical coding system used in primary care in the UK, whereas those in the HES and ONS were coded with the International Classification of Diseases, tenth revision (ICD-10). Linked data are available for general practices in England only and participants were limited to those with linked data for the HES and ONS available. The study was approved by the CPRD Independent Scientific Advisory elien Committee (ISAC Protocol 15_201R).

Study population

The scheme of the study cohort selection is presented in figure S1. We initially sampled participants who were diagnosed with type 2 diabetes from the CPRD [15]. Using the CPRD records, the date of the first valid serum creatinine value between 2006 and 2010 recorded more than one year after the first diagnosis of diabetes were defined as the index date. A similar approach was taken by Adamsson Eryd et al [16] to ensure that participants managed for diabetes had sufficient time available for recording of baseline values. To avoid misclassification of CKD status and stage, the index serum creatinine

values were validated by confirmation of subsequent values within 30% of the index values. We restricted the sample to participants aged 40 to 79 years at the index date with at least one year of follow-up data available (ie, participants who died in the first year of follow-up were excluded). Estimated glomerular filtration rate (eGFR) was calculated from a serum creatinine value, age, gender, and ethnicity, using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [17]. Missing ethnicity was assumed as 'non-black' in the present study. Participants diagnosed with end-stage renal disease, those who had received renal replacement therapy, or those with index eGFR <15 mL/min/1.73 m² were excluded. We also excluded participants with missing data for smoking status, body mass index (BMI), HbA1c, blood pressure, total cholesterol or with extreme BMI (<18.5 or \geq 45 kg/m²) at baseline. Since it has been reported that low values of cardiovascular risk factors were not always associated with better outcomes in observational studies [15,18,19], possibly due to reverse causation [20,21], participants with low HbA1c (<42 mmol/mol or <6.0%), blood pressure (systolic <120 or diastolic <60 mmHg) and total cholesterol (<3 mmol/L) were further excluded. Participants were categorised according to index eGFR into those with CKD $(<60 \text{ mL/min}/1.73 \text{ m}^2)$ and non-CKD $(\geq 60 \text{ mL/min}/1.73 \text{ m}^2)$.

Multiple risk factor control

MRFC was defined in this study as consisting of four components: (1) HbA1c <53 mmol/mol (<7.0%), (2) blood pressure <140/90 mmHg (systolic <140 and diastolic <90 mmHg), (3) total cholesterol <5 mmol/L and (4) no smoking (non- or ex-smokers). The means of HbA1c, blood pressure, and total cholesterol records within one year before the index date were evaluated. The number of the risk factors controlled from four criteria was treated as the exposure and included as a categorical variable in the analyses, with those meeting no or one criterion as a reference category.

Q.

Outcomes

Main outcomes of interest in this study included all-cause and cardiovascular mortality, fatal and non-fatal coronary heart disease (CHD) and stroke. The date of death and causes of death were determined using the ONS mortality data. Patients who died from cardiovascular causes were identified if people had any of the ICD-10 codes I00 to I99 as a cause of death. All of the CPRD, HES and ONS were used to ascertain fatal and non-fatal CHD and stroke. Read codes for CHD and stroke reported previously [22,23] were updated for the present study. The ICD-10 codes for CHD and stroke were I20 to I25 and I60, I61, I63 and I64, respectively.

Analysis

Baseline characteristics of the study cohort were described according to CKD status. Time-to-event analyses were conducted to evaluate the associations of MRFC with mortality and cardiovascular events. To address the issue of reverse causation and to avoid misclassification of the outcomes from those which had existed at baseline, person-years for participants who experienced outcomes of interest in the first year of follow-up were excluded from analyses. Cox proportional hazards models were used to evaluate the association of MRFC with all-cause mortality. Proportional hazards assumption was assessed by visual inspection of log-log plots, and no apparent violation was found. Competing risks regression with subdistribution hazard models were conducted for cardiovascular mortality and cardiovascular events, considering competing risks for non-cardiovascular and all-cause death, respectively [24]. Associations of MRFC with cardiovascular events were evaluated in participants without a known history of cardiovascular diseases at baseline. Participants were followed from the index date until the earliest of the events of interest, the last date of CPRD records, or 31 March 2015 for all-cause mortality evaluation. In the competing risks regression analyses for cardiovascular mortality and cardiovascular events,

BMJ Open

participants who experienced the corresponding competing events prior to the event of interest were also censored.

Main analyses were conducted by CKD status, adjusting for a range of baseline covariates, including age (continuous), gender (male or female), CKD stage (3a, 3b and 4; for CKD cohort), BMI (18.5-24.9, 25.0-29.9, 30.0-34.9, 35.0-39.9 and 40.0-44.9 kg/m²), deprivation level (quintile; 1, least deprived, to 5, most deprived), duration of diabetes (1.0-4.9 5.0-9.9 and 10+ years), a history of cardiovascular diseases, including CHD and stroke, and prescribing during six months prior to the index date of antidiabetic drugs (none, insulin with and without other antidiabetic drugs, and non-insulin drugs only), antihypertensive drugs (none, drugs acting on renin-angiotensin system with and without other antihypertensive drugs, and other classes of antihypertensive drugs only, including β-blockers, calcium channel blockers, and thiazide diuretics), statins and antiplatelet drugs, and index year (2006 to 2010). In addition, the association of CKD with the outcomes were evaluated according to the number of risk factors controlled, adjusting for the potential confounding factors described above.

In this paper, the results for participants with CKD were focused on, with the results for those with non-CKD shown for comparative purposes. All analyses were performed using Stata version 14 (Stata Corp., College Station TX). The 'forestplot' package in R was used to present the results [25].

Results

Characteristics of the study population

Baseline characteristics of the study cohort are shown according to CKD status in table 1. Mean index eGFR was 49 mL/min/1.73 m² for participants with CKD and 81 mL/min/1.73 m² for those with non-CKD. Participants with CKD were older (71 *vs* 62 years), included more women (52% *vs* 40%), had a longer duration of diabetes, and were more likely to have a history of cardiovascular diseases (37% *vs* 22%). HbA1c and total cholesterol were slightly lower in participants with CKD. Although diastolic blood pressure was lower in participants with CKD, systolic blood pressure was higher despite more people under antihypertensive medications. Participants with CKD were prescribed insulin, drugs on renin-angiotensin systems, statins, and antipatelet drugs more frequently.

Implementation of MRFC

The number of risk factors controlled from four components of MRFC are shown in table 2. More detailed results of which of the components were controlled are available in table S1. Higher rates of control for HbA1c, total cholesterol and smoking status were observed in participants with CKD compared with those with non-CKD. However, blood pressure was less likely managed in participants with CKD (46% *vs* 51%). There were some differences in management status according to a history of cardiovascular diseases: in participants with CKD, higher rates of control of blood pressure (49% *vs* 44%) and total cholesterol (83% *vs* 76%) in participants with a history of cardiovascular diseases compared with those without. Participants meeting three or four criteria accounted for 37% or 13% in participants with CKD.

Effectiveness of MRFC

Absolute risks for mortality and cardiovascular diseases and adjusted relative hazards of the number of risk factors controlled for the outcomes are shown in figure 1. Increasing MRFC was associated with lower relative hazards for all outcomes studied relative to participants meeting no or one criterion. For participants with CKD meeting four MRFC criteria, the adjusted hazard ratio (HR) for all-cause mortality was 0.59 (95% CI 0.52 to 0.67) and adjusted subdistribution HR for cardiovascular mortality was 0.58 (0.49 to 0.69). Participants meeting four criteria also had lower relative risks for CHD (adjusted subdistribution HR 0.73, 95% CI 0.59 to 0.91) and stroke (0.61, 0.43 to 0.86) in participants with CKD. In participants with non-CKD, increasing MRFC was also associated with lower risks for all-cause and cardiovascular mortality, CHD and stroke.

Comparisons between CKD and non-CKD

Unadjusted absolute risks for mortality and cardiovascular diseases were higher in participants with CKD by 1.4- to 2.9-fold compared with those with non-CKD at the same MRFC category (figure 1). More participants with CKD died from cardiovascular causes compared with those without (63% *vs* 54%, P<0.001). Relative hazards of CKD for the outcomes are shown in figure 2. After adjustment with possible confounding factors, comorbid CKD remained to be associated with greater risks for all-cause mortality (adjusted HR, 1.18 to 1.32), cardiovascular mortality (adjusted subdistribution HR, 1.28 to 1.44) and CHD (1.08 to 1.25). However, the associations of comorbid CKD with stroke was observed in participants meeting four criteria only (1.64).

Discussion

BMJ Open

In this population-based cohort study of 11,431 participants with type 2 diabetes and CKD stages 3 to 4, MRFC was associated with lower relative risks for mortality and cardiovascular diseases. We also confirmed that CKD was associated with increased risks for mortality and cardiovascular events. Higher absolute risks for mortality and cardiovascular events. Higher absolute risks for mortality and cardiovascular events relative risk reduction associated with MRFC suggest that the MRFC strategy may be one of the main approaches to potentially reducing the burden of diabetes and CKD. Nevertheless, we found that the implementation of MRFC in patients with diabetes was suboptimal in the clinical practice setting, as reported in previous studies [10-12].

This study evaluated the effectiveness of MRFC in patients with type 2 diabetes according to presence or absence of CKD in clinical practice. So far, the associations of MRFC with lower risks for mortality and cardiovascular events have been shown in people with diabetes, not focusing on CKD status. Participants with controlled three risk factors of HbA1c, blood pressure and LDL cholesterol had 62% and 60% risk reduction for cardiovascular events and CHD, respectively, in patients with diabetes without known cardiovascular diseases [11]. The associations of uncontrolled HbA1c, blood pressure, LDL cholesterol and smoking with mortality and cardiovascular events were

individually evaluated in a large population-based study with >850,000 participants with diabetes [12]. The study cohort included 35.5% of CKD in those with cardiovascular diseases and 21.8% in those without, and CKD was included in the analyses for adjustment. This study suggested that uncontrolled risk factors attributed to about 1 in 3 major cardiovascular events and fewer 1 in 10 deaths.

The strength of this study was the inclusion of a large size of >11,000 participants with diabetes and CKD with an observation of >62,000 person-years. In addition to the large sample size and long-term follow-up, representativeness from general population and data quality are also advantages of the CPRD [14], which should remain even if linked data for HES and ONS are only available for England practices. Instead, linked data for hospital care and death registration substantially enhanced the validity of the study to evaluate mortality and cardiovascular events.

There are also some limitations in this study. First, despite our focus on the number of MRFC, the impact of each of the risks factor on mortality and cardiovascular events should be different. Second, we could not determine the causal relationships between MRFC and mortality and cardiovascular events from this non-randomised study. Third,

BMJ Open

there is a possibility of confounding by indication; thus, healthier participants were managed more successfully and resulted in being categorised as those with greater number of risk factors controlled. For example, stringent management of HbA1c might not be targeted for vulnerable participants due to concerns for greater risk of hypoglycaemia. Fourth, we cannot exclude the possibility of residual confounding despite adjustment with a range of covariates in the analyses, including physical activity and alcohol intake [26,27]. Albuminuria, not always available in our study, has been known as a risk factor for mortality and cardiovascular diseases [28,29]. A recent study suggested, however, that proteinuria status might not have substantial impact on cardiovascular outcomes in patients with diabetes and CKD [30]. Fifth, measurement and assay methods for HbA1c, blood pressure, cholesterol and serum creatinine might not have been standardised among general practices or laboratories. As well as missing data on ethnicity and fluctuations in serum creatinine values, these methodological limitations might influence the determination of CKD status or staging. Finally, although we used one of the largest primary care electronic health records database, it seemed to be insufficient to separately evaluate MRFC for participants with different stages of CKD. Further research is needed to focus on patients with more advanced CKD who may have altered risk-benefit profile compared with patients with less

impaired renal function.

In summary, based on the population-based cohort study of routine clinical practices, MRFC may attenuate the increased risks for mortality and cardiovascular events in people with diabetes and CKD. However, the implementation of MRFC is suboptimal, and further research is needed to clarify underlying reasons to ensure more improved achievement of MRFC in this population.

Acknowledgments

SH was supported by the Uehara Memorial Foundation Postdoctoral Fellowship, Tokyo, Japan. MCG was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London. This study is based on data from the CPRD obtained under license from the UK Medicines and Healthcare products Regulatory Agency. However, the interpretation and conclusions contained in this report are those of the authors alone and not necessarily those of the National Health Service, the NIHR or the Department of Health.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
1/ 10	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/	
38 20	
<u>40</u>	
40 //1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

Contributors: Both authors contributed to conception and study design of the study, data acquisition, statistical analysis, and interpretation. SH drafted the manuscript and MCG revised it critically for important intellectual content.

Funding: This research received no specific grant from any funding agency.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data are available.

References

- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 2015;385(9963):117-171.
- Seuring T, Archangelidi O, Suhrcke M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. *Pharmacoeconomics*. 2015;33(8):811-831.
- Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant.* 2012;27 Suppl 3:iii73-80.

- Brück K, Stel VS, Gambaro G, Hallan S, Völzke H, Ärnlöv J, et al. CKD Prevalence Varies across the European General Population. *J Am Soc Nephrol.* 2016;27(7):2135-2147.
- Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589.
- Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. *N Engl J Med.* 2004;351(13):1296-1305.
- Cea Soriano L, Johansson S, Stefansson B, Rodríguez LA. Cardiovascular events and all-cause mortality in a cohort of 57,946 patients with type 2 diabetes: associations with renal function and cardiovascular risk factors. *Cardiovasc Diabetol.* 2015;14:38.
- Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. *N Engl J Med.* 2003;348(5):383-393.
- 9. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. *N Engl J Med.* 2008;358(6):580-591.

ו כ	
∠ 3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17 10	
10	
20	
20	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31 22	
3∠ 33	
33	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40 17	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
20 20	
52	

- Wong ND, Patao C, Wong K, Malik S, Franklin SS, Iloeje U. Trends in control of cardiovascular risk factors among US adults with type 2 diabetes from 1999 to 2010: comparison by prevalent cardiovascular disease status. *Diab Vasc Dis Res.* 2013;10(6):505-513.
- Wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, et al. Cardiovascular Risk Factor Targets and Cardiovascular Disease Event Risk in Diabetes: A Pooling Project of the Atherosclerosis Risk in Communities Study, Multi-Ethnic Study of Atherosclerosis, and Jackson Heart Study. *Diabetes Care*. 2016;39(5):668-676.
- Vazquez-Benitez G, Desai JR, Xu S, Goodrich GK, Schroeder EB, Nichols GA, et al. Preventable major cardiovascular events associated with uncontrolled glucose, blood pressure, and lipids and active smoking in adults with diabetes with and without cardiovascular disease: a contemporary analysis. *Diabetes Care*. 2015;38(5):905-912.
- Konstantinidis I, Nadkarni GN, Yacoub R, Saha A, Simoes P, Parikh CR, et al. Representation of Patients With Kidney Disease in Trials of Cardiovascular Interventions: An Updated Systematic Review. *JAMA Intern Med.* 2016;176(1):121-124.

- Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al. Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827-836.
- Nicholas J, Charlton J, Dregan A, Gulliford MC. Recent HbA1c values and mortality risk in type 2 diabetes. population-based case-control study. *PLoS One*. 2013;8(7):e68008.
- 16. Adamsson Eryd S, Gudbjörnsdottir S, Manhem K, Rosengren A, Svensson AM, Miftaraj M, et al. Blood pressure and complications in individuals with type 2 diabetes and no previous cardiovascular disease: national population based cohort study. *BMJ*. 2016;354:i4070.
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med.* 2009;150(9):604-612.
- Kontopantelis E, Springate DA, Reeves D, Ashcroft DM, Rutter MK, Buchan I, et al. Glucose, blood pressure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: a retrospective cohort study. *Diabetologia*. 2015;58(3):505-518.
- 19. Afghahi H, Svensson MK, Pirouzifard M, Eliasson B, Svensson AM. Blood

BMJ Open

3		
5 6		pressure level and risk of major cardiovascular events and all-cause of mortality in
7 8 9		patients with type 2 diabetes and renal impairment: an observational study from
10 11		
12 13		the Swedish National Diabetes Register. <i>Diabetologia</i> . 2015;58(6):1203-1211.
14 15	20.	Herrington W, Staplin N, Judge PK, Mafham M, Emberson J, Haynes R, et al.
16 17 18		Evidence for Reverse Causality in the Association Between Blood Pressure and
19 20		Cardiovascular Risk in Patients With Chronic Kidney Disease. Hypertension.
21 22 23		2017;69(2):314-322.
24 25	21	Weiner DE Sarrak MI Managing duclinidemia in chronic kidney disease <i>LGan</i>
26 27 28	21.	wenter DE, Samak MJ. Managing dyshpidenna in chronic kluney disease. 5 Gen
29 30		Intern Med. 2004;19(10):1045-1052.
31 32	22.	Gulliford MC, Charlton J, Ashworth M, Rudd AG, Toschke AM; eCRT Research
33 34 35		Team. Selection of medical diagnostic codes for analysis of electronic patient
36 37 38		records. Application to stroke in a primary care database. PLoS One.
39 40		2009;4(9):e7168.
41 42 43	23.	Bhattarai N, Charlton J, Rudisill C, Gulliford MC. Coding, recording and
44 45		incidence of different forms of coronary heart disease in primary care. <i>PLoS One</i> .
46 47 48		2012.7(1)20776
49 50		2012; /(1):e29776.
51 52	24.	Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the
55 55		Presence of Competing Risks. Circulation. 2016;133(6):601-609.

