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1 Approximation to the Horseshoe Density

There is no exact closed-form expression available for the horseshoe density function. We
present an approximation to the horseshoe density that can be used without the need for explicit
specification of the nuisance local scale parameters. Following Carvalho et al. (2010), the
marginal distribution of u given global scale parameter vy is found by integrating over possible
values of the local scale parameter 7, where u|7 ~ N(0,67%) and 7|y ~ C*(0,y). Here ¢
is a constant representing a scale factor for the distance between adjacent points when this
distribution is used for the increments of a kth-order smoothing model. This leads to

pu|d,y) = f pu|o,7,y)p(r|y)dr
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We let B = 2y/( V2n36) and introduce the substitution w = 772, which gives dr = —1/2w*?),
resulting in

Now we introduce the substitution z = 1 + wy?, which gives dw = y~2dz, and results in
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where E; is the exponential integral function. Note that lim,_,o+ E;(x) = oo, but for x > 0, the
function E;(x) is bounded as follows:

1 2 1

—e_xln(l + —) < Ei(x) < e‘xln(l + —).
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Then for u € {R : u # 0} we have
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It follows that the target density is bounded by
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Let the left bound in equation (1) be denoted B;(u#) and the right bound B,(u#). Note that as
u — 0, each of B(u), p(u|vy) and B,(u) approach co. It can be shown that f_o; Bi(w)du = v2/n

and f_O:o Bo(u)du = 2/+/m. Since V2/r < 1 < 2/+/n, these bounds can be used to find an
approximate expression for p(u|7y) that integrates to 1 and still satisfies equation (1). We set

Pluly) = wBi(u) + (1 = w)By(u) 2)

with constraints 0 < w < 1 and f_ 0:0 wBi(u) + (1 — w)By(u)du = 1. Using the values for the

integrated bounds and solving gives w = (y/r — 2)/( V2 - 2). Substituting this value for w into
equation (2) and simplifying gives the following closed-form approximation to the horseshoe
density function:
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2 Marginal Laplace Distribution with Irregular Grid Spac-
ing

The following is a derivation of the marginal prior distribution for the order-k differences when
grid spacing is unequal. These derivations are based on the scale-mixture representation of
the Laplace distribution. These results are known to apply to the first-order and second-order
models, but higher orders.

Let u; = A*9; and let §, be a constant representing a scale factor for the distance between
adjacent points when this distribution is used for the increments of a kth-order smoothing
model. For convenience, subscripts on # and ¢ are dropped from here forward. We assume
ult,6 ~ N(0,67%) and 72|A> ~ Exp(42/2). Here A = 1/y is the global shrinkage parameter. It
follows that
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where A = —~ . Now we make the substitution w = 1/72, which gives dr? = —w 2dw, and
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the marginal density for u becomes
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where the last line follows from the fact that the integrand in the second-to-last line is the pdf
of an inverse-Gaussian distribution with mean parameter 1 = V&A/|u| and shape parameter
A = A%. The result is the pdf of a Laplace distribution with mean zero and scale parameter

A/ V5. Note that the variance of the Laplace distribution is 26/42, which implies that the grid
spacing ¢ scales the variance of the increments u.

3 Data Example with Irregular Grid

We apply the SPMRF models to a data set with a continuous covariate. The response data are
rent per square meter of floor space in Munich, Germany, and the covariate is the floor space in
square meters. These data were analysed by Rue and Held (2005) using a second-order GMRF
with irregular spacing. Here we apply a second-order GMRF and SPMRF models using the
methods described in Section 2.4 of the main text.



Let x represent the floor space measurements, and let x; < x, < ... < x, be the ordered set of
unique floor measurement values. Further, let 6; = x;;; — x; be the distance between adjacent
floor space measurements. The marginal prior distributions for the second-order differences
were A%0; ~ N(0, dy?) for the normal prior, A%6; ~ Laplace(d Jl./ ?y) for the Laplace, and A%0; ~

HS(djl./ 2y) for the horseshoe, where
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Using methods described in Section 4.1 of the main text and Section 4 of the Supplementary

Material, we calculated the value of the hyperparameter for the global scale parameter to be
¢ = 0.00094, so y ~ C*(0,0.00094) for all models. The results are shown in Figure 1.
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Figure 1: Results for models using irregular grids for Munich rent data. Posterior medians (dark
line) are shown with 95% Bayesian credible intervals (BCIs). Locations of data are shown with
vertical bars at the bottom of plots.



