Ø

	CD	CD NAC
TW	17,467	13,584
AIF KO	6,547	4,187
	HFD	HFD NAC
TW	13,212	17,815
AIF KO	8,001	23,798

CD $0.6 \quad 0.4$ 0.4 0.6 0.4 0.6 0.4 0.4 0.6 0.4 0.4 0.6 0.6 0.4 0.6 0

Supplementary Table 4. High fat diet and antioxidant combined treatments restored ATP levels and thymopoiesis in AIF-/Y mice. (a) Representative ATP levels recorded in WT and AIF KO thymocytes from 21-day-old newborns from dams fed with control diet (CD) or high-fat diet (HFD) and supplied or not with NAC in drinking water (n = 9 animals per group). (b) Typical percentages of a CD4/CD8 labeling measured in $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) or with a HFD supplied with NAC ($AIF^{-/Y}$) and $AIF^{-/Y}$ ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes purified from mice animals fed with a control diet ($AIF^{-/Y}$) and $AIF^{-/Y}$ thymocytes and $AIF^{-/Y}$ thymocytes and $AIF^{-/Y}$ and $AIF^{-/Y}$ and $AIF^{-/Y}$ thymocytes and $AIF^{-/Y}$ NAC + HFD). These data are represented in the histograms included in the Figures 7e and f.