- 25. Gordon M, Lumley T. Advanced Forest Plot Using 'grid' Graphics. Vienna: The Comprehensive R Archive Network, 2016.
- 26. Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, et al. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. *Eur Heart J.* 2008;29(7):932-940.
- 27. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *Lancet.* 2010;376(9735):112-123.
- 28. Chronic Kidney Disease Prognosis Consortium., Matsushita K, van der Velde M, Astor BC, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. *Lancet.* 2010;375(9731):2073-2081.
- 29. Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. *Lancet Diabetes Endocrinol.* 2015;3(7):514-525.
- 30. Lee E, Oh HJ, Park JT, Han SH, Ryu DR, Kang SW, et al. The Incidence of Cardiovascular Events Is Comparable Between Normoalbuminuric and

1								
2								
3								
4								
5								
6	Albuminuric	Diabetic	Patients	With	Chronic	Kidney	Disease.	Medicine
7						5		
8								
0	(Baltimore). 2	016;95(15):e3175.					
10	(,					
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
25								
20								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								
די ۸۹								
40 40								
49 50								
50								
51								
52								
53								
54								
55								
56								
57				25				
58				20				
59								
60	For peer rev	view only - ł	nttp://bmjo	pen.bm	j.com/site/	about/gui	delines.xhtn	nl
		-				5		

		CKD	Non-CKD	D 1
		(N=11,431)	(N=36,429)	P value
Age (years)	Mean (SD)	71 (6)	62 (9)	< 0.001
Gender	Male	5,481 (48)	22,006 (60)	< 0.001
	Female	5,950 (52)	14,423 (40)	
eGFR (mL/min/1.73 m ²)	Mean (SD)	49 (9)	81 (13)	_
	15–29	558 (5)	-	
	30–44	2,655 (23)	-	
	45–59	8,218 (72)	-	
Smoking status	Non-smoker	5,426 (47)	16,511 (45)	< 0.001
	Ex-smoker	4,327 (38)	12,217 (34)	
	Current smoker	1,678 (15)	7,701 (21)	
BMI (kg/m ²)	18.5–24.9	1,459 (13)	4,097 (11)	< 0.001
	25.0–29.9	4,329 (38)	13,054 (36)	
	30.0–34.9	3,527 (31)	11,485 (32)	
	35.0–39.9	1,541 (13)	5,454 (15)	
	40.0–44.9	575 (5)	2,339 (6)	
Deprivation level (quintile)	1 (least deprived)	1,508 (13)	4,785 (13)	0.293
	2	2,331 (20)	7,300 (20)	
	3	2,374 (21)	7,640 (21)	
	4	2,637 (23)	8,172 (22)	
	5 (most deprived)	2,581 (23)	8,532 (23)	
Duration of diabetes (years)	1.0-4.9	5,208 (46)	22,527 (62)	< 0.001
	5.0-9.9	2,954 (26)	8,356 (23)	
	≥10.0	3,269 (29)	5,546 (15)	
History of coronary heart		4 215 (27)	7 8(0 (22)	<0.001
disease and/or stroke		4,215 (37)	7,860 (22)	<0.001
HbA1c (mmol/mol/%)	42-47 (6.0-6.4)*	1,307 (11)	3,513 (10)	< 0.001
	48-52 (6.5-6.9)	3,041 (27)	8,900 (24)	
	53-57 (7.0-7.4)	2,590 (23)	7,781 (21)	
	58-63 (7.5-7.9)	1,709 (15)	5,461 (15)	
	64-68 (8.0-8.4)	1,038 (9)	3,567 (10)	
	≥69 (≥8.5)	1,746 (15)	7,207 (20)	
Systolic blood pressure	120–129	1,777 (16)	7,203 (20)	< 0.001

Table 1. Baseline characteristics of the study cohort by CKD status

BMJ Open

2					
3					
4					
5	(mmHg)				
0 7		130–139	3,508 (31)	12,121 (33)	
8		140–149	3,387 (30)	10,242 (28)	
9		>150	2,759 (24)	6 863 (19)	
10	D' (1' 11 1	_100	2,,,,,,(21)	0,005 (17)	
11	Diastolic blood pressure	60–79	7,238 (63)	16,803 (46)	< 0.001
12	(mmHg)		, , ,	, , ,	
13		80–89	3,599 (31)	15,816 (43)	
15		>90	594 (5)	3.810 (10)	
16	Total cholesterol (mmol/L)	30-39	3 782 (33)	10,960 (30)	<0.001
17		5.0 5.7	5,782 (35)	10,900 (30)	-0.001
18		4.0-4.9	5,220 (46)	16,387 (45)	
19		≥5.0	2,429 (21)	9,082 (25)	
20	Medication	Antidiabetic drugs			< 0.001
22		Insulin (± non-insulin)	1,805 (16)	3,225 (9)	
23		Non-insulin only	7 722 (68)	26 753 (73)	
24			7,722 (00)	20,755 (75)	-0.001
25		Antihypertensive drugs			<0.001
20 27		Drugs on			
28		renin-angiotensin	8,472 (74)	21,535 (59)	
29		system (± others)			
30		Other antihypertensive			
31		druge only	1,610 (14)	4,751 (13)	
32		drugs only			
34		Statins	9,004 (79)	27,011 (74)	< 0.001
35		Antiplatelet drugs	6,440 (56)	16,375 (45)	< 0.001
36	Index year	2006	9,091 (80)	24,192 (66)	< 0.001
37 38		2007	1,008 (9)	3,741 (10)	
39		2008	545 (5)	2,880 (8)	
40		2009	432 (4)	2,677 (7)	
41		2010	355 (3)	2 939 (8)	
+∠ 43		2010		2,00 (0)	

BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate

* Participants with HbA1c <48 mmol/mol (<6.5%) were only included if they were prescribed antidiabetic drugs.

	CKD			Non-CKD		
$\mathbf{\wedge}$	Total	No CVD	CVD	Total	No CVD	CVD
	(N=11,431)	(N=7,216)	(N=4,215)	(N=36,429)	(N=28,569)	(N=7,860)
Individual risk factor controlled						
HbA1c <53 mmol/mol (<7.0%)	4,348 (38)	2,767 (38)	1,581 (38)	12,413 (34)	9,603 (34)	2,810 (36)
Blood pressure <140 & <90 mmHg	5,224 (46)	3,147 (44)	2,077 (49)	18,655 (51)	14,438 (51)	4,217 (54)
Total cholesterol <5 mmol/L	9,002 (79)	5,512 (76)	3,490 (83)	27,347 (75)	20,826 (73)	6,521 (83)
No smoking	9,753 (85)	6,193 (86)	3,560 (84)	28,728 (79)	22,565 (79)	6,163 (78)
Number of risk factors controlled						
0	138 (1)	87 (1)	51 (1)	806 (2)	678 (2)	128 (2)
1	1,427 (12)	971 (13)	456 (11)	5,372 (15)	4,421 (15)	951 (12)
2	4,162 (36)	2,693 (37)	1,469 (35)	13,288 (36)	10,602 (37)	2,686 (34)
3	4,240 (37)	2,598 (36)	1,642 (39)	12,657 (35)	9,665 (34)	2,992 (38)
4	1,464 (13)	867 (12)	597 (14)	4,306 (12)	3,203 (11)	1,103 (14)
CKD, chronic kidney disease; CVD, (a h	nistory of) cardi	ovascular diseas	ses	~//		

Table 2. Risk factors controlled according to chronic kidney disease and a history of cardiovascular diseases

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure legends

Figure 1. Relative hazards of the number of risk factors controlled for mortality and cardiovascular events in (a) participants with chronic kidney disease (CKD) and (b) participants with non-CKD. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease and stroke were adjusted for age, gender, CKD stage (for CKD cohort) body mass index, deprivation level, duration of diabetes, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

Figure 2. Relative hazards of presence of chronic kidney disease for mortality and cardiovascular events compared with non-CKD as reference. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease and stroke were adjusted for age, gender, body mass index, deprivation level, duration of diabetes, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	

(a) CKD							
Number of risk factors controlled	N	Number of events	Observation (1,000 py)	Rate (per 1,000 py)		Adjusted HR/SHR (95% CI)	P value
All-cause mortality							
4	1,464	388	8.1	48.1		0.59 (0.52 to 0.67)	< 0.001
3	4,240	1,301	23.2	56.0	+	0.68 (0.62 to 0.75)	< 0.001
2	4,162	1,393	22.6	61.5	-	0.76 (0.69 to 0.84)	< 0.001
0+1	1,565	598	8.2	72.5	•	Reference	
Cardiovascular mortality							
4	1,464	236	8.1	29.3		0.58 (0.49 to 0.69)	< 0.001
3	4,240	821	23.2	35.3	-	0.69 (0.61 to 0.78)	< 0.001
2	4,162	893	22.6	39.4		0.78 (0.69 to 0.89)	< 0.001
0+1	1,565	372	8.2	45.1	•	Reference	
Coronary heart disease							
4	867	143	4.5	32.0		0.73 (0.59 to 0.91)	0.004
3	2,598	510	13.3	38.4		0.85 (0.72 to 0.99)	0.037
2	2,693	558	13.4	41.6		0.88 (0.75 to 1.03)	0.106
0+1	1,058	232	5.1	45.5		Reference	
Stroke							
4	867	51	4.7	10.9		0.61 (0.43 to 0.86)	0.005
3	2.598	173	14.0	12.3		0.70 (0.54 to 0.89)	0.005
2	2,693	186	14.3	13.0		0.71 (0.55 to 0.90)	0.006
0+1	1,058	102	5.4	18.9		Reference	
					0.25 0.5 0.75 1 1.25		

Adjusted HR/SHR

Figure 1a

284x173mm (96 x 96 DPI)

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

(b) Non-CKD							
Number of risk factors controlled	N	Number of events	Observation (1,000 py)	Rate (per 1,000 py)		Adjusted HR/SHR (95% Cl)	P value
All-cause mortality							
4	4,306	515	23.3	22.1	-	0.61 (0.54 to 0.68)	< 0.001
3	12,657	1,670	69.7	23.9		0.68 (0.62 to 0.73)	< 0.001
2	13,288	1,928	73.4	26.3	-	0.76 (0.70 to 0.83)	< 0.001
0+1	6,178	935	33.3	28.1	•	Reference	
Cardiovascular mortality							
4	4,306	266	23.3	11.4		0.54 (0.46 to 0.62)	< 0.001
3	12,657	912	69.	13.1	-	0.62 (0.56 to 0.69)	< 0.001
2	13,288	1,015	73.4	13.8		0.67 (0.60 to 0.75)	< 0.001
0+1	6,178	545	33.3	16.4	•	Reference	
Coronary heart disease							
4	3,203	305	16.6	18.4	-	0.54 (0.47 to 0.62)	< 0.001
3	9,665	1,130	50.4	22.4	-	0.65 (0.59 to 0.71)	< 0.001
2	10.602	1.343	54.8	24.5	-	0.70 (0.64 to 0.77)	< 0.001
0+1	5,099	808	25.4	31.8	1 - 1	Reference	
Stroke							
4	3.203	63	17.2	3.7		0.37 (0.28 to 0.49)	< 0.001
3	9,665	325	52.5	6.2		0.63 (0.53 to 0.74)	< 0.001
2	10,602	424	57.2	7.4		0.74 (0.63 to 0.87)	< 0.001
0+1	5.099	234	26.8	8.7		Reference	
					0.25 0.5 0.75 1 1.25		

Adjusted HR/SHR

Figure 1b

287x172mm (96 x 96 DPI)

	BMJ Open		
Number of risk factors controlled		Adjusted HR/SHR (95% Cl)	P value
All-cause mortality			
4		1.18 (1.03 to 1.36)	0.021
3		1.24 (1.15 to 1.35	< 0.001
0+1	-	1.32 (1.18 to 1.48)	< 0.001
Cardiovascular mortality			
4		1.28 (1.05 to 1.55)	0.014
3		1.31 (1.18 to 1.45)	<0.001
2		1.44 (1.31 to 1.59)	< 0.001
0+1		1.37 (1.18 to 1.60)	< 0.001
Coronary heart disease			2.2.10
4	_	1.25 (1.00 to 1.56)	0.049
3		1.19 (1.00 to 1.34)	<0.004
0+1		1.08 (0.91 to 1.27)	0.375
Stroke			
4	_	1.64 (1.07 to 2.52)	0.022
3		1.05 (0.85 to 1.28)	0.669
2		1.04 (0.86 to 1.26)	0.706
0+1		1.11 (0.85 to 1.45)	0.433
	0.5 1 1.5 2		
	Adjusted HR/SHR		
	Figure 2		
	175x173mm (96 x 96 DP	I)	

BMJ Open

SUPPLEMENTARY MATERIAL

Figure S1. Study cohort selection

Study cohort for mortality evaluation (Overall N=47,860; CKD N=11,431; non-CKD N=36,429)

Study cohort for CVD evaluation (Overall N=35,785; CKD N=7,216; non-CKD N=28,569)

BMI, body mass index; CKD, chronic kidney disease; CVD, Cardiovascular diseases; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; RRT, renal replacement therapy
BMJ Open

2
2
2
4
5
6
7
/
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
25
25
26
27
28
29
20
50
31
32
33
34
3-T 2E
35
36
37
38
30
22
40
41
42
43
44
45
46
47

Table S1. Breakdown of risk factors controlled according to chronic kidney disease and a history of cardiovascular diseases

Number of	HbA1c	Dlood program	Total	No	CKD			Non-CKD		
risk factors	<53 mmol/mol		cholesterol	INO	Overall	No CVD	CVD	Overall	No CVD	CVD
controlled	(<7.0%)	<140/90 mmHg	<5 mmol/L	smoking	(N=11,431)	(N=7,216)	(N=4,215)	(N=36,429)	(N=28,569)	(N=7,860)
0	_		_	_	138 (1)	87 (1)	51 (1)	806 (2)	678 (2)	128 (2)
1	Y	- O	-	_	69 (0.6)	46 (0.6)	23 (0.6)	312 (1)	260 (0.9)	52 (0.7)
	_	Y	-	_	89 (0.8)	64 (0.9)	25 (0.6)	759 (2)	624 (2)	135 (2)
	_	_	Y	_	438 (4)	264 (4)	174 (4)	1,742 (5)	1,350 (5)	392 (5)
	_	_		Y	831 (7)	597 (8)	234 (6)	2,559 (7)	2,187 (8)	372 (5)
2	Y	Y	_		62 (0.5)	43 (0.6)	19 (0.5)	304 (0.8)	268 (0.9)	36 (0.5)
	Y	_	Y	_	245 (2)	152 (2)	93 (2)	794 (2)	590 (2)	204 (3)
	Y	_	_	Y	407 (4)	289 (4)	118 (3)	1,070 (3)	911 (3)	159 (2)
	_	Y	Y	_	390 (3)	215 (3)	175 (4)	1,911 (5)	1,446 (5)	465 (6)
	_	Y	_	Y	531 (5)	379 (5)	152 (4)	2,205 (6)	1,910 (7)	295 (4)
	_	_	Y	Y	2,527 (22)	1,615 (22)	912 (22)	7,004 (19)	5,477 (19)	1,527 (19)
3	Y	Y	Y	_	247 (2)	152 (2)	95 (2)	1,073 (3)	788 (3)	285 (4)
	Y	Y	_	Y	302 (3)	199 (3)	103 (2)	1,067 (3)	905 (3)	162 (2)
	Y	_	Y	Y	1,552 (14)	1,019 (14)	533 (13)	3,487 (10)	2,678 (9)	809 (10)
	_	Y	Y	Y	2,139 (19)	1,228 (17)	911 (22)	7,030 (19)	5,294 (19)	1,736 (22)
4	Y	Y	Y	Y	1,464 (13)	867 (12)	597 (14)	4,306 (12)	3,203 (11)	1,103 (14)

Y, meeting the criterion; –, not meeting the criterion

CKD, chronic kidney disease; CVD, (a history of) cardiovascular diseases

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1,2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6,7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7,8,10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	6-9
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10,11
Study size	10	Explain how the study size was arrived at	6-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	8
		(d) If applicable, explain how loss to follow-up was addressed	10
		(e) Describe any sensitivity analyses	NA
Results			

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	12,Figure S1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	12,Figure S1
		(c) Consider use of a flow diagram	Figure S1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	12,Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Figure S1
		(c) Summarise follow-up time (eg, average and total amount)	Figure 1
Outcome data	15*	Report numbers of outcome events or summary measures over time	Figure 1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12-14
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	14-15
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	15-17
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16,17
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	18
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes and chronic kidney disease: a population-based cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019950.R1
Article Type:	Research
Date Submitted by the Author:	12-Jan-2018
Complete List of Authors:	Hamada, Shota; Institute for Health Economics and Policy, Research Department Gulliford, Martin; King's College London, UK,
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	General practice / Family practice
Keywords:	cardiovascular diseases, chronic kidney disease, mortality, type 2 diabetes

BMJ Open

Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes
and chronic kidney disease: a population-based cohort study
Shota Hamada ^{1,2} , Martin C Gulliford ^{1,3}
1 Department of Primary Care and Public Health Sciences, King's College London, London, UK
2 Research Department, Institute for Health Economics and Policy, Association for Health
Economics Research and Social Insurance and Welfare, Tokyo, Japan
3 National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas'
National Health Service Foundation Trust, London UK
Correspondence to: Shota Hamada
Research Department, Institute for Health Economics and Policy, Association for Health
Economics Research and Social Insurance and Welfare
No.11 Toyo-kaiji Bldg, 1-5-11, Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003 Japan
Tel: +81 3-3506-8529, Fax: +81 3-3506-8528, E-mail: <u>shota.hamada@ihep.jp</u>
1
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

OBJECTIVES: This study aimed to evaluate the effectiveness of multiple risk factor control (MRFC) at reducing mortality and cardiovascular events in diabetes and chronic kidney disease (CKD) in clinical practice.

DESIGN: Population-based cohort study.

SETTING: Primary care database in the UK, linked with inpatient and mortality data. **PARTICIPANTS:** Participants aged 40 to 79 years with type 2 diabetes and valid serum creatinine measurements, including 11,431 participants with CKD (eGFR 15–59 mL/min/1.73 m²) and 36,429 participants with non-CKD (eGFR \geq 60 mL/min/1.73 m²). **EXPOSURES:** MRFC consisted of four components: HbA1c <53 mmol/mol (<7.0%), blood pressure <140/90 mmHg, total cholesterol <5 mmol/L, and no smoking. The main exposure variable was the number of risk factors controlled at baseline.

OUTCOME MEASURES: All-cause and cardiovascular mortality in the overall participants. Cardiovascular events, including coronary heart disease and stroke, in participants limited to those without a history of cardiovascular diseases at baseline.