4 Additional Simulation Results

Here we display plots with simulation results for normal data with o = 1.5 (Figure 2), Poisson
data (Figure 3), and binomial data (Figure 4). Summary measures for all data types show
similar patterns to each other and to those for normal data with o0 = 4.5 (Figure 2 in main
article).

Table 1: Mean values of performance measures across 100 simulations for normal observations
(0 = 1.5) for each model and trend function type.

Function Model MAD MCIW MASV TMASV

Constant Normal 0.115 0.698 0.002 0.000
Laplace 0.116 0.731 0.002 0.000
Horseshoe 0.127 0.921 0.004 0.000

Piecewise Const. Normal 1.040 5.479 1.647 0.606
Laplace 0.899 3282  1.557 0.606
Horseshoe 0.281 1.918 0.638 0.606

Smooth Normal 0.565 2.985 1.391 1.406
Laplace 0.561 2.985 1.393 1.406
Horseshoe 0.565 2.946 1.414 1.406

Varying Smooth ~ Normal 0.586 3.036 0.613 0.543
Laplace 0.550 2.898  0.592 0.543
Horseshoe  0.438 2228  0.558 0.543

Table 2: Mean values of performance measures across 100 simulations for Poisson observations
for each model and trend function type.

Function Model MAD MCIW MASYV TMASYV

Constant Normal 0.022 0.142 0.001 0.000
Laplace 0.023 0.149 0.001 0.000
Horseshoe 0.025 0.167 0.001 0.000

Piecewise Const. Normal 0.109 0.557 0.077 0.030
Laplace 0.092 0.529 0.064 0.030
Horseshoe 0.051 0.334 0.036 0.030

Smooth Normal 0.078 0.379 0.072 0.079
Laplace 0.078 0.380 0.072 0.079
Horseshoe 0.079 0.382 0.073 0.079

Varying Smooth ~ Normal 0.067 0.296  0.020 0.023
Laplace 0.066  0.295  0.020 0.023
Horseshoe 0.058 0.277  0.020 0.023




Table 3: Mean values of performance measures across 100 simulations for binomial observa-
tions for each model and trend function type.

Function Model MAD MCIW MASV TMASYV

Constant Normal 0.042 0.249 0.001 0.000
Laplace 0.043 0.262  0.001 0.000
Horseshoe 0.047 0.311 0.002 0.000

Piecewise Const. Normal 0.229 1.191 0.166 0.066
Laplace 0.193 1.126 0.137 0.066
Horseshoe 0.108 0.690 0.076 0.066

Smooth Normal 0.139 0.733 0.110 0.117
Laplace 0.139 0.735 0.111 0.117
Horseshoe 0.143 0.740 0.113 0.117

Varying Smooth ~ Normal 0.188 0.730  0.056 0.068
Laplace 0.183 0.726  0.056 0.068
Horseshoe 0.149 0.676  0.058 0.068
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Figure 2: Functions used in simulations and simulation results by model (N=normal,
L=Laplace, H=horseshoe) and function type for normally distributed data with o = 1.5. Top
row shows true functions (dashed lines) with example simulated data. Remaining rows show
mean absolute deviation (MAD), mean credible interval width (MCIW), and mean absolute
sequential variation (MASV). Horizontal dashed line in plots on bottom row is the true mean
absolute sequential variation (TMASV). Shown for each model are standard boxplots of simu-
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Figure 3: Functions used in simulations and simulation results by model (N=normal,

L=Laplace, H=horseshoe) and function type for Poisson distributed data. Top row shows true
functions (dashed lines) with example simulated data. Remaining rows show mean absolute de-
viation (MAD), mean credible interval width (MCIW), and mean absolute sequential variation
(MASYV). Horizontal dashed line in plots on bottom row is the true mean absolute sequential
variation (TMASV). Shown for each model are standard boxplots of simulation results (left)
and mean values with 95 % frequentist confidence intervals (right).
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Figure 4: Functions used in simulations and simulation results by model (N=normal,
L=Laplace, H=horseshoe) and function type for binomial distributed data. Top row shows true
functions (dashed lines) with empirical probability estimates from example simulated data. Re-
maining rows show mean absolute deviation (MAD), mean credible interval width (MCIW),
and mean absolute sequential variation (MASV). Horizontal dashed line in plots on bottom row
is the true mean absolute sequential variation (TMASV). Shown for each model are standard
boxplots of simulation results (left) and mean values with 95% frequentist confidence intervals

(right).



