Complete mitochondrial and rDNA complex sequences of important vector species of *Biomphalaria*, obligatory hosts of the human-infecting blood fluke, *Schistosoma mansoni*

Si-Ming Zhang, Lijing Bu, Martina R. Laidemitt, Lijun Lu, Martin W. Mutuku, Gerald M. Mkoji, & Eric S. Loker

Supplementary Figure 1. The positions related to each element of rDNA cassette are provided in **A**. The nt identity is presented in **B** (28S), **C** (ITS1 (red) and ITS2 (blue)), and **D** (two ITSs combined).

Supplementary Figure 2. The phylogenetic trees were built using the three methods (ML, NJ and ME) and three types of sequences (ITS1, ITS2 and ITS1 and 2 combined). For *B. tenagophila* (BT), ITS1 and 2 were from GenBank accession number (AY030388). For *Physella acuta*, ITS1 and 2 were from KF316327 and KF316328, respectively. Please note that ITS1 and 2 sequences were not available in *Radix*, so sequences of ITS1 and 2 from *Physella acuta* were used as outgroup.

Supplementary Figure 3. The NJ tree based on partial mtCoxl sequences currently available in GenBank shows the relationships of *B. sudanica* or *B. sudanica*-like snails in Africa. Since there are a large number of sequences from *B. sudanica*-like snails collected from Lake Victoria, only few sequences were randomly selected. All mtCoxl sequences from other localities were used if they could be aligned to the sequences of *B. sudancia* derived from Lake Victoria (Stanley et al., 2011, 2014). The GenBank accession numbers starting with AF, DQ, EU, and HM indicate that data derived from publications of Campbell et al.³⁷, Jørgensen et al.²¹, Plam et al.⁴⁵, and Stanley et al. ^{10,11}, respectively. The mtCoxl sequences of *B. glabrata* G72 M line (Bg), *B. sudanica* (BS) and *B. choanomphala* (BC) were from present study. Geographical locations are provided at the end of the accession numbers.

Suppl Fig.1

BP

18S

ITS1

5.85

ITS2

285

1-1829

1830-

2397

2398-

2553

2554-

2975

2976-

6755

2535

2536-

2972

2973-

6749

	•		
BS	ВС	G72M	G16BS
1-1829	1-1829	1-1829	1-1829
1830- 2379	1830- 2378	1830- 2390	1830- 2390
2378-	2379-	2391-	2391-

2546

2547-

2971

2972-

6765

2546

2547-

2971

2972-

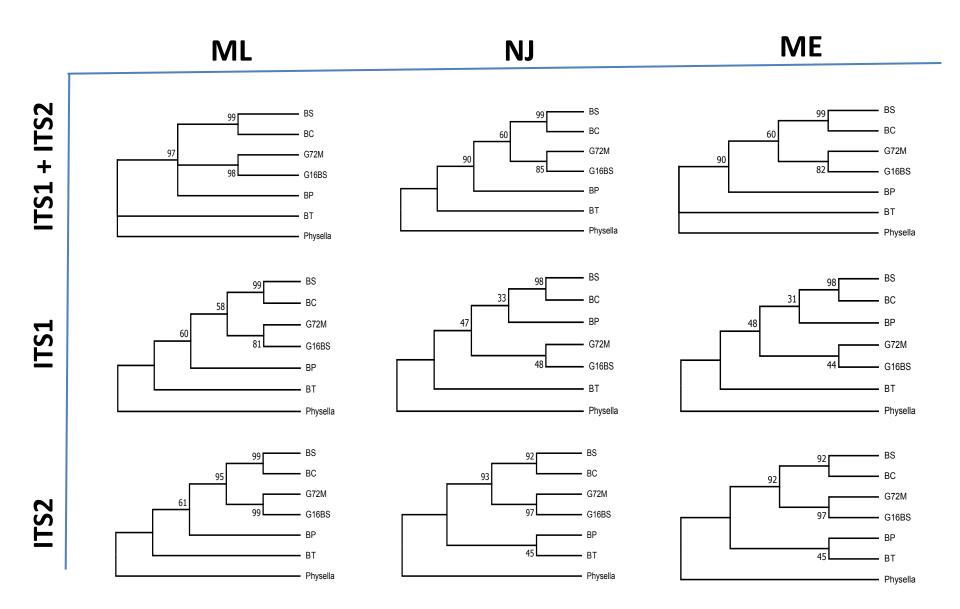
6765

В

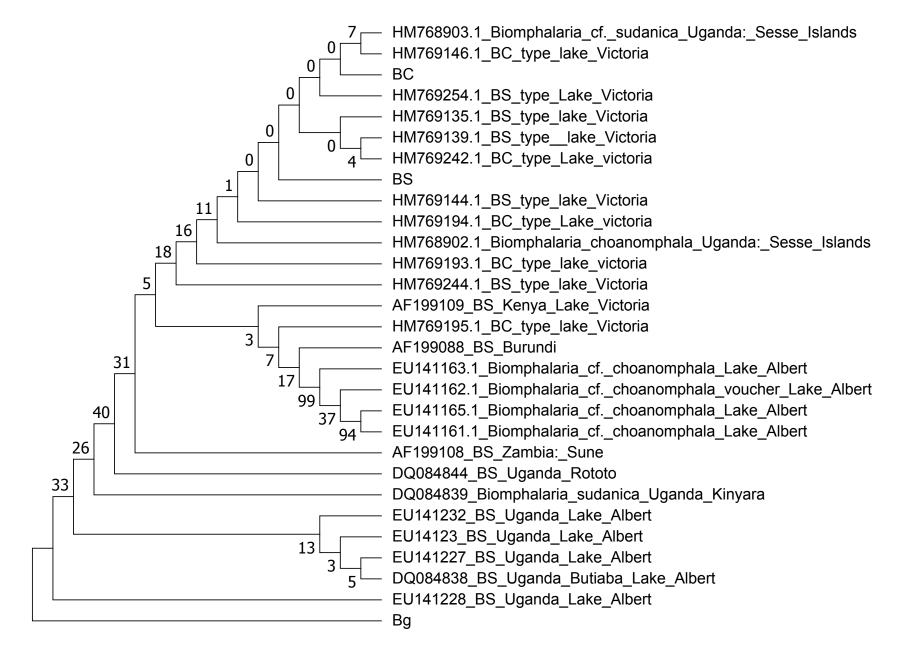
	ВР	BS	ВС	G72M	G16BS
ВР		99.79	99.79	99.76	99.76
BS			100	99.84	99.84
ВС				99.84	99.84
G72M					100
G16BS					

2534

2535-


2971

2972-


6748

	ВР	BS	ВС	G72M	G16BS
ВР		86.11	86.26	86.64	87.00
BS	91.99		99.82	91.26	91.26
ВС	91.92	99.77		91.06	91.06
G72M	90.74	92.91	92.91		99.11
G16BS	90.74	92.91	92.91	100	

	ВР	BS	ВС	G72M	G16BS
ВР		90.81	90.90	87.89	87.89
BS			99.80	92.08	92.08
ВС				91.97	91.97
G72M					99.49
G16BS					

Suppl Fig.2