RESULTS: In participants with CKD, 37% or 13% met three or four MRFC criteria, respectively. Increasing numbers of risk factors controlled were associated with lower relative hazards for all outcomes studied compared with those meeting no or one

criterion. For participants with CKD meeting four criteria, the adjusted hazard ratio (HR) for all-cause mortality was 0.60 (95% confidence interval (CI) 0.53 to 0.69) and the adjusted subdistribution HR for cardiovascular mortality was 0.60 (0.50 to 0.70), considering a competing risk of non-cardiovascular death. Participants meeting four criteria also had lower relative hazards for coronary heart disease (adjusted subdistribution HR 0.73, 95% CI 0.59 to 0.91) and stroke (0.63, 0.45 to 0.89), considering death as a competing risk.

CONCLUSIONS: MRFC may lower the increased risks for mortality and cardiovascular events in people with diabetes and CKD. Further research is needed to evaluate appropriateness of MRFC according to individual participants' health status for improved management of cardiovascular risks in this population.

Strengths and limitations of this study

- This study included a large number of participants with type 2 diabetes and CKD sampled from a representative general population with about 6 years of follow-up, which enabled to determine the associations of cardiovascular risk factors with mortality and cardiovascular events.
- Linked data for hospital care and death registration with a primary care database

enhanced the validity of the study to evaluate mortality and cardiovascular events.

- We could not conclude that association represented causal relationships between MRFC and mortality and cardiovascular events in this non-randomised study.
- There is a possibility of confounding if healthier participants were managed more successfully and this resulted in being categorised as those with greater number of risk factors controlled.

Diabetes and chronic kidney disease (CKD) are growing health problems worldwide, contributing to increased mortality [1]. Diabetes and CKD also impose a substantial economic burden on society, with particularly high costs relating to cardiovascular complications and renal replacement therapy [2,3]. The prevalence of CKD in patients with diabetes is between 4.2% and 17.9% (CKD stages 3 to 5) in European countries [4]. The leading cause of death in people with type 2 diabetes or CKD is cardiovascular disease rather than renal complications [5,6]. Prevention of cardiovascular events is a key focus in the management of patients with these conditions.

Multifactorial interventions to reduce cardiovascular risks were shown to be effective at reducing mortality and cardiovascular events in patients with type 2 diabetes and persistent microalbuminuria in the Steno-2 randomised trial [7,8]. This study provided a high level of evidence, but included a relatively small number of participants with diabetes who were managed in specialist centres. Recently, the implementation and effectiveness of this approach have been evaluated in patients with diabetes in clinical practice settings [9-11]. Epidemiological studies have demonstrated additional risks of CKD on mortality and cardiovascular diseases in people with diabetes [12], but

treatment approaches in this population have not been well studied. No studies focused on multiple risk factor control (MRFC) in patients with both diabetes and CKD in a wide clinical practice setting. Generally, patients with kidney disease have been underrepresented in cardiovascular clinical trials [13]. This population may have an altered risk-benefit profile, and extrapolation of data based on patients with normal kidney function into patients with CKD may be unreliable [13]. We aimed to conduct a pragmatic evaluation of the effectiveness of MRFC on mortality and cardiovascular events in participants with type 2 diabetes and CKD in a population-based cohort study.

Methods

Data sources

This study employed a linked dataset derived from the UK Clinical Practice Research Datalink (CPRD), the UK National Health Service Hospital Episodes Statistics (HES) inpatient data, and the UK Office for National Statistics (ONS) mortality data. The CPRD contains anonymised electronic health records from general practices across the UK [14]. The CPRD collects data for diagnoses and clinical assessment, prescriptions and laboratory test results, such as HbA1c and serum creatinine. The HES inpatient data were comprised of inpatient records from all National Health Service hospitals in

elien

BMJ Open

England. Information on the date of death and the causes of death were available in the ONS mortality data file. Multiple causes of death can be recorded in the mortality data. Diagnoses and clinical evaluation in the CPRD were coded with the Read codes, a hierarchical coding system used in primary care in the UK, whereas those in the HES and ONS were coded with the International Classification of Diseases, tenth revision (ICD-10). Linked data are available for general practices in England only and participants were limited to those with linked data for the HES and ONS available. The study was approved by the CPRD Independent Scientific Advisory Committee (ISAC ê. ez Protocol 15 201R).

Study population

The scheme of the study cohort selection is presented in figure S1. We initially sampled participants who were diagnosed with type 2 diabetes from the CPRD [15]. Using the CPRD records, the date of the first valid serum creatinine value between 2006 and 2010 recorded more than one year after the first diagnosis of diabetes were defined as the index date. A similar approach was taken by Adamsson Eryd et al [16] to ensure that participants managed for diabetes had sufficient time available for recording of baseline values. To avoid misclassification of CKD status and stage, the index serum creatinine

values were validated by confirmation of subsequent values within 30% of the index values. We restricted the sample to participants aged 40 to 79 years at the index date with at least one year of follow-up data available (ie, participants who died in the first year of follow-up were excluded). Estimated glomerular filtration rate (eGFR) was calculated from a serum creatinine value, age, gender, and ethnicity, using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [17]. Missing ethnicity was assumed as 'non-black' in the present study. Participants diagnosed with end-stage renal disease, those who had received renal replacement therapy, or those with index eGFR <15 mL/min/1.73 m² were excluded. We also excluded participants with missing data for smoking status, body mass index (BMI), HbA1c, blood pressure, or total cholesterol, or those with extreme BMI (<18.5 or \geq 45 kg/m²) at baseline. Since it has been reported that low values of cardiovascular risk factors were not always associated with better outcomes in observational studies [15,18,19], possibly due to reverse causation [20,21], participants with low HbA1c (<42 mmol/mol or <6.0%), blood pressure (systolic <120 or diastolic <60 mmHg), and total cholesterol (<3 mmol/L) were further excluded. Participants were categorised according to index eGFR into participants with CKD (<60 mL/min/1.73 m²) and those with non-CKD (\geq 60 $mL/min/1.73 m^2$).

Multiple risk factor control

MRFC was defined in this study as consisting of four components: (1) HbA1c <53 mmol/mol (<7.0%), (2) blood pressure <140/90 mmHg (systolic <140 and diastolic <90 mmHg), (3) total cholesterol <5 mmol/L, and (4) no smoking (non- or ex-smokers). The means of HbA1c, blood pressure, and total cholesterol records within one year before the index date were evaluated. The number of the risk factors controlled from four criteria was treated as the exposure and included as a categorical variable in the analyses, with those meeting no or one criterion as a reference category.

4.64

Outcomes

Main outcomes of interest in this study included all-cause and cardiovascular mortality, fatal and non-fatal coronary heart disease (CHD) and stroke. The date of death and causes of death were determined using the ONS mortality data. Participants who died from cardiovascular causes were identified if people had any of the ICD-10 codes I00 to 199 as a cause of death. Similarly, participants who died from renal causes were identified by the ICD-10 codes N17 to N19. All of the CPRD, HES and ONS were used to ascertain fatal and non-fatal CHD and stroke. Read codes for CHD and stroke

reported previously [22,23] were updated for the present study. The ICD-10 codes for CHD and stroke were I20 to I25 and I60, I61, I63 and I64, respectively.

Analysis

Baseline characteristics of the study cohort were described according to CKD status. Time-to-event analyses were conducted to evaluate the associations of MRFC with mortality and cardiovascular events. To address the issue of reverse causation and to avoid misclassification of the outcomes from those which had existed at baseline, person-years for participants who experienced outcomes of interest in the first year of follow-up were excluded from analyses (figure S1). Cox proportional hazards models were used to evaluate the association of MRFC with all-cause mortality. Proportional hazards assumption was assessed by visual inspection of log-log plots, and no apparent violation was found. Competing risks regression with subdistribution hazard models were conducted for cardiovascular mortality and cardiovascular events, considering competing risks for non-cardiovascular and all-cause death, respectively [24]. Associations of MRFC with cardiovascular events were evaluated in participants without a known history of cardiovascular diseases at baseline (figure S1). Participants were followed from the index date until the earliest of the events of interest, the last date

BMJ Open

of CPRD records, or 31 March 2015 for all-cause mortality evaluation. In the competing risks regression analyses for cardiovascular mortality and cardiovascular events, participants who experienced the corresponding competing events prior to the event of interest were also censored.

Main analyses were conducted by CKD status, adjusting for a range of baseline covariates, including age (continuous), gender (male or female), CKD stage (3a, 3b, and 4; for CKD cohort), BMI (18.5-24.9, 25.0-29.9, 30.0-34.9, 35.0-39.9, and 40.0-44.9 kg/m^2), deprivation level (quintile; 1, least deprived, to 5, most deprived), duration of (1.0-4.9 5.0-9.9. and 10+ years), proteinuria status, diabetes including microalbuminuria (yes, no, and a missing category), a history of cardiovascular diseases, including CHD and stroke (for mortality evaluation), and prescribing during six months prior to the index date of antidiabetic drugs (none, insulin with and without other antidiabetic drugs, and non-insulin drugs only), antihypertensive drugs (none, drugs acting on renin-angiotensin system with and without other antihypertensive drugs, and other classes of antihypertensive drugs only, including β -blockers, calcium channel blockers, and thiazide diuretics), statins and antiplatelet drugs, and index year (2006 to 2010). In addition, the associations of CKD with the outcomes were evaluated

according to the number of risk factors controlled, adjusting for the potential confounding factors described above.

In this paper, the results for participants with CKD were focused on, with the results for those with non-CKD shown for comparative purposes. The associations of each component of MRFC with the outcomes were also evaluated to aid interpretation of the study results. All analyses were performed using Stata version 14 (Stata Corp., College Station TX). The 'forestplot' package in R was used to present the results [25].

Results

on Characteristics of the study population

Baseline characteristics of the study cohort are shown according to CKD status in table 1. Mean index eGFR was 49 mL/min/1.73 m² for participants with CKD and 81 mL/min/1.73 m² for those with non-CKD. Participants with CKD were older (71 vs 62 years), included more women (52% vs 40%), had a longer duration of diabetes, and were more likely to have a history of cardiovascular diseases (37% vs 22%). A higher frequency of proteinuria was recorded in participants with CKD (18% vs 12% among participants with records of proteinuria status). HbA1c and total cholesterol were

BMJ Open

slightly lower in participants with CKD. Although diastolic blood pressure was lower in participants with CKD, systolic blood pressure was higher despite more people under antihypertensive medications. Participants with CKD were prescribed insulin, drugs on renin-angiotensin systems, statins, and antiplatelet drugs more frequently.

Implementation of MRFC

The number of risk factors controlled from four components of MRFC are shown in table 2. More detailed results of which of the components were controlled are available in table S1. Higher rates of control for HbA1c, total cholesterol, and smoking status were observed in participants with CKD compared with those with non-CKD. However, blood pressure was less likely managed in participants with CKD (46% *vs* 51%). There were some differences in management status according to a history of cardiovascular diseases: in participants with CKD, higher rates of control of blood pressure (49% *vs* 44%) and total cholesterol (83% *vs* 76%) in participants with a history of cardiovascular diseases compared with those without. Participants meeting three or four criteria accounted for 37% or 13% in participants with CKD.

Effectiveness of MRFC

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Absolute risks for mortality and cardiovascular diseases and adjusted relative hazards of the number of risk factors controlled for the outcomes are shown in figure 1. Increasing numbers of risk factors controlled were associated with lower relative hazards for all outcomes studied relative to participants meeting no or one criterion. For participants with CKD meeting four MRFC criteria, the adjusted hazard ratio (HR) for all-cause mortality was 0.60 (95% CI 0.53 to 0.69), and adjusted subdistribution HR for cardiovascular mortality was 0.60 (0.50 to 0.70). Participants meeting four criteria also had lower relative risks for CHD (adjusted subdistribution HR 0.73, 95% CI 0.59 to 0.91) and stroke (0.63, 0.45 to 0.89) in participants with CKD. In participants with non-CKD, increasing numbers of risk factors controlled were also associated with lower risks for all-cause and cardiovascular mortality, CHD, and stroke. As shown in figure S2, the strengths of associations of each component of MRFC with mortality and cardiovascular diseases were different; for example, the greatest associations of no smoking with all-cause and cardiovascular mortality were observed in participants with and without CKD.

Comparisons between CKD and non-CKD

Unadjusted absolute risks for mortality and cardiovascular diseases were higher in

BMJ Open

participants with CKD by 1.4- to 2.9-fold compared with those with non-CKD at the same MRFC category (figure 1). More participants with CKD died from cardiovascular causes compared with those without (63% vs 54%, P<0.001). More participants with CKD died from renal causes (n=631 or 5% vs n=326 or 0.9%, P<0.001), but the proportions were much smaller than cardiovascular causes of death. Relative hazards of CKD for the outcomes are shown in figure 2. After adjustment with possible confounding factors, comorbid CKD remained to be associated with greater risks for all-cause mortality (adjusted HR, 1.16 to 1.30) and cardiovascular mortality (adjusted subdistribution HR, 1.25 to 1.41). In participants meeting two or more criteria, comorbid CKD was associated with a higher risk for CHD (1.18 to 1.25). The associations of comorbid CKD with stroke was observed in participants meeting four criteria only (1.64).

Discussion

In this population-based cohort study of participants with type 2 diabetes and CKD stages 3 to 4, MRFC was associated with lower relative risks for mortality (N>11,000) and cardiovascular diseases (N>7,000). We also confirmed that CKD was associated with increased risks for mortality and cardiovascular events. Higher absolute risks for

mortality and cardiovascular events and great relative risk reduction associated with MRFC suggest that the MRFC strategy may be one of the main approaches to potentially reducing the burden of diabetes and CKD.

This study evaluated the effectiveness of MRFC in patients with type 2 diabetes according to presence or absence of CKD in clinical practice. So far, the associations of MRFC with lower risks for mortality and cardiovascular events have been shown in people with diabetes, not focusing on CKD status. Participants with controlled three risk factors of HbA1c, blood pressure, and LDL cholesterol had 62% and 60% risk reduction for cardiovascular events and CHD, respectively, in patients with diabetes without known cardiovascular diseases [10]. The associations of uncontrolled HbA1c, blood pressure, LDL cholesterol, and smoking with mortality and cardiovascular events were individually evaluated in a large population-based study with >850,000 participants with diabetes [11]. The study cohort included 35.5% of participants with CKD in those with cardiovascular diseases and 21.8% in those without, and CKD was included in the analyses for adjustment. This study suggested that uncontrolled risk factors attributed to about 1 in 3 major cardiovascular events and fewer 1 in 10 deaths.

BMJ Open

The strength of this study was the inclusion of a large size of >11,000 participants with diabetes and CKD with an observation of >62,000 person-years. In addition to the large sample size and long-term follow-up, representativeness from general population and data quality are also advantages of the CPRD [14], which should remain even if linked data for HES and ONS are only available for England practices. Instead, linked data for hospital care and death registration substantially enhanced the validity of the study to evaluate mortality and cardiovascular events.

There are also some limitations in this study. First, despite our focus on the number of MRFC, the impacts of each component of MRFC on mortality and cardiovascular events were different. Different cut-off points for HbA1c, blood pressure, and total cholesterol may bring different results. Next, we could not conclude that associations represented causal relationships between MRFC and mortality and cardiovascular events in this non-randomised study. There is a possibility of confounding if healthier participants were managed more successfully and this resulted in being categorised as those with greater number of risk factors controlled. For example, stringent management of HbA1c might not be targeted for vulnerable participants due to concerns for greater risk of hypoglycaemia, a form of confounding by contra-indication. We

cannot exclude the possibility of residual confounding despite adjustment with a range of covariates in the analyses, including physical activity and alcohol intake [26,27]. Then, measurement and assay methods for HbA1c, blood pressure, cholesterol and serum creatinine might not have been standardised among general practices or laboratories. As well as missing data on ethnicity and fluctuations in serum creatinine values, these methodological limitations might influence the determination of CKD status or staging. Finally, although we used one of the largest primary care electronic health records database, it seemed to be insufficient to separately evaluate MRFC for participants with different stages of CKD. Further research is needed to focus on patients with more advanced CKD who may have altered risk-benefit profile compared with patients with less impaired renal function.

In summary, based on the population-based cohort study of routine clinical practices, MRFC may lower the increased risks for mortality and cardiovascular events in people with diabetes and CKD. Further research is needed to evaluate appropriateness of MRFC according to individual participants' health status for improved management of cardiovascular risks in this population.

Acknowledgments

SH was supported by the Uehara Memorial Foundation Postdoctoral Fellowship, Tokyo, Japan. MCG was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London. This study is based on data from the CPRD obtained under license from the UK Medicines and Healthcare products Regulatory Agency. However, the interpretation and conclusions contained in this report are those of the authors alone and not necessarily those of the National Health Service, the NIHR or the Department of Health.

Contributors: Both authors contributed to conception and study design of the study, data acquisition, statistical analysis, and interpretation. SH drafted the manuscript and MCG revised it critically for important intellectual content.

Funding: This research received no specific grant from any funding agency.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data are available.

References

- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 2015;385(9963):117-171.
- Seuring T, Archangelidi O, Suhrcke M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. *Pharmacoeconomics*. 2015;33(8):811-831.
- Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial Transplant.* 2012;27 Suppl 3:iii73-80.
- Brück K, Stel VS, Gambaro G, Hallan S, Völzke H, Ärnlöv J, et al. CKD Prevalence Varies across the European General Population. J Am Soc Nephrol. 2016;27(7):2135-2147.
- Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577-1589.
- 6. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. *N Engl J Med.*

1 2	
3	
4	
6	2004;351(13):1296-1305.
7	
8 9 7.	Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial
10	
11	intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J
12	
14	Mod 2003-348(5)-383-393
15	Mea. 2005,5+0(5).505-575.
16 17 0	
17 8. 18	Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial
19	
20	intervention on mortality in type 2 diabetes. <i>N Engl J Med.</i> 2008;358(6):580-591.
21 22	
23 9.	Wong ND, Patao C, Wong K, Malik S, Franklin SS, Iloeje U. Trends in control of
24	
25 26	cardiovascular risk factors among US adults with type 2 diabetes from 1999 to
27	
28	2010: comparison by prevalent cardiovascular disease status <i>Diab Vasc Dis Res.</i>
29	
31	2013:10(6):505-513
32	2015,10(0).505-515.
33	
34 IO. 35	wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, et al. Cardiovascular
36	
37	Risk Factor Targets and Cardiovascular Disease Event Risk in Diabetes: A
38 39	
40	Pooling Project of the Atherosclerosis Risk in Communities Study, Multi-Ethnic
41	
42 43	Study of Atherosclerosis, and Jackson Heart Study. Diabetes Care.
44	
45	2016:39(5):668-676.
46 47	
48 11	Vazquez-Benitez G. Desai IR, Xu S. Goodrich GK. Schroeder FB. Nichols GA, et
49	vazquez-bennez 6, besai 30, 70 5, 6600men 60, 5embeaer Eb, Menois 67, et
50	al Dravantable major condicuscoular avanta according to with uncertralled alugeses
52	ai. Freventable major cardiovascular events associated with uncontrolled glucose,
53	
54	blood pressure, and lipids and active smoking in adults with diabetes with and
55 56	
57	21
58	
су 60	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

without cardiovascular disease: a contemporary analysis. *Diabetes Care*. 2015;38(5):905-912.