S Parameterizing the Global Smoothing Prior

Here we provide additional details for calculating the hyperparameter £ for the prior on the
global scale parameter y, where y ~ C*(0, £). First let Q be the precision matrix for the Markov
random field corresponding to the model of interest (see examples below), and £ = Q™' be the
covariance matrix with diagonal elements X;. Following Sgrbye and Rue (2014), the marginal
standard deviation of all components of @ for a fixed value of y is 0, (6;) = yo(0), where

1 v 1 v 1
Tret(6) = exp [Z ; log 0'|y=1}(9i)] = exp [r_z ; > log (Zii)] : 4)
That is, o(8) is the geometric mean of the individual marginal standard deviations when

v=1.

Before going further, let us describe two precision matrices used in the accompanying paper
and their associated covariance matrices. Sgrbye and Rue (2014) use intrinsic formulations of a
Gaussian Markov random field (GRMF), which is also possible with our models, but we chose
to use proper GMRF models. This requires specification of the variance of the first §, which we
denote w? = Var(6,). For a given value of y, the n X n precision matrix for a first-order model
is:

Y /w?+1 -1
-1 2 -1
5 -1 2 -1
0 =1/y , 5)
-1 2 -1
-1 1
and the corresponding covariance matrix is:
W W : w

W@ Py WP+ W + 9

W+ WP +2y7 W+ 2y w? + 2y?
2= ) (6)

Therefore, the marginal variances for the first-order model are %, ;

w? + 2y? :
w?* +(n—2)y* W+ (n-2)?
W+ (n—2)y* W+ (- 1)’

W W +y W+ 2y

second-order model, the n X n precision matrix is:

Y/ +2 -3 1
-3 6 -4 1
1 -4 6 -4 1
1 -4 6 -4 1

0, =1/ el Tl T
1 -4 6 -4 1
1 -4 6 -4 1
1 -4 5 =2
1 -2 1
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There is an analytical form for the covariance matrix for the second-order model, but it suffices
here to know that the form of the marginal variances is:

 Hi=DRi=D)

6 8)

Loii = W
Note that if we were using an intrinsic GMRF model, we would assume that w? is infinite,
which would result in a covariance matrix of rank n — k. Following Sgrbye and Rue (2014)
we would then use the generalized inverse of the precision matrix to calculate the marginal
variances.

In practice we use the variance of the data (transformed data if the 6 parameters are on a
transformed scale) as an estimate of w?. Although this is using the data twice, this offers a
reasonable constraint on the marginal variances of the 6s.

We want to set an upper bound U on the average marginal standard deviation of 6;, such
that Pr(c,(6;) > U) = a, where a is some small probability. Using the cumulative probability
function for a half-Cauchy distribution, we can find a value of { for a given value of o .(0)
specific to a model of interest and given common values of U and « by:

U
£ = . 9)
Trer(6) tan (£(1 — )

It may be useful to note here that the median of a half-Cauchy distribution is equal to its scale
parameter, since the median may be a more intuitive measure of the effect of different values of
.

For our data examples in the main text, we let U be the estimated standard deviation of the
data on the appropriate scale. We know that the marginal variances of the s should not exceed
the variance in the observed data, on average. We set @ = 0.05 as the probability of the average
marginal standard deviation exceeding U. For the coal mining example in the main text, we
found an estimate of the variance of the data on the log scale by >, In(y; + 0.5)/(n — 1), where
y; 1s the observed count at time i = 1,...,n. For the Tokyo rain example, we estimated the
variance of the data on the logit scale as ), logit((y; + g;)/m;))/(n — 1), where y; is the number
of years with rain on day i out of m; possible years, and g; = 0.005/,,—o — 0.0051,_; + 0L} ¢ 1},
where [ is an indicator function.

Suppose we have calculated ¢,;, the hyperparameter for a first-order model given the cor-
responding average marginal standard deviation o.¢(6,;) using Equation (9). If we wish to
calculate the value of ¢,, for a second-order model we can simply use

{02 — {01 O-ref(ool)-
O-ref(aoZ)
Now suppose we have a model with n equidistant nodes and want to increase the density of the
grid to kn nodes without changing the range of the grid. For a first-order model, Var(Af,ey) =
%Var(A@), and for a second-order model Var(A?6,.,,) = k%Var(AZH) (Lindgren and Rue, 2008;
Sgrbye and Rue, 2014). In terms of the hyperparameter for the global smoothing prior, for the
first-order model £, new = k~2Z,1, and for the second-order model £, pew = k7/22,5.
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Figure 5: Models fits to coal mining accidents data by model type and value of hyperparameter
for global scale: a) = 1, b) £ = 0.01, and c) { = 0.0001. Posterior medians and associated
95% Bayesian credible intervals are shown along with observed data.