- 12. Cea Soriano L, Johansson S, Stefansson B, Rodríguez LA. Cardiovascular events and all-cause mortality in a cohort of 57,946 patients with type 2 diabetes: associations with renal function and cardiovascular risk factors. *Cardiovasc Diabetol.* 2015;14:38.
- Konstantinidis I, Nadkarni GN, Yacoub R, Saha A, Simoes P, Parikh CR, et al. Representation of Patients With Kidney Disease in Trials of Cardiovascular Interventions: An Updated Systematic Review. *JAMA Intern Med.* 2016;176(1):121-124.
- Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al.
 Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827-836.
- Nicholas J, Charlton J, Dregan A, Gulliford MC. Recent HbA1c values and mortality risk in type 2 diabetes. population-based case-control study. *PLoS One*. 2013;8(7):e68008.
- Adamsson Eryd S, Gudbjörnsdottir S, Manhem K, Rosengren A, Svensson AM,
 Miftaraj M, et al. Blood pressure and complications in individuals with type 2

BMJ Open

	diabetes and no previous cardiovascular disease: national population based cohort
	study. BMJ. 2016;354:i4070.
17.	Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al.
	A new equation to estimate glomerular filtration rate. Ann Intern Med.
	2009;150(9):604-612.
18.	Kontopantelis E, Springate DA, Reeves D, Ashcroft DM, Rutter MK, Buchan I, et
	al. Glucose, blood pressure and cholesterol levels and their relationships to
	clinical outcomes in type 2 diabetes: a retrospective cohort study. Diabetologia.
	2015;58(3):505-518.
19.	Afghahi H, Svensson MK, Pirouzifard M, Eliasson B, Svensson AM. Blood
	pressure level and risk of major cardiovascular events and all-cause of mortality in
	patients with type 2 diabetes and renal impairment: an observational study from
	the Swedish National Diabetes Register. Diabetologia. 2015;58(6):1203-1211.
20.	Herrington W, Staplin N, Judge PK, Mafham M, Emberson J, Haynes R, et al.
	Evidence for Reverse Causality in the Association Between Blood Pressure and
	Cardiovascular Risk in Patients With Chronic Kidney Disease. Hypertension.
	2017;69(2):314-322.
21.	Weiner DE, Sarnak MJ. Managing dyslipidemia in chronic kidney disease. J Gen

Intern Med. 2004;19(10):1045-1052.

- Gulliford MC, Charlton J, Ashworth M, Rudd AG, Toschke AM; eCRT Research Team. Selection of medical diagnostic codes for analysis of electronic patient records. Application to stroke in a primary care database. *PLoS One.* 2009;4(9):e7168.
- Bhattarai N, Charlton J, Rudisill C, Gulliford MC. Coding, recording and incidence of different forms of coronary heart disease in primary care. *PLoS One*. 2012;7(1):e29776.
- 24. Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the Presence of Competing Risks. *Circulation*. 2016;133(6):601-609.
- 25. Gordon M, Lumley T. Advanced Forest Plot Using 'grid' Graphics. Vienna: The Comprehensive R Archive Network, 2016.
- 26. Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, et al. Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. *Eur Heart J.* 2008;29(7):932-940.
- 27. O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study. *Lancet.* 2010;376(9735):112-123.

		CKD	Non-CKD	P value
		(N=11,431)	(N=36,429)	
Age (years)	Mean (SD)	71 (6)	62 (9)	< 0.001
Gender	Male	5,481 (48)	22,006 (60)	< 0.001
	Female	5,950 (52)	14,423 (40)	
eGFR (mL/min/1.73 m ²)	Mean (SD)	49 (9)	81 (13)	-
	15–29	558 (5)	-	
	30–44	2,655 (23)	-	
	45–59	8,218 (72)	-	
Smoking status	Non-smoker	5,426 (47)	16,511 (45)	< 0.001
	Ex-smoker	4,327 (38)	12,217 (34)	
	Current smoker	1,678 (15)	7,701 (21)	
BMI (kg/m ²)	18.5–24.9	1,459 (13)	4,097 (11)	< 0.001
	25.0–29.9	4,329 (38)	13,054 (36)	
	30.0–34.9	3,527 (31)	11,485 (32)	
	35.0–39.9	1,541 (13)	5,454 (15)	
	40.0–44.9	575 (5)	2,339 (6)	
Deprivation level (quintile)	1 (least deprived)	1,508 (13)	4,785 (13)	0.293
	2	2,331 (20)	7,300 (20)	
	3	2,374 (21)	7,640 (21)	
	4	2,637 (23)	8,172 (22)	
	5 (most deprived)	2,581 (23)	8,532 (23)	
Duration of diabetes (years)	1.0–4.9	5,208 (46)	22,527 (62)	< 0.001
	5.0-9.9	2,954 (26)	8,356 (23)	
	≥10.0	3,269 (29)	5,546 (15)	
Proteinuria	Yes	1,714 (15)	3,279 (9)	< 0.001
	No	7,666 (67)	24,110 (66)	
	Missing	2,051 (18)	9,040 (25)	
History of coronary heart				
disease and/or stroke		4,215 (37)	7,860 (22)	<0.001
HbA1c (mmol/mol/%)	42-47 (6.0-6.4)*	1,307 (11)	3,513 (10)	< 0.001
	48-52 (6.5-6.9)	3,041 (27)	8,900 (24)	
	53-57 (7.0-7.4)	2,590 (23)	7,781 (21)	
	58-63 (7.5-7.9)	1,709 (15)	5,461 (15)	

Table 1. Baseline characteristics of the study cohort by CKD status

BMJ Open

		1 0 2 0 (0)	2 5 (5 (10)	
	64–68 (8.0–8.4)	1,038 (9)	3,567 (10)	
	≥69 (≥8.5)	1,746 (15)	7,207 (20)	
Systolic blood pressure	120, 120	1 777 (1()	7 202 (20)	<0.001
(mmHg)	120-129	1,///(16)	7,203 (20)	<0.001
	130-139	3.508 (31)	12.121 (33)	
	140 140	2,287 (20)	10,242 (28)	
	140-149	3,387 (30)	10,242 (28)	
	≥150	2,759 (24)	6,863 (19)	
Diastolic blood pressure	60-79	7 238 (63)	16 803 (46)	<0.001
(mmHg)	00-79	7,238 (03)	10,805 (40)	<0.001
	80–89	3,599 (31)	15,816 (43)	
	>90	594 (5)	3 810 (10)	
Total cholostoral (mmal/L)	2020	2 782 (22)	10.060 (20)	<0.001
Total cholesterol (minol/L)	5.0-5.9	5,782 (55)	10,900 (30)	<0.001
	4.0-4.9	5,220 (46)	16,387 (45)	
	≥5.0	2,429 (21)	9,082 (25)	
Medication	Antidiabetic drugs			< 0.001
	Insulin (± non-insulin)	1,805 (16)	3,225 (9)	
	Non-insulin only	7 722 (68)	26 753 (73)	
	Antihymortongive druge	1,122 (00)	20,705 (75)	<0.001
	Antihypertensive drugs			<0.001
	Drugs on			
	renin-angiotensin	8,472 (74)	21,535 (59)	
	system (± others)			
	Other antihypertensive			
	drugs only	1,610 (14)	4,751 (13)	
	Stating	0.004 (70)	27.011 (74)	<0.001
		9,004 (79)	27,011 (74)	-0.001
	Antiplatelet drugs	6,440 (56)	16,375 (45)	< 0.001
Index year	2006	9,091 (80)	24,192 (66)	< 0.001
	2007	1,008 (9)	3,741 (10)	
	2008	545 (5)	2,880 (8)	
	2009	432 (4)	2.677 (7)	
	2010	255 (2)	-, 0, 0, 0, 0	
	2010	555 (5)	2,939 (0)	

BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate

Frequencies (percentages) are shown otherwise specified.

* Participants with HbA1c <48 mmol/mol (<6.5%) were only included if they were prescribed antidiabetic drugs.

	CKD			Non-CKD		
~	Total	No CVD	CVD	Total	No CVD	CVD
	(N=11,431)	(N=7,216)	(N=4,215)	(N=36,429)	(N=28,569)	(N=7,860)
Individual risk factor controlled						
HbA1c <53 mmol/mol (<7.0%)	4,348 (38)	2,767 (38)	1,581 (38)	12,413 (34)	9,603 (34)	2,810 (36)
Blood pressure <140 & <90 mmHg	5,224 (46)	3,147 (44)	2,077 (49)	18,655 (51)	14,438 (51)	4,217 (54)
Total cholesterol <5 mmol/L	9,002 (79)	5,512 (76)	3,490 (83)	27,347 (75)	20,826 (73)	6,521 (83)
No smoking	9,753 (85)	6,193 (86)	3,560 (84)	28,728 (79)	22,565 (79)	6,163 (78)
Number of risk factors controlled		· /_				
0	138 (1)	87 (1)	51 (1)	806 (2)	678 (2)	128 (2)
1	1,427 (12)	971 (13)	456 (11)	5,372 (15)	4,421 (15)	951 (12)
2	4,162 (36)	2,693 (37)	1,469 (35)	13,288 (36)	10,602 (37)	2,686 (34)
3	4,240 (37)	2,598 (36)	1,642 (39)	12,657 (35)	9,665 (34)	2,992 (38)
4	1,464 (13)	867 (12)	597 (14)	4,306 (12)	3,203 (11)	1,103 (14)
CKD, chronic kidney disease; CVD, (a h	nistory of) cardi	ovascular disea	ses	5	>	
Frequencies (percentages) are shown.						

Table 2. Risk factors controlled according to chronic kidney disease and a history of cardiovascular diseases

Figure legends

Figure 1. Relative hazards of the number of risk factors controlled for mortality and cardiovascular events in (a) participants with chronic kidney disease (CKD) and (b) participants with non-CKD. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease, and stroke were adjusted for age, gender, CKD stage (for CKD cohort), body mass index, deprivation level, duration of diabetes, proteinuria status, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

Figure 2. Relative hazards of presence of chronic kidney disease for mortality and cardiovascular events compared with non-CKD as reference. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease, and stroke were adjusted for age, gender, body mass index, deprivation level, duration of diabetes, proteinuria status, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

2	
3	
4	
5	
6	(a) CKD
7 8	Number of risk factors controlled
9	[All participants]
10	All-cause mortality
11	4 3
12	2 0+1
13	Cardiovascular morta
14	4
15	2
16	0.1
17	
18	Coronary heart diseas 4
19	3 2
20	0+1
21	Stroke
22	3
23	2 0+1
24	
25	(b) Non-CKD
26	Number of risk factors
27	controlled
28	[All participants]
29	All-cause mortality
30	4 3
31	2 0+1
32	Cardiovascular mortali
33	4
34	2
35	0+1
36	[Participants without
37	Coronary heart diseas 4
38	3
30	0+1
40	Stroke
40 //1	4 3
41 12	2 0+1
42	
45	
44 45	
т <u>ј</u> Лб	
40	
4/ 40	
4ð	
49	
50	

Number of risk factors controlled	N	Number of events	Observation (1,000 py)	Rate (per 1,000 py)		Adjusted HR/SHR (95% CI)	P value
[All participants]							
All-cause mortality							
4	1,464	388	8.1	48.1	-	0.60 (0.53 to 0.69)	< 0.001
3	4,240	1,301	23.2	56.0	-	0.70 (0.63 to 0.77)	< 0.001
2	4,162	1,393	22.6	61.5	÷.	0.77 (0.70 to 0.85)	<0.001
0+1	1,505	590	0.2	12.5	Ī	Reference	
Cardiovascular mortality							
4	1,464	236	8.1	29.3		0.60 (0.50 to 0.70)	< 0.001
3	4,240	821	23.2	35.3		0.71 (0.62 to 0.80) 0.79 (0.70 to 0.90)	<0.001
0+1	1,565	372	8.2	45.1		Reference	
Participants without previous CHD/stroke 1							
[I al acipanta wallour previous cribistione]							
Coronary heart disease							
4	851	143	4.5	32.0		0.73 (0.59 to 0.91)	0.004
3	2,537	510	13.3	38.4		0.86 (0.73 to 1.00)	0.053
0+1	1,025	232	5.1	45.5		Reference	0.114
Stroke							
4	865	51	4.7	10.9		0.63 (0.45 to 0.89)	0.009
3	2,560	175	14.0	13.0		0.72 (0.56 to 0.92)	0.010
0+1	1.044	102	5.4	18.9		Reference	0.010
					0.25 0.5 0.75 1 1.25		
					0.25 0.5 0.75 1 1.25		
(b) Non-CKD					Adjusted HR/SHR		
Number of sight forthere		Number of	Observation	Data		Adjusted UD (SUD	
controlled	N	events	(1.000 pv)	(per 1.000 pv)		(95% CI)	P value
			(.,	(per 1,000 p))		(00.00 0.0)	
[All participants]							
All-cause mortality							
4	4,306	515	23.3	22.1	-	0.62 (0.55 to 0.69)	< 0.001
3	12,657	1,670	69.7	23.9	•	0.69 (0.63 to 0.74)	< 0.001
2	13,288	1,928	73.4	26.3		0.77 (0.71 to 0.83)	<0.001
011	0,170	500	55.5	20.1	1	Reference	
Cardiovascular mortality							
4	4,306	266	23.3	11.4	+	0.55 (0.47 to 0.64)	< 0.001
3	12,657	912	69.7	13.1		0.63 (0.57 to 0.70)	<0.001
2	13,288	1,015	73.4	13.8	•	0.68 (0.61 to 0.75)	<0.001
0+1	6,178	545	33.3	10.4		Reference	
[Participants without previous CHD/stroke]							
Coronary heart disease							
4	3,164	305	16.6	18.4		0.54 (0.47 to 0.62)	< 0.001
2	9,520	1,130	54.8	24.5		0.70 (0.64 to 0.77)	<0.001
0+1	5,010	808	25.4	31.8		Reference	0.001
Stroke							
4	3,190	63	17.2	3.7	- <u>-</u>	0.37 (0.28 to 0.50)	< 0.001
3	9,628	325	52.5	6.2		0.03 (0.53 to 0.75)	<0.001
4	10 565	424	57.2	7.4		0.75 (0.63 to 0.99)	<0.001
0+1	10,565 5,079	424 234	57.2 26.8	7.4	÷.	0.75 (0.63 to 0.88) Reference	<0.001

Adjusted HR/SHR

figure1

105x156mm (300 x 300 DPI)