6 Prior Sensitivity

We tested the sensitivity of the three prior formulations (normal, Laplace, and horseshoe) to the
value of the hyperparameter ({) which controls the scale of the distribution on the smoothing
parameter y, where y ~ C*(0, ) A smaller value of £ constricts y to be closer to zero, which in
turn constricts the scales of the priors on the order-k differences. We tested three levels for the
hyperparameter: a) { = 1, b) = 0.01, and c¢) { = 0.0001. In general, we expect noisier data
sets should be more sensitive to prior settings. The coal mine disaster data offered a good test
set because the observations are relatively noisy.

Clearly the horseshoe prior was the most sensitive to the level of ¢ (Figure 5). In particular,
the horseshoe results for = 1 looked more like those for the other two models in Figure 5, but
when ¢ = 0.0001, the horseshoe produced more defined break points and straighter lines with
narrower BCIs compared to the results with £ = 0.01.

7 Computational Efficiency

To compare SPMRF and GMRF models’ computational efficiency, we calculated the effective
number of posterior samples per second of computation time (ESSps) for different model for-
mulations and data configurations. We used the scenario with a piecewise-constant expected
value from our main simulations (Section 3) to test the effect of model type, model order, and
number of grid cells (n) on the ESS per second of sampling time. Here sampling time is defined
as the total run time minus the time spent in the adaptation (warm-up or burn-in) phase, where
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time is measured in seconds of CPU time. We also calculated the ESSps for the coal mining
and Tokyo rainfall examples.

There were three simulated scenarios with piecewise-constant trend: 1) order-1 with n =
100 observations and grid points (one observation per grid point), 2) order-1 with n = 200, and
3) order-2 with n = 100. The observations in these scenarios were normally distributed with
standard deviation o~ = 4.5. For each of these scenarios we ran 4 independent chains each with
1,000 iterations of burn-in and 2,500 iterations post burn-in thinned at every 5 for a total of
2,000 retained posterior samples combined across chains. The maximum ESS would therefore
be 2,000 for these scenarios. The chains were run in sequence so that the total time (TCPU)
sampling times (SCPU) times are the respective cumulative times across 4 chains. For the coal
mining and Tokyo rainfall examples we used the same settings for number of iterations and
thinning as was used in the main text (Section 4). We calculated effective sample size using the
methods described in the documentation for stan (Stan Development Team, 2015).

Table 4: Measures of computational efficiency for each model type (Normal (N), Laplace (L),
or Horseshoe (H)) for three simulated data scenarios and two real data examples. Model order
and number of parameters (p) are shown. The total CPU time (TCPU: includes adaptive phase)
and sampling CPU (SCPU) time are in seconds. The minimum and mean effective sample sizes
per second (ESSps) of SCPU are also shown.

. Min. Mean
Scenario Model Order p TCPU SCPU ESSps ESSps
Piece. Const. (n = 100) N 1 102 74 52 25.14  36.79

L 1 201 422 290 5.13 6.58
H 1 201 1,228 897 0.80 2.12
Piece. Const. (n =200) N 1 202 198 141 10.52  13.82
L 1 401 1,195 794 1.86 2.44
H 1 401 2,709 1,898 0.19 1.00
Piece. Const. (n = 100) N 2 102 797 592 2.61 3.26
L 2 200 3,916 2,770 0.52 0.68
H 2 200 4,822 3,473 0.12 0.37
Coal Mining N 1 113 42 37 121.00 133.48
L 1 224 228 200 20.07 2451
H 1 224 639 580 5.57 8.20
Tokyo Rainfall N 2 367 20,991 18,206 0.24 0.27
L 2 731 53,304 45,629 0.09 0.11
H 2 731 94,128 81,891 0.03 0.06

Tests indicated that doubling the number of grid points (with a single observation per grid
point) resulted in approximately 60% fewer ESSps for each model formulation (63% fewer for
both the Normal and Laplace and 53% for the Horseshoe), and changing from a first- to second-
order model resulted in approximately 90% fewer ESSps (91% fewer for the Normal, 90% for
the Laplace, and 83% for the Horseshoe). On average across the five scenarios investigated,
the Laplace formulation resulted in 77% fewer ESSps compared to the Normal formulation,
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and the Horseshoe resulted in 90% fewer ESSps. In terms of sampling times, the Laplace
formulations on average took 4.8 times longer to achieve the same number of effective samples
as the Normal formulations (range: 2.5 to 5.7 times longer), and the Horseshoe formulations
took an average of 12.2 times longer than the Normal (range: 4.6 to 17.4).
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