Number of risk factors Adjusted HR/SHR controlled (95% CI) P value 0 [All-cause mortality (95% CI) P value 11 4 110 (101 to 134) 0.040 12 122 (1131 to 133) 0.040 15 3 122 (1131 to 133) 0.001 16 2 122 (1131 to 133) 0.001 17 0-1 - 130 (1161 to 145) -0.001 18 - 128 (1151 to 150) -0.001 19 Carcilovascular mortality - - 134 (1151 to 150) -0.001 123 2 - 128 (1151 to 150) -0.001 124 0-1 - 128 (1151 to 150) -0.001 125 Coronary heart disease - 128 (100 to 150) 0.477 133 0-1 - 128 (100 to 120) 0.477 14 128 (100 to 120) 0.477 - 108 (030 to 120) 0.781 133 0-1 - 108 (030 to 120) 0.781 0.0024 0.204 0.204 0.204 0.204	Page 31 of 38	BMJ Open							
S Adjusted HR/SHR 8 controlled (65% Cl) P value 9 [All participants]	1 2 3 4								
67 Number of risk factors Adjusted HR/sHR (85% CI) P value 9 [All participants]	5								
7 Number of risk factors Adjusted HR/SHR 8 controlled (95%, C) P value 9 Controlled (95%, C) P value 10 [All participants] 11 All-cause mortality - 1.16 (1.01 to 1.34) 0.040 12 All-cause mortality - 1.22 (1.13 to 1.33) -0.001 16 2 1.22 (1.13 to 1.33) -0.001 17 0+1 - 1.30 (1.16 to 1.45) -0.001 18 - 1.25 (1.03 to 1.51) 0.028 21 4 - 1.28 (1.15 to 1.50) -0.001 22 3 - 1.28 (1.05 to 1.50) -0.001 23 2 - 1.41 (1.28 to 1.55) -0.001 24 0+1 - 1.34 (1.15 to 1.50) -0.001 25 - - 1.28 (1.00 to 1.56) 0.049 3 3 - 1.28 (1.00 to 1.56) 0.049 3 3 - 1.28 (1.00 to 1.56) 0.049 3 3 -	6								
8 controlled (95% Cl) P value 10 [All participants] 1 1 10 (10 to 134) 0.040 11 4 - 1.16 (10 to 154) 0.040 15 3 - 1.22 (1.13 to 133) -0.001 16 2 - 1.30 (1.16 to 1.45) -0.001 17 0+1 - 1.30 (1.16 to 1.45) -0.001 18 - 1.22 (1.13 to 1.51) 0.026 21 3 - 1.22 (1.13 to 1.51) 0.020 22 3 - 1.25 (1.03 to 1.51) 0.020 23 2 - 1.34 (1.15 to 1.56) -0.001 24 0+1 - 1.34 (1.15 to 1.56) -0.001 25 2 - 1.34 (1.15 to 1.56) -0.001 26 [Participants without previous CHD/stroke] - 1.25 (1.00 to 1.55) 0.049 31 2 - 1.23 (1.10 to 1.37) -0.001 27 6 - 1.26 (1.05 to 1.53) 0.005 32 2 - 1.23 (1.10 to	7	Number of risk factors		Adjusted HR/SHR					
9 [All participants] 11 All-cause mortality 11 4 12 1.12 (1.13 to 1.33) -0.001 13 - 1.22 (1.13 to 1.33) -0.001 16 2 - 1.27 (1.18 to 1.37) -0.001 17 0+1 - 1.30 (1.16 to 1.45) -0.001 18 - 1.22 (1.03 to 1.51) 0.028 19 Cardiovascular mortality - - 1.26 (1.03 to 1.51) 0.028 20 4 - 1.26 (1.03 to 1.51) 0.028 21 3 - 1.24 (1.15 to 1.42) -0.001 22 2 - 1.41 (1.28 to 1.55) -0.001 23 2 - 1.34 (1.15 to 1.56) -0.001 24 0+1 - 1.34 (1.15 to 1.56) -0.001 25 Coronary heart disease - 1.25 (1.00 to 1.56) 0.049 3 0+1 - 1.03 (0.80 to 1.20) 0.784 3 0+1 - 1.03 (0.80 to 1.20) 0.784 10.30 (0.81 to 1.20)	8	controlled		(95% CI)	P value				
10 [All participants] 12 All-cause mortality 13 4 14 - 15 3 16 2 17 0+1 18 - 19 Cardiovascular mortality 10 4 12 13 0(1.16 to 1.45) 18 - 19 Cardiovascular mortality 20 4 12 128 (1.15 to 1.51) 0.026 21 3 - 128 (1.15 to 1.51) 0.026 22 2 - 1.41 (1.28 to 1.55) -0.001 23 2 - 1.34 (1.15 to 1.56) -0.001 24 0+1 - 1.34 (1.15 to 1.56) -0.001 25 125 (1.00 to 1.56) 0.049 - 1.25 (1.00 to 1.56) 0.049 25 122 (1.00 to 1.56) 0.049 - 1.16 (1.05 (1.29) - 0.041 26 [Participants without previous CHD/stroke] - 1.08 (0.80 to 1.29) - 0.041 27 3 <td>9</td> <td></td> <td></td> <td></td> <td></td>	9								
12 All-cause mortality 13 4 14 - 15 3 16 2 17 0:1 18 - 19 - 20 4 21 3 22 2 3 - 23 2 24 - 25 - 26 - 27 3 28 - 29 - 20 - 3 0:1 29 - 4 - 29 - 4 - 20 - 21 3 22 - 23 2 24 0:1 25 - 26 [Participants without previous CHD/stroke] 27 - 28 - 29 - 3 0:1 3	10	[All participants]							
12 All-cause mortality 13 4 - 1.16 (1.01 to 1.34) 0.040 14 4 - 1.22 (1.13 to 1.33) -0.041 15 3 - 1.27 (1.18 to 1.37) -0.011 16 2 - 1.27 (1.18 to 1.37) -0.001 17 0+1 - 1.30 (1.16 to 1.45) -0.001 18 - 1.25 (1.03 to 1.51) 0.026 20 4 - 1.26 (1.15 to 1.56) -0.001 21 3 2 - 1.34 (1.15 to 1.56) -0.001 22 2 - 1.34 (1.15 to 1.56) -0.001 23 2 - 1.34 (1.15 to 1.56) 0.049 24 0+1 - 1.25 (1.00 to 1.56) 0.049 25 2 - 1.23 (1.10 to 1.37) -0.001 26 Coronary heart disease - 1.25 (1.00 to 1.56) 0.049 31 3 0+1 1.06 (0.09 to 1.25) 0.047 36 4 - 1.03 (0.84 to 1.26) 0.055	11								
14 4 - 1.16 (101 lot 1.3.4) 0.040 15 3 1.22 (1.13 lot 1.3.3) -0.001 16 2 1.27 (1.18 lot 1.3.5) -0.001 17 0-1 - 1.30 (1.16 lot 1.4.5) -0.001 18 - 1.25 (1.03 lot 1.51) 0.026 20 4 - 1.25 (1.03 lot 1.51) 0.026 21 3 - 1.26 (1.03 lot 1.51) 0.026 22 3 - 1.25 (1.03 lot 1.51) 0.026 23 2 - 1.24 (1.28 lot 5.5) -0.001 24 0+1 - 1.34 (1.15 lot 1.56) -0.001 25 1.34 (1.15 lot 1.56) -0.001 - - 1.34 (1.15 lot 1.56) -0.001 26 [Participants without previous CHD/stroke] - 1.34 (1.15 lot 1.56) -0.001 27 2 - 1.25 (1.00 lot 1.56) 0.049 - 1.18 (1.05 lot 1.33) 0.005 28 Coronary heart disease - 1.25 (1.00 lot 1.56) 0.024 - 1.03 (0.81 lot 1.50) 0.014	12	All-cause mortality							
3 + 122 (113 b 133) $= 0.001$ 16 2 + 127 (118 b 137) $= 0.001$ 17 0+1 + 120 (118 b 137) $= 0.001$ 18 - 127 (118 b 137) $= 0.001$ 19 Carciovascular mortality - 0.25 (103 b 157) $= 0.026$ 21 3 - 128 (115 b 142) $= 0.001$ 22 2 - 128 (115 b 142) $= 0.001$ 23 2 - 128 (115 b 142) $= 0.001$ 24 0+1 - 134 (115 b 143) $= 0.001$ 25 [Participants without previous CHD/stroke] - 125 (1.00 b 1.56) $= 0.001$ 26 [Participants without previous CHD/stroke] - 125 (1.00 b 1.56) $= 0.001$ 27 3 - 1.25 (1.00 b 1.56) $= 0.001$ - 1.25 (1.00 b 1.56) $= 0.001$ 28 Coronary heart disease - 1.25 (1.00 b 1.56) $= 0.001$ - 1.25 (1.00 b 1.56) $= 0.001$ 31 2 - 1.25 (1.00 b 1.26) $= 0.41$	13	4		1.16 (1.01 to 1.34)	0.040				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	3		1.22 (1.13 to 1.33)	< 0.001				
17 0+1 - 1.30 (1.16 to 1.45) <0.001	16	2		1.27 (1.18 to 1.37)	< 0.001				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	0+1	+	1.30 (1.16 to 1.45)	< 0.001				
19 Cardiovascular mortality 20 4 3	18								
20 21 3 2 2 2 2 2 2 2 2 2 2 2 2 2	19	Cardiovascular mortality							
21 3 22 3 2 4 0+1 23 2 2 128 (115 to 1.2) -0.001 4 141 (128 to 1.56) -0.001 4 134 (115 to 1.56) -0.001 26 [Participants without previous CHD/stroke] 27 28 Coronary heart disease 9 4 30 3 1 18 (105 to 1.33) 0.005 32 2 2 2 1 118 (105 to 1.33) 0.005 33 0+1 106 (0.90 to 1.25) 0.477 34 106 (0.90 to 1.25) 0.477 35 Stroke 36 4 37 3 2 2 100 to 1.25) 0.477 34 $$	20	4		1.25 (1.03 to 1.51)	0.026				
22 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21	3	-	1 28 (1 15 to 1 42)	<0.001				
23 L $(1,200,100) = 0.001$ 24 $0+1$ 26 [Participants without previous CHD/stroke] 27 28 29 4 30 3 2 2 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	22	2	-	1 41 (1 28 to 1 55)	<0.001				
24 0.1 $(1.00 1.50) = 0.001$ 25 [Participants without previous CHD/stroke] 27 Coronary heart disease 29 4 1.25 (1.00 to 1.56) 0.049 30 3 31 3 0.005 32 2 0 1.23 (1.10 to 1.37) <0.001 33 0+1 1.06 (0.90 to 1.25) 0.477 34 1.03 (0.84 to 1.26) 0.758 38 2 1.03 (0.84 to 1.26) 0.758 38 2 1.03 (0.84 to 1.26) 0.758 40 0+1 0.55 1 1.5 2 41 0.8 (0.83 to 1.41) 0.565 41 $1.08 (0.83 to 1.41) 0.565$ 41 $1.08 (0.83 to 1.41) 0.565$ 51 $1.5 2$ 51 $1.$	23	0+1		1.34 (1.15 to 1.56)	<0.001				
$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	24	041		1.54 (1.15 (0 1.50)	~0.001				
$\begin{array}{c} 20 \\ 20 \\ 27 \\ 28 \\ 29 \\ 4 \\ 31 \\ 32 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $	25	Participanta without provide CUD/at	traka 1						
27 2 4 $125 (100 \text{ to } 1.56)$ 0.049 30 3 $1.18 (105 \text{ to } 1.33)$ 0.005 31 2 $1.23 (1.10 \text{ to } 1.37)$ <0.001 33 $0+1$ $1.06 (0.90 \text{ to } 1.25)$ 0.477 34 $1.23 (1.10 \text{ to } 1.37)$ <0.001 37 3 $1.03 (0.84 \text{ to } 1.26)$ 0.758 38 2 $1.03 (0.84 \text{ to } 1.26)$ 0.758 39 $0+1$ $0.5 \text{ to } 1.52$ 0.024 41 $0.5 \text{ to } 1.52$ 0.784 42 Adjusted HR/SHR 44 45 $figure2$ $66x78mm (300 \times 300 \text{ DPI})$ 49 50 51 52 56 56 57 57 57 57 57 57	20	[Participants without previous CHD/st	lroke j						
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	27	2							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	Coronary heart disease							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	4		1.25 (1.00 to 1.56)	0.049				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	3		1.18 (1.05 to 1.33)	0.005				
33 0+1	32	2	-	1.23 (1.10 to 1.37)	< 0.001				
34 35 Stroke 36 4 1.64 (1.07 to 2.52) 0.024 37 3 1.03 (0.84 to 1.26) 0.758 38 2 1.03 (0.85 to 1.24) 0.784 40 0+1 0.5 1 1.5 2 41	33	0+1	-	1.06 (0.90 to 1.25)	0.477				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34								
36 4 37 3 38 2 39 0+1 0.5 1 1.03 (0.85 to 1.24) 0.758 1.03 (0.85 to 1.24) 0.784 1.03 (0.85 to 1.24) 0.784 1.03 (0.85 to 1.24) 0.764 1.04 (1.07 to 2.52) 0.024 38 2 1.03 (0.85 to 1.24) 0.784 1.04 (0.83 to 1.41) 0.565 41 42 43 44 45 figure2 46 49 50 51 52 53 54 55	35	Stroke							
37 3 1.03 (0.84 to 1.26) 0.758 38 2 1.03 (0.85 to 1.24) 0.784 39 0+1 0.5 1.03 (0.85 to 1.24) 0.784 40 0.5 1.15 2 0.55 41 0.5 1.15 2 0.65 42 Adjusted HR/SHR 1.08 (0.83 to 1.41) 0.565 44 66x78mm (300 x 300 DPI) 66x78mm (300 x 300 DPI) 1.03 (0.85 to 1.24) 1.08 (0.83 to 1.41) 0.565 50 51 52 53 54 55 56 57	36	4		1.64 (1.07 to 2.52)	0.024				
38 2	37	3		1.03 (0.84 to 1.26)	0.758				
39 0+1 1.08 (0.83 to 1.41) 0.565 41 0.5 1 1.5 2 42 Adjusted HR/SHR 44 45 66x78mm (300 x 300 DPI) 44 45 45 55 55 55 55 55 55 55 55 55 55 55 56 55 56 55 56 55 56 55 56 55 56 55 56 56 57 56 56 56 56 56 56 56 56 56	38	2		1.03 (0.85 to 1.24)	0.784				
40 41 42 43 44 45 44 45 46 47 66x78mm (300 x 300 DPI) 48 49 50 51 52 53 54 55 55 57	39	0+1		1.08 (0.83 to 1.41)	0.565				
Adjusted HR/SHR Adjusted HR/SHR Adjusted HR/SHR figure2 66x78mm (300 x 300 DPI) 48 49 50 51 52 53 54 55 56 57	40		0.5 1 1.5 2						
42 Adjusted HR/SHR 44 figure2 46 66x78mm (300 x 300 DPI) 48 49 50 51 51 51 52 53 54 55 55 56 57 57	41		0.0 1 1.0 2						
44 45 figure2 46 47 66x78mm (300 x 300 DPI) 48 49 50 51 52 53 54 55 56 57	43		Adjusted HR/SHR						
45 figure2 46 66x78mm (300 x 300 DPI) 47 66x78mm (300 x 300 DPI) 48 9 50 51 51 52 53 54 54 55 56 57	44								
46 47 48 49 50 51 52 53 54 55 56 57	45		figure2						
47 66x78mm (300 x 300 DPI) 48 49 50 51 52 53 53 54 55 56 57	46								
48 49 50 51 52 53 54 55 56 57	47	66x7	78mm (300 x 300 DPI)						
49 50 51 52 53 54 55 56 57	48								
50 51 52 53 54 55 56 57	49								
51 52 53 54 55 56 57	50								
52 53 54 55 56 57	51								
53 54 55 56 57	52								
54 55 56 57	53 54								
55 56 57	55 55								
57	55								
	57								

SUPPLEMENTARY MATERIAL

Figure S1. Study cohort selection

Page 33 of 38

BMJ Open

BMI, body mass index; CKD, chronic kidney disease; CHD, coronary heart disease; CVD, Cardiovascular diseases; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; RRT, renal replacement therapy

Number of	HbA1c	Dland magazine	Total	No	CKD			Non-CKD		
risk factors	<53 mmol/mol	silood pressure	cholesterol	1 ·	Overall	No CVD	CVD	Overall	No CVD	CVD
controlled	(<7.0%)	<140/90 mmHg	<5 mmol/L	smoking	(N=11,431)	(N=7,216)	(N=4,215)	(N=36,429)	(N=28,569)	(N=7,860)
0	_	- ^	_	_	138 (1)	87 (1)	51 (1)	806 (2)	678 (2)	128 (2)
1	Y		_	_	69 (0.6)	46 (0.6)	23 (0.6)	312 (1)	260 (0.9)	52 (0.7)
	_	Y		_	89 (0.8)	64 (0.9)	25 (0.6)	759 (2)	624 (2)	135 (2)
	_	_	Y	_	438 (4)	264 (4)	174 (4)	1,742 (5)	1,350 (5)	392 (5)
	_	_	-02	Y	831 (7)	597 (8)	234 (6)	2,559 (7)	2,187 (8)	372 (5)
2	Y	Y	_ C	/	62 (0.5)	43 (0.6)	19 (0.5)	304 (0.8)	268 (0.9)	36 (0.5)
	Y	_	Y		245 (2)	152 (2)	93 (2)	794 (2)	590 (2)	204 (3)
	Y	_	_	Y	407 (4)	289 (4)	118 (3)	1,070 (3)	911 (3)	159 (2)
	_	Y	Y	_	390 (3)	215 (3)	175 (4)	1,911 (5)	1,446 (5)	465 (6)
	_	Y	_	Y	531 (5)	379 (5)	152 (4)	2,205 (6)	1,910 (7)	295 (4)
	_	_	Y	Y	2,527 (22)	1,615 (22)	912 (22)	7,004 (19)	5,477 (19)	1,527 (19)
3	Y	Y	Y	_	247 (2)	152 (2)	95 (2)	1,073 (3)	788 (3)	285 (4)
	Y	Y	_	Y	302 (3)	199 (3)	103 (2)	1,067 (3)	905 (3)	162 (2)
	Y	_	Y	Y	1,552 (14)	1,019 (14)	533 (13)	3,487 (10)	2,678 (9)	809 (10)
	_	Y	Y	Y	2,139 (19)	1,228 (17)	911 (22)	7,030 (19)	5,294 (19)	1,736 (22)
4	Y	Y	Y	Y	1,464 (13)	867 (12)	597 (14)	4,306 (12)	3,203 (11)	1,103 (14)

Table S1. Breakdown of risk factors controlled according to chronic kidney disease and a history of cardiovascular diseases

Y, meeting the criterion; –, not meeting the criterion

 CKD, chronic kidney disease; CVD, (a history of) cardiovascular diseases

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 Figure S2. Relative hazards of individual risk factors controlled for mortality and cardiovascular events in (a) participants with chronic kidney disease (CKD) and (b) participants with non-CKD. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease, and stroke were adjusted for age, gender, CKD stage (for CKD cohort), body mass index, deprivation level, duration of diabetes, proteinuria status, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

(a) CKD

		Adjusted HR/SHR	
Risk factors controlled		(95% CI)	P value
[All participants]			
All-cause mortality			
HbA1c <53 mmol/mol (<7.0%)	-	0.86 (0.80 to 0.92)	< 0.001
Blood pressure <140/90 mmHg	-	0.93 (0.87 to 0.99)	0.024
Total cholesterol <5 mmol/L	-	0.95 (0.87 to 1.04)	0.256
No smoking	-	0.65 (0.59 to 0.70)	< 0.001
Cardiovascular mortality			
HbA1c <53 mmol/mol (<7.0%)	-	0.82 (0.75 to 0.90)	< 0.001
Blood pressure <140/90 mmHg	+	0.89 (0.82 to 0.97)	0.006
Total cholesterol <5 mmol/L		0.93 (0.83 to 1.03)	0.159
No smoking	+	0.74 (0.67 to 0.83)	< 0.001
[Participants without previous CHD/str	oke]		
Coronary heart disease			
HbA1c <53 mmol/mol (<7.0%)	-	0.82 (0.73 to 0.92)	0.001
Blood pressure <140/90 mmHg		0.99 (0.89 to 1.10)	0.795
Total cholesterol <5 mmol/L		0.92 (0.80 to 1.04)	0.182
No smoking	-	0.98 (0.84 to 1.14)	0.779
Stroke			
HbA1c <53 mmol/mol (<7.0%)		0.93 (0.77 to 1.13)	0.472
Blood pressure <140/90 mmHg		0.87 (0.73 to 1.04)	0.131
Total cholesterol <5 mmol/L		0.88 (0.71 to 1.09)	0.250
No smoking		0.83 (0.65 to 1.05)	0.128
	0.25 0.5 0.75 1 1.25		

Adjusted HR/SHR

(b) Non-CKD

		Adjusted HR/SHR	
Risk factors controlled		(95% CI)	P value
[All participants]			
All-cause mortality			
HbA1c <53 mmol/mol (<7.0%)	-	0.97 (0.91 to 1.03)	0.299
Blood pressure <140/90 mmHg	-	0.96 (0.91 to 1.02)	0.181
Total cholesterol <5 mmol/L	-	0.93 (0.87 to 1.00)	0.055
No smoking	-	0.55 (0.52 to 0.59)	< 0.001
Cardiovascular mortality			
HbA1c <53 mmol/mol (<7.0%)	-	0.93 (0.85 to 1.01)	0.076
Blood pressure <140/90 mmHg	-	0.94 (0.87 to 1.02)	0.119
Total cholesterol <5 mmol/L	-	0.85 (0.77 to 0.93)	0.001
No smoking	+	0.58 (0.53 to 0.64)	< 0.001
[Participants without previous CHD/stroke]			
Coronary heart disease			
HbA1c <53 mmol/mol (<7.0%)	+	0.83 (0.77 to 0.90)	< 0.001
Blood pressure <140/90 mmHg		0.90 (0.84 to 0.96)	0.001
Total cholesterol <5 mmol/L		0.80 (0.74 to 0.86)	< 0.001
No smoking		0.77 (0.71 to 0.83)	< 0.001
Stroke			
HbA1c <53 mmol/mol (<7.0%)		0.92 (0.80 to 1.05)	0.207
Blood pressure <140/90 mmHg	-	0.77 (0.68 to 0.88)	< 0.001
Total cholesterol <5 mmol/L		0.76 (0.66 to 0.88)	< 0.001
No smoking		0.66 (0.57 to 0.76)	< 0.001
	0.25 0.5 0.75 1 1.25		

Adjusted HR/SHR

 BMJ Open

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1,2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6,7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7,8,10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6-9
Bias	9	Describe any efforts to address potential sources of bias	10,11
Study size	10	Explain how the study size was arrived at	6-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	8,11
		(d) If applicable, explain how loss to follow-up was addressed	10
		(e) Describe any sensitivity analyses	NA

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 38 of 38

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	12,Figure S1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	12,Figure S1
		(c) Consider use of a flow diagram	Figure S1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential	12,Table 1
		confounders	
		(b) Indicate number of participants with missing data for each variable of interest	Table 1, Figure S1
		(c) Summarise follow-up time (eg, average and total amount)	Figure 1
Outcome data	15*	Report numbers of outcome events or summary measures over time	Figure 1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9,11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	13-14
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	15-18
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	16-18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes and chronic kidney disease: a population-based cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2017-019950.R2
Article Type:	Research
Date Submitted by the Author:	26-Mar-2018
Complete List of Authors:	Hamada, Shota; Institute for Health Economics and Policy, Research Department Gulliford, Martin; King's College London, UK,
Primary Subject Heading :	Diabetes and endocrinology
Secondary Subject Heading:	General practice / Family practice
Keywords:	cardiovascular diseases, chronic kidney disease, mortality, type 2 diabetes

BMJ Open

Multiple risk factor control, mortality and cardiovascular events in type 2 diabetes
and chronic kidney disease: a population-based cohort study
Shota Hamada ^{1,2} , Martin C Gulliford ^{1,3}
1 Department of Primary Care and Public Health Sciences, King's College London, London, UK
2 Research Department, Institute for Health Economics and Policy, Association for Health
Economics Research and Social Insurance and Welfare, Tokyo, Japan
3 National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas'
National Health Service Foundation Trust, London UK
Correspondence to: Shota Hamada
Research Department, Institute for Health Economics and Policy, Association for Health
Economics Research and Social Insurance and Welfare
No.11 Toyo-Kaiji Bldg, 1-5-11 Nishi-Shimbashi, Minato-ku, Tokyo, 105-0003 Japan
Tel: +81 3-3506-8529, Fax: +81 3-3506-8528, E-mail: <u>shota.hamada@ihep.jp</u>
1
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Abstract

OBJECTIVES: This study aimed to evaluate the effectiveness of multiple risk factor control (MRFC) at reducing mortality and cardiovascular events in diabetes and chronic kidney disease (CKD) in clinical practice.

DESIGN: Population-based cohort study.

SETTING: Primary care database in the UK, linked with inpatient and mortality data. **PARTICIPANTS:** Participants aged 40 to 79 years with type 2 diabetes and valid serum creatinine measurements, including 11,431 participants with CKD (eGFR 15–59 mL/min/1.73 m²) and 36,429 participants with non-CKD (eGFR \geq 60 mL/min/1.73 m²). **EXPOSURES:** MRFC consisted of four components: HbA1c <53 mmol/mol (<7.0%), blood pressure <140/90 mmHg, total cholesterol <5 mmol/L, and no smoking. The main exposure variable was the number of risk factors controlled at baseline.

OUTCOME MEASURES: All-cause and cardiovascular mortality in the overall participants. Cardiovascular events, including coronary heart disease and stroke, in participants limited to those without a history of cardiovascular diseases at baseline.

RESULTS: In participants with CKD, 37% or 13% met three or four MRFC criteria, respectively. Increasing numbers of risk factors controlled were associated with lower relative hazards for all outcomes studied compared with those meeting no or one

criterion. For participants with CKD meeting four criteria, the adjusted hazard ratio (HR) for all-cause mortality was 0.60 (95% confidence interval (CI) 0.53 to 0.69) and the adjusted subdistribution HR for cardiovascular mortality was 0.60 (0.50 to 0.70), considering a competing risk of non-cardiovascular death. Participants meeting four criteria also had lower relative hazards for coronary heart disease (adjusted subdistribution HR 0.73, 95% CI 0.59 to 0.91) and stroke (0.63, 0.45 to 0.89), considering death as a competing risk.

CONCLUSIONS: MRFC may lower the increased risks for mortality and cardiovascular events in people with diabetes and CKD. Further research is needed to evaluate appropriateness of MRFC according to individual participants' health status for improved management of cardiovascular risks in this population.

Strengths and limitations of this study

- This study included a large number of participants with type 2 diabetes and CKD sampled from a representative general population with about 6 years of follow-up, which enabled to determine the associations of cardiovascular risk factors with mortality and cardiovascular events.
- Linked data for diagnostic data in hospitals and death registration with a primary

care database enhanced the validity of the study to evaluate mortality and cardiovascular events.

- We could not conclude that associations represented causal relationships between MRFC and mortality and cardiovascular events in this non-randomised study.
- There is a possibility of confounding if healthier participants were managed more successfully and this resulted in being categorised as those with greater number of s controlled.

risk factors controlled.

Diabetes and chronic kidney disease (CKD) are growing health problems worldwide, contributing to increased mortality [1]. Diabetes and CKD also impose a substantial economic burden on society, with particularly high costs relating to cardiovascular complications and renal replacement therapy [2,3]. The prevalence of CKD in patients with diabetes is between 4.2% and 17.9% (CKD stages 3 to 5) in European countries [4]. The leading cause of death in people with type 2 diabetes or CKD is cardiovascular disease rather than renal complications [5,6]. Prevention of cardiovascular events is a key focus in the management of patients with these conditions.

Multifactorial interventions to reduce cardiovascular risks were shown to be effective at reducing mortality and cardiovascular events in patients with type 2 diabetes and persistent microalbuminuria in the Steno-2 randomised trial [7,8]. This study provided a high level of evidence, but included a relatively small number of participants with diabetes who were managed in specialist centres. Recently, the implementation and effectiveness of this approach have been evaluated in patients with diabetes in clinical practice settings [9-11]. Epidemiological studies have demonstrated additional risks of CKD on mortality and cardiovascular diseases in people with diabetes [12], but

treatment approaches in this population have not been well studied. No studies focused on multiple risk factor control (MRFC) in patients with both diabetes and CKD in a wide clinical practice setting. Generally, patients with kidney disease have been underrepresented in cardiovascular clinical trials [13]. This population may have an altered risk-benefit profile, and extrapolation of data based on patients with normal kidney function into patients with CKD may be unreliable [13]. We aimed to conduct a pragmatic evaluation of the effectiveness of MRFC on mortality and cardiovascular events in participants with type 2 diabetes and CKD in a population-based cohort study.

Methods

Data sources

This study employed a linked dataset derived from the UK Clinical Practice Research Datalink (CPRD), the UK National Health Service Hospital Episodes Statistics (HES) inpatient data, and the UK Office for National Statistics (ONS) mortality data. The CPRD contains anonymised electronic health records from general practices across the UK [14]. The CPRD collects data for diagnoses and clinical assessment, prescriptions and laboratory test results, such as HbA1c and serum creatinine. The HES inpatient data were comprised of inpatient records from all National Health Service hospitals in

elien

BMJ Open

England. Information on the date of death and the causes of death were available in the ONS mortality data file. Multiple causes of death can be recorded in the mortality data. Diagnoses and clinical evaluation in the CPRD were coded with the Read codes, a hierarchical coding system used in primary care in the UK, whereas those in the HES and ONS were coded with the International Classification of Diseases, tenth revision (ICD-10). Linked data are available for general practices in England only and participants were limited to those with linked data for the HES and ONS available. The study was approved by the CPRD Independent Scientific Advisory Committee (ISAC ê. Iez Protocol 15 201R).

Study population

The scheme of the study cohort selection is presented in figure S1. We initially sampled participants who were diagnosed with type 2 diabetes from the CPRD [15]. Using the CPRD records, the date of the first valid serum creatinine value between 2006 and 2010 recorded more than one year after the first diagnosis of diabetes were defined as the index date. A similar approach was taken by Adamsson Eryd et al [16] to ensure that participants managed for diabetes had sufficient time available for recording of baseline values. To avoid misclassification of CKD status and stage, the index serum creatinine

values were validated by confirmation of subsequent values within 30% of the index values. We restricted the sample to participants aged 40 to 79 years at the index date with at least one year of follow-up data available (ie, participants who died in the first year of follow-up were excluded). Estimated glomerular filtration rate (eGFR) was calculated from a serum creatinine value, age, gender, and ethnicity, using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation [17]. Missing ethnicity was assumed as 'non-black' in the present study. Participants diagnosed with end-stage renal disease, those who had received renal replacement therapy, or those with index eGFR <15 mL/min/1.73 m² were excluded. We also excluded participants with missing data for smoking status, body mass index (BMI), HbA1c, blood pressure, or total cholesterol, or those with extreme BMI (<18.5 or \geq 45 kg/m²) at baseline. Since it has been reported that low values of cardiovascular risk factors were not always associated with better outcomes in observational studies [15,18,19], possibly due to reverse causation [20,21], participants with low HbA1c (<42 mmol/mol or <6.0%), blood pressure (systolic <120 or diastolic <60 mmHg), and total cholesterol (<3 mmol/L) were further excluded. Participants were categorised according to index eGFR into participants with CKD (<60 mL/min/1.73 m²) and those with non-CKD (\geq 60 $mL/min/1.73 m^2$).

Multiple risk factor control

MRFC was defined in this study as consisting of four components: (1) HbA1c <53 mmol/mol (<7.0%), (2) blood pressure <140/90 mmHg (systolic <140 and diastolic <90 mmHg), (3) total cholesterol <5 mmol/L, and (4) no smoking (non- or ex-smokers). The means of HbA1c, blood pressure, and total cholesterol records within one year before the index date were evaluated. The number of the risk factors controlled from four criteria was treated as the exposure and included as a categorical variable in the analyses, with those meeting no or one criterion as a reference category.

4.64

Outcomes

Main outcomes of interest in this study included all-cause and cardiovascular mortality, fatal and non-fatal coronary heart disease (CHD) and stroke. The date of death and causes of death were determined using the ONS mortality data. Participants who died from cardiovascular causes were identified if people had any of the ICD-10 codes I00 to 199 as a cause of death. Similarly, participants who died from renal causes were identified by the ICD-10 codes N17 to N19. All of the CPRD, HES and ONS were used to ascertain fatal and non-fatal CHD and stroke. Read codes for CHD and stroke

reported previously [22,23] were updated for the present study. The ICD-10 codes for CHD and stroke were I20 to I25 and I60, I61, I63 and I64, respectively.

Analysis

Baseline characteristics of the study cohort were described according to CKD status. Time-to-event analyses were conducted to evaluate the associations of MRFC with mortality and cardiovascular events. To address the issue of reverse causation and to avoid misclassification of the outcomes from those which had existed at baseline, person-years for participants who experienced outcomes of interest in the first year of follow-up were excluded from analyses (figure S1). Cox proportional hazards models were used to evaluate the association of MRFC with all-cause mortality. Proportional hazards assumption was assessed by visual inspection of log-log plots, and no apparent violation was found. Competing risks regression with subdistribution hazard models were conducted for cardiovascular mortality and cardiovascular events, considering competing risks for non-cardiovascular and all-cause death, respectively [24]. Associations of MRFC with cardiovascular events were evaluated in participants without a known history of cardiovascular diseases at baseline (figure S1). Participants were followed from the index date until the earliest of the events of interest, the last date

BMJ Open

of CPRD records, or 31 March 2015 for all-cause mortality evaluation. In the competing risks regression analyses for cardiovascular mortality and cardiovascular events, participants who experienced the corresponding competing events prior to the event of interest were also censored.

Main analyses were conducted by CKD status, adjusting for a range of baseline covariates, including age (continuous), gender (male or female), CKD stage (3a, 3b, and 4; for CKD cohort), BMI (18.5-24.9, 25.0-29.9, 30.0-34.9, 35.0-39.9, and 40.0-44.9 kg/m^2), deprivation level (quintile; 1, least deprived, to 5, most deprived), duration of diabetes (1.0–4.9, 5.0–9.9, and 10+ years), proteinuria status, including microalbuminuria (yes, no, and a missing category), a history of cardiovascular diseases, including CHD and stroke (for mortality evaluation), and prescribing during six months prior to the index date of antidiabetic drugs (none, insulin with and without other antidiabetic drugs, and non-insulin drugs only), antihypertensive drugs (none, drugs acting on renin-angiotensin system with and without other antihypertensive drugs, and other classes of antihypertensive drugs only, including β -blockers, calcium channel blockers, and thiazide diuretics), statins and antiplatelet drugs, and index year (2006 to 2010). In addition, the associations of CKD with the outcomes were evaluated

according to the number of risk factors controlled, adjusting for the potential confounding factors described above.

In this paper, the results for participants with CKD were focused on, with the results for those with non-CKD shown for comparative purposes. The associations of each component of MRFC with the outcomes were also evaluated to aid interpretation of the study results. All analyses were performed using Stata version 14 (Stata Corp., College Station TX). The 'forestplot' package in R was used to present the results [25].

Patient and Public Involvement

No patients were involved in setting the research question or the outcome measures, nor were they involved in developing plans for design or implementation of the study. No patients were asked to advise on interpretation or writing up of results. Results will be disseminated to relevant patient communities through news media.

CZ.

Results

Characteristics of the study population

Baseline characteristics of the study cohort are shown according to CKD status in table

1. Mean index eGFR was 49 mL/min/1.73 m² for participants with CKD and 81 mL/min/1.73 m² for those with non-CKD. Participants with CKD were older (71 vs 62 years), included more women (52% vs 40%), had a longer duration of diabetes, and were more likely to have a history of cardiovascular diseases (37% vs 22%). A higher frequency of proteinuria was recorded in participants with CKD (18% vs 12% among participants with records of proteinuria status). HbA1c and total cholesterol were slightly lower in participants with CKD. Although diastolic blood pressure was lower in participants with CKD, systolic blood pressure was higher despite more people under antihypertensive medications. Participants with CKD were prescribed insulin, drugs on renin-angiotensin system, statins, and antiplatelet drugs more frequently.

Implementation of MRFC

The number of risk factors controlled from four components of MRFC are shown in table 2. More detailed results of which of the components were controlled are available in table S1. Higher rates of control for HbA1c, total cholesterol, and smoking status were observed in participants with CKD compared with those with non-CKD. However, blood pressure was less likely managed in participants with CKD (46% *vs* 51%). There were some differences in management status according to a history of cardiovascular

diseases; in participants with CKD, higher rates of control of blood pressure (49% vs 44%) and total cholesterol (83% vs 76%) in participants with a history of cardiovascular diseases compared with those without. Participants meeting three or four criteria accounted for 37% or 13% in participants with CKD.

Effectiveness of MRFC

Absolute risks for mortality and cardiovascular diseases and adjusted relative hazards of the number of risk factors controlled for the outcomes are shown in figure 1. Increasing numbers of risk factors controlled were associated with lower relative hazards for all outcomes studied relative to participants meeting no or one criterion. For participants with CKD meeting four MRFC criteria, the adjusted hazard ratio (HR) for all-cause mortality was 0.60 (95% CI 0.53 to 0.69), and adjusted subdistribution HR for cardiovascular mortality was 0.60 (0.50 to 0.70). Participants meeting four criteria also had lower relative risks for CHD (adjusted subdistribution HR 0.73, 95% CI 0.59 to 0.91) and stroke (0.63, 0.45 to 0.89) in participants with CKD. In participants with non-CKD, increasing numbers of risk factors controlled were also associated with lower risks for all-cause and cardiovascular mortality, CHD, and stroke. As shown in figure S2, the strengths of associations of each component of MRFC with mortality and

BMJ Open

cardiovascular diseases were different; for example, the greatest associations of no smoking with all-cause and cardiovascular mortality were observed in participants with and without CKD.

Comparisons between CKD and non-CKD

Unadjusted absolute risks for mortality and cardiovascular diseases were higher in participants with CKD by 1.4- to 2.9-fold compared with those with non-CKD at the same MRFC category (figure 1). More participants with CKD died from cardiovascular causes compared with those without (63% vs 54%, P<0.001). More participants with CKD died from renal causes (n=631 or 5% vs n=326 or 0.9%, P<0.001), but the proportions were much smaller than cardiovascular causes of death. Relative hazards of CKD for the outcomes are shown in figure 2. After adjustment with possible confounding factors, comorbid CKD remained to be associated with greater risks for all-cause mortality (adjusted HR, 1.16 to 1.30) and cardiovascular mortality (adjusted subdistribution HR, 1.25 to 1.41). In participants meeting two or more criteria, comorbid CKD was associated with a higher risk for CHD (1.18 to 1.25). The associations of comorbid CKD with stroke was observed in participants meeting four criteria only (1.64).

Discussion

In this population-based cohort study of participants with type 2 diabetes and CKD stages 3 or 4, MRFC was associated with lower relative risks for mortality (N>11,000) and cardiovascular diseases (N>7,000). We also confirmed that CKD was associated with increased risks for mortality and cardiovascular events. Higher absolute risks for mortality and cardiovascular events and great relative risk reduction associated with MRFC suggest that the MRFC strategy may be one of the main approaches to potentially reducing the burden of diabetes and CKD.

This study evaluated the effectiveness of MRFC in patients with type 2 diabetes according to presence or absence of CKD in clinical practice. So far, the associations of MRFC with lower risks for mortality and cardiovascular events have been shown in people with diabetes, not focusing on CKD status. Participants with controlled three risk factors of HbA1c, blood pressure, and LDL cholesterol had 62% and 60% risk reduction for cardiovascular events and CHD, respectively, in patients with diabetes without known cardiovascular diseases [10]. The associations of uncontrolled HbA1c, blood pressure, LDL cholesterol, and smoking with mortality and cardiovascular events were

BMJ Open

individually evaluated in a large population-based study with >850,000 participants with diabetes [11]. The study cohort included 35.5% of participants with CKD in those with cardiovascular diseases and 21.8% in those without, and CKD was included in the analyses for adjustment. This study suggested that uncontrolled risk factors attributed to about 1 in 3 major cardiovascular events and fewer 1 in 10 deaths.

The strength of this study was the inclusion of a large size of >11,000 participants with diabetes and CKD with an observation of >62,000 person-years. In addition to the large sample size and long-term follow-up, representativeness from general population and data quality are also advantages of the CPRD [14], which should remain even if linked data for HES and ONS are only available for England practices. Instead, linked data for diagnoses in hospitals and death registration substantially enhanced the validity of the study to evaluate mortality and cardiovascular events.

There are also some limitations in this study. First, despite our focus on the number of MRFC, the impacts of each component of MRFC on mortality and cardiovascular events were different. Different cut-off points for HbA1c, blood pressure, and total cholesterol may bring different results. Next, we could not conclude that associations

represented causal relationships between MRFC and mortality and cardiovascular events in this non-randomised study. There is a possibility of confounding if healthier participants were managed more successfully and this resulted in being categorised as those with greater number of risk factors controlled. For example, stringent management of HbA1c might not be targeted for vulnerable participants due to concerns for greater risk of hypoglycaemia, a form of confounding by contra-indication. We cannot exclude the possibility of residual confounding, despite adjustment with a range of covariates in the analyses, including physical activity and alcohol intake [26,27]. Then, measurement and assay methods for HbA1c, blood pressure, cholesterol and serum creatinine might not have been standardised among general practices or laboratories. As well as missing data on ethnicity and fluctuations in serum creatinine values, these methodological limitations might influence the determination of CKD status or staging. Although proteinuria has been known as a risk factor for mortality and cardiovascular diseases [28,29], we could not determine proteinuria status completely as reported previously [30,31]. Incomplete records on proteinuria may introduce a bias for proteinuria status and possibly influence the study results. Finally, although we used one of the largest primary care electronic health records database, it seemed to be insufficient to separately evaluate MRFC for participants with different stages of CKD.

BMJ Open

Further research is needed to focus on patients with more advanced CKD who may have altered risk-benefit profile compared with patients with less impaired renal function.

In summary, based on the population-based cohort study of routine clinical practices, MRFC may lower the increased risks for mortality and cardiovascular events in people with diabetes and CKD. Further research is needed to evaluate appropriateness of MRFC according to individual participants' health status for improved management of cardiovascular risks in this population.

ez.

Acknowledgments

SH was supported by the Uehara Memorial Foundation Postdoctoral Fellowship, Tokyo, Japan. MCG was supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy's and St Thomas' NHS Foundation Trust and King's College London. This study is based on data from the CPRD obtained under license from the UK Medicines and Healthcare products Regulatory Agency. However, the interpretation and conclusions contained in this report are those of the authors alone and not necessarily those of the National Health Service, the NIHR or the Department of Health. **Contributors:** Both authors contributed to conception and study design of the study, data acquisition, statistical analysis, and interpretation. SH drafted the manuscript and MCG revised it critically for important intellectual content.

Funding: This research received no specific grant from any funding agency.

Competing interests: None declared.

Provenance and peer review: Not commissioned; externally peer reviewed.

Data sharing statement: No additional data are available.

References

- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 2015;385(9963):117-171.
- Seuring T, Archangelidi O, Suhrcke M. The Economic Costs of Type 2 Diabetes: A Global Systematic Review. *Pharmacoeconomics*. 2015;33(8):811-831.
- 3. Kerr M, Bray B, Medcalf J, O'Donoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. *Nephrol Dial*

1		
2		
4		
5		
6		Transplant. 2012;27 Suppl 3:iii73-80.
7		
8	4	Derials K. Otal V.C. Caushana, C. Hallan, C. Millan, H. Kuralina, L. et al. CKD
9	4.	Bruck K, Stel VS, Gambaro G, Hallan S, Volzke H, Amlov J, et al. CKD
10		
11		Prevalence Varies across the European General Population. J Am Soc Nephrol.
12		
13		
14		2016;27(7):2135-2147.
15		
10	5	Holmon DD Doul SK Dathal MA Matthewa DD Nail HA 10 year follow up of
18	5.	nonnan KK, Faul SK, Beulei MA, Maulews DK, Nell HA. 10-year tonow-up of
19		
20		intensive glucose control in type 2 diabetes. N Engl J Med.
21		
22		
23		2008;359(15):1577-1589.
24		
25	6	Go AS Chartow GM Fan D McCulloch CE Hey CV Chronic kidney disease
26	0.	do AS, Cherlow Ow, Fair D, McCunoch CE, Hsu CT. Chronic kidney disease
27		
28		and the risks of death, cardiovascular events, and hospitalization. N Engl J Med.
29		
30 21		
31		2004;351(13):1296-1305.
32		
34	7	Gaede P. Vedel P. Larsen N. Jensen GV. Parving HH. Pedersen O. Multifactorial
35	7.	Gacue I, veder I, Earsen N, sensen GV, Farving IIII, Federsen O. Multinacional
36		
37		intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J
38		
39		
40		Med. 2003;348(5):383-393.
41		
42	8	Gaede P. Lund-Andersen H. Parving HH. Pedersen O. Effect of a multifactorial
43	0.	Guede 1, Euna-Andersen 11, Farving 1111, Federsen O. Eneet of a mathaetonar
44		
45		intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358(6):580-591.
46		
47	0	
48	9.	Wong ND, Patao C, Wong K, Malik S, Franklin SS, Iloeje U. Trends in control of
49 50		
51		cardiovascular risk factors among US adults with type 2 diabetes from 1999 to
52		en ale race and the factors antong es adults that type 2 alustes from 1999 to
53		
54		2010: comparison by prevalent cardiovascular disease status. Diab Vasc Dis Res.
55		
56		
57		21
58		
59		For noor raviou anly, http://hmianan.hmi.com/sita/ahayt/suidalinas.yhtml
60		For peer review only - http://binjopen.binj.com/site/about/guidelines.xhtml

2013;10(6):505-513.

- Wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, et al. Cardiovascular Risk Factor Targets and Cardiovascular Disease Event Risk in Diabetes: A Pooling Project of the Atherosclerosis Risk in Communities Study, Multi-Ethnic Study of Atherosclerosis, and Jackson Heart Study. *Diabetes Care*. 2016;39(5):668-676.
- Vazquez-Benitez G, Desai JR, Xu S, Goodrich GK, Schroeder EB, Nichols GA, et al. Preventable major cardiovascular events associated with uncontrolled glucose, blood pressure, and lipids and active smoking in adults with diabetes with and without cardiovascular disease: a contemporary analysis. *Diabetes Care*. 2015;38(5):905-912.
- Cea Soriano L, Johansson S, Stefansson B, Rodríguez LA. Cardiovascular events and all-cause mortality in a cohort of 57,946 patients with type 2 diabetes: associations with renal function and cardiovascular risk factors. *Cardiovasc Diabetol.* 2015;14:38.
- Konstantinidis I, Nadkarni GN, Yacoub R, Saha A, Simoes P, Parikh CR, et al. Representation of Patients With Kidney Disease in Trials of Cardiovascular Interventions: An Updated Systematic Review. JAMA Intern Med.

1	
2	
3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
27	
25	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
23 ⊑1	
54	
55 56	
50	
57	
50	

2016;176(1):121-124.

- Herrett E, Gallagher AM, Bhaskaran K, Forbes H, Mathur R, van Staa T, et al.
 Data Resource Profile: Clinical Practice Research Datalink (CPRD). Int J Epidemiol. 2015;44(3):827-836.
- Nicholas J, Charlton J, Dregan A, Gulliford MC. Recent HbA1c values and mortality risk in type 2 diabetes. population-based case-control study. *PLoS One*. 2013;8(7):e68008.
- 16. Adamsson Eryd S, Gudbjörnsdottir S, Manhem K, Rosengren A, Svensson AM, Miftaraj M, et al. Blood pressure and complications in individuals with type 2 diabetes and no previous cardiovascular disease: national population based cohort study. *BMJ*. 2016;354:i4070.
- Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. *Ann Intern Med.* 2009;150(9):604-612.
- Kontopantelis E, Springate DA, Reeves D, Ashcroft DM, Rutter MK, Buchan I, et al. Glucose, blood pressure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: a retrospective cohort study. *Diabetologia*. 2015;58(3):505-518.

- 19. Afghahi H, Svensson MK, Pirouzifard M, Eliasson B, Svensson AM. Blood pressure level and risk of major cardiovascular events and all-cause of mortality in patients with type 2 diabetes and renal impairment: an observational study from the Swedish National Diabetes Register. *Diabetologia*. 2015;58(6):1203-1211.
- Herrington W, Staplin N, Judge PK, Mafham M, Emberson J, Haynes R, et al. Evidence for Reverse Causality in the Association Between Blood Pressure and Cardiovascular Risk in Patients With Chronic Kidney Disease. *Hypertension*. 2017;69(2):314-322.
- 21. Weiner DE, Sarnak MJ. Managing dyslipidemia in chronic kidney disease. *J Gen Intern Med.* 2004;19(10):1045-1052.
- Gulliford MC, Charlton J, Ashworth M, Rudd AG, Toschke AM; eCRT Research Team. Selection of medical diagnostic codes for analysis of electronic patient records. Application to stroke in a primary care database. *PLoS One.* 2009;4(9):e7168.
- Bhattarai N, Charlton J, Rudisill C, Gulliford MC. Coding, recording and incidence of different forms of coronary heart disease in primary care. *PLoS One*. 2012;7(1):e29776.
- 24. Austin PC, Lee DS, Fine JP. Introduction to the Analysis of Survival Data in the

25 of 39	BMJ Open
	Presence of Competing Risks. Circulation. 2016;133(6):601-609.
25.	Gordon M, Lumley T. Advanced Forest Plot Using 'grid' Graphics. Vienna: The
	Comprehensive R Archive Network, 2016.
26.	Anand SS, Islam S, Rosengren A, Franzosi MG, Steyn K, Yusufali AH, et al. Risk
	factors for myocardial infarction in women and men: insights from the
	INTERHEART study. Eur Heart J. 2008;29(7):932-940.
27.	O'Donnell MJ, Xavier D, Liu L, Zhang H, Chin SL, Rao-Melacini P, et al. Risk
	factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the
	INTERSTROKE study): a case-control study. Lancet. 2010;376(9735):112-123.
28.	Chronic Kidney Disease Prognosis Consortium., Matsushita K, van der Velde M,
	Astor BC, Woodward M, Levey AS, de Jong PE, et al. Association of estimated
	glomerular filtration rate and albuminuria with all-cause and cardiovascular
	mortality in general population cohorts: a collaborative meta-analysis. Lancet.
	2010;375(9731):2073-2081.
29.	Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, et al. Estimated
	glomerular filtration rate and albuminuria for prediction of cardiovascular
	outcomes: a collaborative meta-analysis of individual participant data. Lancet
	<i>Diabetes Endocrinol.</i> 2015;3(7):514-525.
	25
	For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

- Dreyer G, Hull S, Aitken Z, Chesser A, Yaqoob MM. The effect of ethnicity on the prevalence of diabetes and associated chronic kidney disease. *QJM*. 2009;102(4):261-269.
- 31. Liang H, Kennedy C, Manne S, Lin JH, Dolin P. Monitoring for proteinuria in patients with type 2 diabetes mellitus. *BMJ Open Diabetes Res Care*. 2015;3(1):e000071.

BMJ Open

		CKD	Non-CKD	P value
		(N=11,431)	(N=36,429)	
Age (years)	Mean (SD)	71 (6)	62 (9)	< 0.001
Gender	Male	5,481 (48)	22,006 (60)	< 0.001
	Female	5,950 (52)	14,423 (40)	
eGFR (mL/min/1.73 m ²)	Mean (SD)	49 (9)	81 (13)	—
	15–29	558 (5)	-	
	30–44	2,655 (23)	-	
	45–59	8,218 (72)	-	
Smoking status	Non-smoker	5,426 (47)	16,511 (45)	< 0.001
	Ex-smoker	4,327 (38)	12,217 (34)	
	Current smoker	1,678 (15)	7,701 (21)	
BMI (kg/m ²)	18.5–24.9	1,459 (13)	4,097 (11)	< 0.001
	25.0–29.9	4,329 (38)	13,054 (36)	
	30.0–34.9	3,527 (31)	11,485 (32)	
	35.0–39.9	1,541 (13)	5,454 (15)	
	40.0–44.9	575 (5)	2,339 (6)	
Deprivation level (quintile)	1 (least deprived)	1,508 (13)	4,785 (13)	0.293
	2	2,331 (20)	7,300 (20)	
	3	2,374 (21)	7,640 (21)	
	4	2,637 (23)	8,172 (22)	
	5 (most deprived)	2,581 (23)	8,532 (23)	
Duration of diabetes (years)	1.0-4.9	5,208 (46)	22,527 (62)	< 0.001
	5.0-9.9	2,954 (26)	8,356 (23)	
	≥10.0	3,269 (29)	5,546 (15)	
Proteinuria	Yes	1,714 (15)	3,279 (9)	< 0.001
	No	7,666 (67)	24,110 (66)	
	Missing	2,051 (18)	9,040 (25)	
History of coronary heart		1 215 (27)	7 860 (22)	~0.001
disease and/or stroke		4,215 (37)	7,800 (22)	<0.001
HbA1c (mmol/mol or %)	42-47 (6.0-6.4)*	1,307 (11)	3,513 (10)	< 0.001
	48-52 (6.5-6.9)	3,041 (27)	8,900 (24)	
	53-57 (7.0-7.4)	2,590 (23)	7,781 (21)	
	58-63 (7.5-7.9)	1,709 (15)	5,461 (15)	

Table 1. Baseline characteristics of the study cohort by CKD status

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

		1.000 (0)	
(64–68 (8.0–8.4)	1,038 (9)	3,567 (10)
2	≥69 (≥8.5)	1,746 (15)	7,207 (20)
Systolic blood pressure (mmHg)	120–129	1,777 (16)	7,203 (20)
	130–139	3,508 (31)	12,121 (33)
	140–149	3,387 (30)	10,242 (28)
2	≥150	2,759 (24)	6,863 (19)
Diastolic blood pressure (mmHg)	60–79	7,238 (63)	16,803 (46)
	80–89	3,599 (31)	15,816 (43)
	≥90	594 (5)	3,810 (10)
Total cholesterol (mmol/L)	3.0–3.9	3,782 (33)	10,960 (30)
	4.0-4.9	5,220 (46)	16,387 (45)
2	≥5.0	2,429 (21)	9,082 (25)
Medication	Antidiabetic drugs		
	Insulin (± non-insulin)	1,805 (16)	3,225 (9)
	Non-insulin only	7,722 (68)	26,753 (73)
	Antihypertensive drugs		
	Drugs on		
	renin-angiotensin	8,472 (74)	21,535 (59)
	system (± others)		
	Other antihypertensive drugs only	1,610 (14)	4,751 (13)
5	Statins	9,004 (79)	27,011 (74)
	Antiplatelet drugs	6,440 (56)	16,375 (45)
Index year	2006	9,091 (80)	24,192 (66)
	2007	1,008 (9)	3,741 (10)
	2008	545 (5)	2,880 (8)
	2009	432 (4)	2,677 (7)
	2010	355 (3)	2,939 (8)

BMI, body mass index; CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate

Frequencies (percentages) are shown otherwise specified.

* Participants with HbA1c <48 mmol/mol (<6.5%) were only included if they were prescribed antidiabetic drugs.

BMJ Open

	CKD			Non-CKD		
	Total	No CVD	CVD	Total	No CVD	CVD
	(N=11,431)	(N=7,216)	(N=4,215)	(N=36,429)	(N=28,569)	(N=7,860)
ndividual risk factor controlled						
HbA1c <53 mmol/mol (<7.0%)	4,348 (38)	2,767 (38)	1,581 (38)	12,413 (34)	9,603 (34)	2,810 (36
Blood pressure <140 & <90 mmHg	5,224 (46)	3,147 (44)	2,077 (49)	18,655 (51)	14,438 (51)	4,217 (54
Total cholesterol <5 mmol/L	9,002 (79)	5,512 (76)	3,490 (83)	27,347 (75)	20,826 (73)	6,521 (83
No smoking	9,753 (85)	6,193 (86)	3,560 (84)	28,728 (79)	22,565 (79)	6,163 (78
Number of risk factors controlled						
0	138 (1)	87 (1)	51 (1)	806 (2)	678 (2)	128 (2)
1	1,427 (12)	971 (13)	456 (11)	5,372 (15)	4,421 (15)	951 (12)
2	4,162 (36)	2,693 (37)	1,469 (35)	13,288 (36)	10,602 (37)	2,686 (34
3	4,240 (37)	2,598 (36)	1,642 (39)	12,657 (35)	9,665 (34)	2,992 (38
	1 A(A(12))	867 (12)	597 (14)	4 306 (12)	3 203 (11)	1.103 (14

Table 2. Risk factors controlled according to chronic kidney disease and a history of cardiovascular diseases
Figure legends

Figure 1. Relative hazards of the number of risk factors controlled for mortality and cardiovascular events in (a) participants with chronic kidney disease (CKD) and (b) participants with non-CKD. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease, and stroke were adjusted for age, gender, CKD stage (for CKD cohort), body mass index, deprivation level, duration of diabetes, proteinuria status, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

Figure 2. Relative hazards of presence of chronic kidney disease (CKD) for mortality and cardiovascular events compared with non-CKD as reference. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease, and stroke were adjusted for age, gender, body mass index, deprivation level, duration of diabetes, proteinuria status, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

(a) CKD

1	
2	
3	
4	
5	

controlled	N	Number of events	Observation (1,000 py)	Rate (per 1,000 py)		Adjusted HR/SHR (95% CI)	P value
[All participants]							
All-cause mortality							
4	1,464	388	8.1	48.1	-	0.60 (0.53 to 0.69)	< 0.001
3	4,240	1,301	23.2	56.0	+	0.70 (0.63 to 0.77)	< 0.001
2 0+1	4,162 1,565	1,393 598	8.2	61.5 72.5	· · ·	0.77 (0.70 to 0.85) Reference	<0.001
Cardiovascular mortality							
4	1,464	236	8.1	29.3	-	0.60 (0.50 to 0.70)	< 0.001
3	4,240	821	23.2	35.3		0.71 (0.62 to 0.80)	< 0.001
2 0+1	4,162 1,565	893 372	8.2	39.4 45.1		0.79 (0.70 to 0.90) Reference	<0.001
[Participants without previous CHD/stroke	1						
Coronary heart disease							
4	851	143	4.5	32.0		0.73 (0.59 to 0.91)	0.004
3	2,537	510	13.3	38.4		0.86 (0.73 to 1.00)	0.053
2 0+1	2,635	558 232	13.4 5.1	41.6 45.5	-	0.88 (0.75 to 1.03) Reference	0.114
Stroke							
4	865	51	4.7	10.9		0.63 (0.45 to 0.89)	0.009
3	2,580	173	14.0	12.3		0.72 (0.56 to 0.92)	0.010
2	2,670	186	14.3	13.0		0.72 (0.56 to 0.93)	0.010
0+1	1,044	102	5.4	18.9	· · · · · · · · ·	Reference	
					0.25 0.5 0.75 1 1.25		
(b) Non-CKD					Adjusted HR/SHR		
Number of risk factors		Number of	Observation	Rate		Adjusted HR/SHR	
controlled	N	events	(1,000 py)	(per 1,000 py)		(95% CI)	P value
[All participants]							
All-cause mortality							
4	4,306	515	23.3	22.1		0.62 (0.55 to 0.69)	< 0.001
3	12,657	1,670	69.7	23.9		0.69 (0.63 to 0.74)	< 0.001
2 0+1	13,288 6,178	1,928 935	73.4 33.3	26.3	1	0.77 (0.71 to 0.83) Reference	<0.001
Continuentation							
A POINT A POINT PROPERTY AND A							
4	4,306	266	23.3	11.4		0.55 (0.47 to 0.64)	< 0.001
4 3	4,306 12,657	266 912	23.3 69.7	11.4 13.1	1	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70)	<0.001 <0.001
4 3 2	4,306 12,657 13,288	266 912 1,015	23.3 69.7 73.4	11.4 13.1 13.8		0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75)	<0.001 <0.001 <0.001
4 3 2 0+1	4,306 12,657 13,288 6,178	266 912 1,015 545	23.3 69.7 73.4 33.3	11.4 13.1 13.8 16.4	1	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference	<0.001 <0.001 <0.001
4 3 2 0+1 [Participants without previous CHD/stroke	4,306 12,657 13,288 6,178	266 912 1,015 545	23.3 69.7 73.4 33.3	11.4 13.1 13.8 16.4	:	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference	<0.001 <0.001 <0.001
4 3 2 0+1 [Participants without previous CHD/stroke Coronary heart disease	4,306 12,657 13,288 6,178	266 912 1,015 545	23.3 69.7 73.4 33.3	11.4 13.1 13.8 16.4	•	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference	<0.001 <0.001 <0.001
4 3 2 0+1 [Participants without previous CHD/stroke Coronary heart disease 4 2	4,306 12,657 13,288 6,178]	266 912 1,015 545	23.3 69.7 73.4 33.3	11.4 13.1 13.8 16.4 18.4	•	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference 0.54 (0.47 to 0.62)	<0.001 <0.001 <0.001
4 3 2 bit of the second	4,306 12,657 13,288 6,178] 3,164 9,528 10,446	266 912 1,015 545 305 1,130 1 343	23.3 69.7 73.4 33.3 16.6 50.4	11.4 13.1 13.8 16.4 18.4 22.4 24.5	•	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference 0.54 (0.47 to 0.62) 0.65 (0.59 to 0.71)	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001
4 3 2 Unit of the second secon	4,306 12,657 13,288 6,178] 3,164 9,528 10,446 5,010	266 912 1,015 545 305 1,130 1,343 808	23.3 69.7 73.4 33.3 16.6 50.4 54.8 25.4	11.4 13.1 13.8 16.4 18.4 22.4 24.5 31.8		0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference 0.54 (0.47 to 0.62) 0.65 (0.59 to 0.71) 0.70 (0.64 to 0.77) Reference	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001
4 3 2 0+1 [Participants without previous CHD/stroke Coronary heart disease 4 3 2 0+1 Stroke	4,306 12,657 13,288 6,178 3,164 9,528 10,446 5,010	266 912 1,015 545 305 1,130 1,343 808	23.3 69.7 73.4 33.3 16.6 50.4 54.8 25.4	11.4 13.1 13.8 16.4 18.4 22.4 24.5 31.8	•	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference 0.54 (0.47 to 0.62) 0.65 (0.59 to 0.71) 0.70 (0.64 to 0.77) Reference	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001
4 3 2 b+1 [Participants without previous CHD/stroke Coronary heart disease 4 3 2 0+1 Stroke 4	4,306 12,657 13,288 6,178 3,164 9,528 10,446 5,010 3,190	266 912 1,015 545 1,130 1,343 808 63	23.3 69.7 73.4 33.3 16.6 50.4 54.8 25.4 17.2	11.4 13.1 13.8 16.4 18.4 24.5 31.8 3.7	•••••••••••••••••••••••••••••••••••••••	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference 0.54 (0.47 to 0.62) 0.65 (0.59 to 0.71) 0.70 (0.64 to 0.77) Reference 0.37 (0.28 to 0.50)	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
4 3 2 0+1 [Participants without previous CHD/stroke Coronary heart disease 4 3 2 0+1 Stroke 4 3	4,306 12,657 13,288 6,178 3,164 9,528 10,446 5,010 3,190 9,628	266 912 1,015 545 1,130 1,343 808 63 325 104	23.3 69.7 73.4 33.3 16.6 50.4 54.8 25.4 17.2 52.5	11.4 13.1 16.4 18.4 22.4 24.5 31.8 3.7 6.2	••••	0.55 (0.47 to 0.64) 0.63 (0.57 to 0.70) 0.68 (0.61 to 0.75) Reference 0.54 (0.47 to 0.62) 0.65 (0.59 to 0.71) 0.70 (0.64 to 0.77) Reference 0.37 (0.28 to 0.50) 0.63 (0.53 to 0.75) 0.53 to 0.53 to 0.75)	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

0.37 (0.28 to 0.50) 3.7 6.2 0.63 (0.53 to 0.75) 0.75 (0.63 to 0.88) 7.4 8.7 0.25 0.5 0.75 1 1.25

Adjusted HR/SHR

figure1

105x156mm (300 x 300 DPI)

Number of risk fact	tors	Adjusted HR/SHR	
controlled		(95% CI)	P value
[All participants]			
All-cause mortality			
4		1.16 (1.01 to 1.34)	0.040
3	+	1.22 (1.13 to 1.33)	<0.001
2	*	1.27 (1.18 to 1.37)	< 0.001
0+1	-	1.30 (1.16 to 1.45)	< 0.001
Cardiovascular mo	rtality		
4		1.25 (1.03 to 1.51)	0.026
3		1.28 (1.15 to 1.42)	<0.001
2	-	1.41 (1.28 to 1.55)	< 0.001
0+1	+	1.34 (1.15 to 1.56)	<0.001
[Participants witho	out previous CHD/stroke]		
Coronary heart dis	ease		
4	-	1.25 (1.00 to 1.56)	0.049
3		1.18 (1.05 to 1.33)	0.005
2	-	1.23 (1.10 to 1.37)	< 0.001
0+1	-	1.06 (0.90 to 1.25)	0.477
Stroke			
4		1.64 (1.07 to 2.52)	0.024
3	-	1.03 (0.84 to 1.26)	0.758
2	-	1.03 (0.85 to 1.24)	0.784
0+1		1.08 (0.83 to 1.41)	0.565
	0.5 1 1.5 2		
	Adjusted HR/SHR		
	figure2		
	66x78mm (300 x 300 DPI)		

SUPPLEMENTARY MATERIAL

Figure S1. Study cohort selection

BMI, body mass index; CKD, chronic kidney disease; CHD, coronary heart disease; CVD, Cardiovascular diseases; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; RRT, renal replacement therapy

Page 35 of 39

BMJ Open

Number of	HbA1c	Dlas damasıra	Total	N	CKD			Non-CKD		
risk factors	<53 mmol/mol	slood pressure	cholesterol		Overall	No CVD	CVD	Overall	No CVD	CVD
controlled	(<7.0%)	<140/90 mmHg	<5 mmol/L	smoking	(N=11,431)	(N=7,216)	(N=4,215)	(N=36,429)	(N=28,569)	(N=7,80
0	_	- ^	_	_	138 (1)	87 (1)	51 (1)	806 (2)	678 (2)	128 (2
1	Y		_	_	69 (0.6)	46 (0.6)	23 (0.6)	312 (1)	260 (0.9)	52 (0.7
	_	Y		_	89 (0.8)	64 (0.9)	25 (0.6)	759 (2)	624 (2)	135 (2
	_	_	Y	_	438 (4)	264 (4)	174 (4)	1,742 (5)	1,350 (5)	392 (5
	_	_	-02	Y	831 (7)	597 (8)	234 (6)	2,559 (7)	2,187 (8)	372 (5
2	Y	Y	_ (/	62 (0.5)	43 (0.6)	19 (0.5)	304 (0.8)	268 (0.9)	36 (0.5
	Y	_	Y		245 (2)	152 (2)	93 (2)	794 (2)	590 (2)	204 (3
	Y	_	_	Y	407 (4)	289 (4)	118 (3)	1,070 (3)	911 (3)	159 (2
	_	Y	Y	_	390 (3)	215 (3)	175 (4)	1,911 (5)	1,446 (5)	465 (6
	_	Y	_	Y	531 (5)	379 (5)	152 (4)	2,205 (6)	1,910 (7)	295 (4
	_	_	Y	Y	2,527 (22)	1,615 (22)	912 (22)	7,004 (19)	5,477 (19)	1,527 (1
3	Y	Y	Y	_	247 (2)	152 (2)	95 (2)	1,073 (3)	788 (3)	285 (4
	Y	Y	_	Y	302 (3)	199 (3)	103 (2)	1,067 (3)	905 (3)	162 (2
	Y	_	Y	Y	1,552 (14)	1,019 (14)	533 (13)	3,487 (10)	2,678 (9)	809 (1
	_	Y	Y	Y	2,139 (19)	1,228 (17)	911 (22)	7,030 (19)	5,294 (19)	1,736 (2
4	Y	Y	Y	Y	1,464 (13)	867 (12)	597 (14)	4,306 (12)	3,203 (11)	1,103 (*

Y, meeting the criterion; –, not meeting the criterion

CKD, chronic kidney disease; CVD, (a history of) cardiovascular diseases

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Figure S2. Relative hazards of individual risk factors controlled for mortality and cardiovascular events in (a) participants with chronic kidney disease (CKD) and (b) participants with non-CKD. Hazard ratios (HRs) for all-cause mortality and subdistribution hazard ratios (SHRs) for cardiovascular mortality, coronary heart disease, and stroke were adjusted for age, gender, CKD stage (for CKD cohort), body mass index, deprivation level, duration of diabetes, proteinuria status, a history of cardiovascular diseases (for mortality evaluation), prescribing of antidiabetic, antihypertensive, statins and antiplatelet drugs, and index year.

(a) CKD

		Adjusted HR/SHR	
Risk factors controlled		(95% CI)	P value
[All participants]			
All-cause mortality			
HbA1c <53 mmol/mol (<7.0%)	-	0.86 (0.80 to 0.92)	< 0.001
Blood pressure <140/90 mmHg	-	0.93 (0.87 to 0.99)	0.024
Total cholesterol <5 mmol/L	-	0.95 (0.87 to 1.04)	0.256
No smoking	-	0.65 (0.59 to 0.70)	<0.001
Cardiovascular mortality			
HbA1c <53 mmol/mol (<7.0%)	+	0.82 (0.75 to 0.90)	< 0.001
Blood pressure <140/90 mmHg	-	0.89 (0.82 to 0.97)	0.006
Total cholesterol <5 mmol/L		0.93 (0.83 to 1.03)	0.159
No smoking	•	0.74 (0.67 to 0.83)	< 0.001
[Participants without previous CHD/stroke]			
Coronary heart disease			
HbA1c <53 mmol/mol (<7.0%)		0.82 (0.73 to 0.92)	0.001
Blood pressure <140/90 mmHg		0.99 (0.89 to 1.10)	0.795
Total cholesterol <5 mmol/L		0.92 (0.80 to 1.04)	0.182
No smoking		0.98 (0.84 to 1.14)	0.779
Stroke			
HbA1c <53 mmol/mol (<7.0%)		0.93 (0.77 to 1.13)	0.472
Blood pressure <140/90 mmHg		0.87 (0.73 to 1.04)	0.131
Total cholesterol <5 mmol/L		0.88 (0.71 to 1.09)	0.250
No smoking		0.83 (0.65 to 1.05)	0.128
	0.25 0.5 0.75 1 1.25		

Adjusted HR/SHR

BMJ Open

1	
י ר	
2	
5	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
3Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
4J 46	
40 47	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

(b)	Non-CKD
-----	---------

		Adjusted HR/SHR	
Risk factors controlled		(95% Cl)	P value
[All participants]			
All-cause mortality			
HbA1c <53 mmol/mol (<7.0%)	-	0.97 (0.91 to 1.03)	0.299
Blood pressure <140/90 mmHg	-	0.96 (0.91 to 1.02)	0.181
Total cholesterol <5 mmol/L	-	0.93 (0.87 to 1.00)	0.055
No smoking		0.55 (0.52 to 0.59)	< 0.001
Cardiovascular mortality			
HbA1c <53 mmol/mol (<7.0%)		0.93 (0.85 to 1.01)	0.076
Blood pressure <140/90 mmHg	-	0.94 (0.87 to 1.02)	0.119
Total cholesterol <5 mmol/L	-	0.85 (0.77 to 0.93)	0.001
No smoking	•	0.58 (0.53 to 0.64)	<0.001
[Participants without previous CHD/stroke]			
Coronary heart disease			
HbA1c <53 mmol/mol (<7.0%)	-	0.83 (0.77 to 0.90)	< 0.001
Blood pressure <140/90 mmHg	-	0.90 (0.84 to 0.96)	0.001
Total cholesterol <5 mmol/L	-	0.80 (0.74 to 0.86)	< 0.001
No smoking		0.77 (0.71 to 0.83)	< 0.001
Stroke			
HbA1c <53 mmol/mol (<7.0%)		0.92 (0.80 to 1.05)	0.207
Blood pressure <140/90 mmHg		0.77 (0.68 to 0.88)	< 0.001
Total cholesterol <5 mmol/L		0.76 (0.66 to 0.88)	< 0.001
No smoking		0.66 (0.57 to 0.76)	<0.001
	0.25 0.5 0.75 1 1.25		

Adjusted HR/SHR

BMJ Open

STROBE 2007 (v4) Statement—Checklist of items that should be included in reports of cohort studies

Section/Topic	ltem #	Recommendation	Reported on page #
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or the abstract	1,2
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2,3
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	5,6
Objectives	3	State specific objectives, including any prespecified hypotheses	6
Methods			
Study design	4	Present key elements of study design early in the paper	6,7
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	6,7
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up	7,8,10
		(b) For matched studies, give matching criteria and number of exposed and unexposed	NA
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	9
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe	6-9
measurement		comparability of assessment methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	10,11
Study size	10	Explain how the study size was arrived at	6-8
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	11
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	11
		(b) Describe any methods used to examine subgroups and interactions	11
		(c) Explain how missing data were addressed	8,11
		(d) If applicable, explain how loss to follow-up was addressed	10
		(e) Describe any sensitivity analyses	NA
Results			

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed	12,Figure S1
		eligible, included in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	12,Figure S1
		(c) Consider use of a flow diagram	Figure S1
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	12,13,Table 1
		(b) Indicate number of participants with missing data for each variable of interest	Table 1, Figure S1
		(c) Summarise follow-up time (eg, average and total amount)	Figure 1
Outcome data	15*	Report numbers of outcome events or summary measures over time	Figure 1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence	12-15
		interval). Make clear which confounders were adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	9,11
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	NA
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	NA
Discussion			
Key results	18	Summarise key results with reference to study objectives	15-16
Limitations			
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from	15-18
		similar studies, and other relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	17,18
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on	19
		which the present article is based	

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml