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SUMMARY

Beyond sample curation and basic pathologic char-
acterization, the digitized H&E-stained images of
TCGA samples remain underutilized. To highlight
this resource, we present mappings of tumor-infil-
trating lymphocytes (TILs) based on H&E images
from 13 TCGA tumor types. These TIL maps are
derived through computational staining using a con-
volutional neural network trained to classify patches
of images. Affinity propagation revealed local spatial
structure in TIL patterns and correlation with overall
survival. TIL map structural patterns were grouped
using standard histopathological parameters. These
patterns are enriched in particular T cell subpopula-
tions derived frommolecular measures. TIL densities
and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor
molecular subtypes, implying that spatial infiltrate
state could reflect particular tumor cell aberration
states. Obtaining spatial lymphocytic patterns linked
to the rich genomic characterization of TCGA sam-
ples demonstrates one use for the TCGA image
archives with insights into the tumor-immune micro-
environment.
INTRODUCTION

Although studies in humans have shown that chronic inflamma-

tion can promote tumorigenesis (Trinchieri, 2012), the host

immune system is equally capable of controlling tumor growth
This is an open access article under the CC BY-N
through the activation of adaptive and innate immune mecha-

nisms (Galon et al., 2013). Such intra-tumoral processes are

often referred to collectively as immunoediting, where this selec-

tive pressure can result in the emergence of tumor cells that

escape immune surveillance and, ultimately, to tumor progres-

sion. At the same time, many observations suggest that high

densities of tumor-infiltrating lymphocytes (TILs) correlate with

favorable clinical outcomes (Mlecnik et al., 2011a) such as longer

disease-free survival or improved overall survival (OS) in multiple

cancer types (Angell and Galon, 2013). Recent studies further

suggest that the importance of spatial context and the nature

of cellular heterogeneity of the tumormicroenvironment, in terms

of the immune infiltrate involving the tumor center and/or inva-

sive margin, can also correlate with cancer prognosis (Fridman

et al., 2012). Prognostic factors, most notably the Immunoscore,

that quantify such spatial TIL densities in different tumor regions

have high prognostic value that can significantly supplement and

sometimes even supersede the standard TNM classification and

staging in certain settings(Galon et al., 2006; Broussard and

Disis, 2011; Mlecnik et al., 2011b). Given this and the central

role of immunotherapy treatments in contemporary cancer

care, these assessments of tumor-associated lymphocytes are

increasingly important both in the clinical assessment of pathol-

ogy slides, as well as in translational research into the role of

these lymphocytic populations.

Tissue diagnostic studies are carried out and interpreted

by pathologists for virtually all cancer patients, and the over-

whelming majority of these are stained with hematoxylin and

eosin (H&E). The TCGAPan Cancer Atlas dataset includes repre-

sentative H&E diagnostic whole-slide images (WSIs) that enable

spatial quantification and analysis of TILs and association with

the wealth of molecular characterization conducted through

the TCGA. Previously, this rich trove of imaging data has primar-

ily been used solely to qualify samples for TCGA analysis and
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gleaning of some limited histopathologic parameters by expert

pathologists. Using digital pathology and digitized whole-slide

diagnostic tissue images, machine learning and deep learning

approaches can create a ‘‘Computational Stain.’’ This allows

identification and quantification of image features to formulate

higher-order relationships that go beyond simple densities

(e.g., of TILs) to explore quantitative assessments of lymphocyte

clustering patterns, as well as characterization of the inter-

relationships between TILs and tumor regions. We apply this to

the TCGA samples in a broad multi-cancer fashion. Only a few

TCGA tumor types have been explored for TIL content based

on feature extraction from histologic H&E images and in a

more limited fashion (Rutledge et al., 2013; Cancer Genome

Atlas Research Network, 2017).

Over the past 12 years, The Cancer Genome Atlas (TCGA)

has profoundly illuminated the genomic landscape of human

malignancy. More recently, it has been recognized that

genomic data derived from bulk tumor samples, which include

the tumor stromal, vascular, and immune compartments, as

well as tumor cells, can provide detailed information about

the tumor immune microenvironment. Molecular subtypes of

ovarian, melanoma, and pancreatic cancer have been defined

based on measures of immune infiltration (Cancer Genome

Atlas Research Network, 2011; Cancer Genome Atlas Network,

2015; Bailey et al., 2016), and a number of other tumors show

variation in immune gene expression by molecular subtype

(Iglesia et al., 2014, 2016; Kardos et al., 2016). Recent publica-

tions (Charoentong et al., 2017; Li et al., 2016; Rooney et al.,

2015) have presented comprehensive analyses of TCGA data

on the basis of immune content response. A recent study

(Thorsson et al., 2018) reports on a series of immunogenomic

characterizations that include assessments such as total lym-

phocytic infiltrate, immune cell type fractions, immune gene

expression signatures, HLA type and expression, neoantigen

prediction, T cell and B cell repertoire, and viral RNA expres-

sion. From these base-level results, integrative analyses were

performed to derive six immune subtypes, spanning tumor

types and subtypes. The comprehensive pairing of clinical,

sample, molecular tumor, and immune characterizations with

H&E WSIs in the TCGA is a unique resource (Cooper et al.,

2017) and offers the possibility of identifying relationships be-

tween computational staining of whole-slide images and other

measures of immune response that may in turn inform research

into immuno-oncological therapy. In this work, we characterize

spatial patterns of TILs and present relationships between TIL

patterns and immune subtypes, tumor types, immune cell frac-

tions, and patient survival, illustrating the potential of this kind

of analysis and the kinds of questions that can be explored.

For example, through integration of spatial patterns with molec-

ular TIL characterization, we found evidence for these patterns

being enriched in particular T cell populations.

This study represents an important milestone in the use of dig-

ital-pathology-based quantification as we are able to present re-

sults relating spatial and molecular tumor immune characteriza-

tions for roughly 5,000 patients with 13 cancer types. TILs and

spatial characterizations of TILs have shown significant value

in diagnostic and prognostic settings, and the ability to quantify

TILs from diagnostic tissue has proven to be demanding, expen-
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sive, challenging to scale, and beleaguered by subjectivity. Hu-

man review of diagnostic tissue is highly effective for traditional

diagnosis but is qualitative and thus is prone to both inter- and

intra- observer variability, particularly when attempting to quan-

tify or reproducibly characterize feature-rich phenomena such as

tumor-associated lymphocytic infiltrates. The spatial character-

izations we present are high resolution, with TIL infiltration as-

sessed in whole-slide images at a 50-micron resolution, and all

TIL maps are available to the scientific community for further

exploration. The recent FDA approval (FDA News Release,

2017) of whole-slide imaging for primary diagnostic use is lead-

ing to more widespread adoption of digital whole-slide imaging.

It is widely expected that, within 5–10 years, the great majority of

new pathology slides will be digitized, thus enabling the develop-

ment and clinical adoption of various digital-pathology-based

diagnostic and prognostic biomarkers that will likely provide

decision support for traditional pathologic interpretation in the

clinical setting.

RESULTS

Generating Maps of Tumor-Infiltrating Lymphocytes
using Convolutional Neural Networks
In order to accurately generate maps of tumor-infiltrating lym-

phocytes (TIL Maps) from digitized H&E stained tissue speci-

mens, we developed a comprehensive methodology and

accompanying interactive tools. This methodology is termed

Computational Staining and employs deep learning methods to

analyze images and tools to incorporate expert feedback into

the deep learning models. Such iterative feedback results in

the improvement of the overall accuracy of TIL Maps. Key high-

lights and the validation strategy for Computational Staining

are presented here, with further details provided in the Method

Details.

Computational Staining uses convolutional neural networks

(CNNs) to identify lymphocyte-infiltrated regions in digitized

H&E stained tissue specimens. The CNN is a supervised deep

learning method that has been successfully applied in a large

number of image analysis problems (Ciresxan et al., 2013; Huang

et al., 2016; Xie et al., 2015a,2015b;Wang et al., 2016; Sirinukun-

wattana et al., 2016; Bayramoglu and Heikkila, 2016; Su et al.,

2015; Hou et al., 2016a; Murthy et al., 2017;Chen et al., 2017;

Xu and Huang, 2016). A CNN first uses a set of training data to

learn a classification (or predictive) model in the training phase.

The resulting trained model is then used to classify new data

elements in a prediction phase. Deep-learning-based automatic

analysis methods generally require large annotated datasets.

Many state-of-the-art methods employ semi-supervised training

strategies to boost trained model performance using unlabeled

data (Ranzato et al., 2006; Masci et al., 2011; Bayramoglu and

Heikkila, 2016; Xu andHuang, 2016; Su et al., 2015). They (1) pre-

train an autoencoder for unsupervised representation learning;

(2) construct a CNN from the pretrained autoencoder; and

(3) fine-tune the constructed CNN for supervised classification.

One can train the unsupervised autoencoder on image patches

with the object to be classified (e.g., nucleus) in the center of

each patch (Hou et al., 2016a; Murthy et al., 2017) in order to



Figure 1. Workflow for Training, Model Development, and Subsequent Generation of TIL Maps

Top: for training and developing CNN models, a pathologist reviews images and marks regions with lymphocytes and necrosis. These training data are then

broken down into patches that are then fed into a training stage to train CNNs for lymphocyte and necrosis detection. A pathologist periodically reviews the results

for accuracy and corrects the prediction. This results in a pair of Trained CNNs. Bottom: these trained CNNs are then used on the full set of 5,455 images

from 13 cancer types to generate TIL maps. During TIL map generation, a probability map for TILs is generated from each image. These probabilities are then

reviewed and lymphocyte selection thresholds are established using a selective sampling strategy (further information in Method Details). These thresholds are

then used to obtain the final TIL maps. See also Figure S1 and Tables S1 and S2.
capture the visual variance of the object more accurately. This

method, however, requires a separate object detection step.

Instead of tuning the detection and classification modules sepa-

rately, recent studies (Graves and Jaitly, 2014; Ren et al., 2015;

Redmon et al., 2016; Kokkinos 2017) have developed CNNs to

perform these tasks in a unified but fully supervised pipeline.

Our methodology uses two CNNs: a lymphocyte infiltration

classification CNN (lymphocyte CNN) and a necrosis segmenta-

tion CNN (necrosis CNN). The lymphocyte CNN categorizes tiny

patches of an input image into those with lymphocyte infiltration

and those without. It is a semi-supervised CNN, initialized by an

unsupervised convolutional autoencoder (CAE). The necrosis

CNN segments the regions of necrosis and is designed to

eliminate false positives from necrotic regions where nuclei

may have characteristics similar to those in lymphocyte-infil-

trated regions. Details about the two CNNs are shown in Fig-

ure S1A and described in the Method Details.

Figure 1 illustrates both the training and model development

phase of our methodology (top half of the figure) and the use of

the trained model to generate TIL Maps (bottom half of the

figure). The CNN training and model development phase starts

with expert pathologists reviewing a set of images and marking

regions of lymphocytes and necrosis. The lymphocyte and ne-

crosis regions are then subdivided into tiny patches to create

the initial training dataset. Training with patches rather than

with individual regions and cells is done for computational effi-

ciency. The lymphocyte CNN is trained with 50 3 50 mm2

patches (equivalent to 100 3 100 square pixel patches in tissue

images acquired at 203magnification level) from WSIs. The ne-
crosis CNN is trained with larger patches of size 5003 500 mm2,

as more contextual information results in superior prediction of

patches being necrotic. The initial training step is followed by

an iterative cycle of review and refinement steps to improve

the prediction accuracy of the lymphocyte CNN. This prediction

step generates a probability value of lymphocyte infiltration for

each patch in the images. The patch-level predictions for an im-

age are combined and represented to pathologists as a heatmap

for review and visual editing using our TIL-Map editor tool. The

pathologists refine the CNN predictions for an image by first ad-

justing the probability value threshold (which globally updates

the labels of the patches in the image; if the probability value

of a patch exceeds the adjusted threshold, the patch is labeled

a TIL patch) and then manually editing the heatmap to correct

prediction errors for individual or groups of patches. At the end

of the editing step, the updated heatmaps are processed to

augment the training dataset. The lymphocyte CNN is re-trained

with the updated training dataset. This iterative process con-

tinues until adequate prediction accuracy is achieved, as deter-

mined by the pathologist feedback. The necrosis CNN was re-

trained only once in this study, because it achieved sufficient

prediction accuracy. The training and re-training steps of both

CNNs involve cross-validation to assess prediction performance

and avoid overfitting (Hou et al., 2017). See the Method Details

for an in-depth description of this process.

The trained models are used on test datasets (bottom half of

Figure 1). In this work, we applied ourmethod to 5,455 diagnostic

H&E WSIs from 13 TCGA tumor types in which lymphocytes are

known to be present. See Additional Resources for listing and
Cell Reports 23, 181–193, April 3, 2018 183



Figure 2. Assessment of TIL Prediction

(A) Receiver Operating Characteristic depicting performance of CNN. Applied

to TCGA lung adenocarcinoma patches. The current method is compared with

a popular CNN called VGG16 (see main text description).

(B) Comparison of TIL scores of super-patches between pathologists and

computational stain. x axis: median scores from three pathologists assessing

400 super-patches as having low,medium, or high lymphocyte infiltrate. y axis:

scores from computational staining, on a scale from 0 to 64.
acronyms. We included uveal melanoma (UVM) as one of the

13 cancer types essentially as a type of negative control (Fig-

ure S3A), since it has the fewest immune cells among TCGA

tumors (Thorsson et al., 2018). Tumor types were selected to

represent a range of known positive involvement of lymphocytes

and immunogenicity from literature and from molecular esti-

mates of lymphocyte content. Each image was partitioned into

patches of 50 3 50 mm2 and each patch was classified by

the CNNs. TIL maps were successfully generated (see Fig-

ure S1C and Table S2) for 5,202 TCGA tumor images from

4,759 individual participants in the 13 tumor types. 253 images
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(4.6%) did not yield TIL maps because of low image quality or

low prediction accuracy or because the images were duplicates

(see Figure S1C).

We assessed the performance of our approach in two comple-

mentary, yet orthogonal ways. The first assessment method,

described in Zhao et al. (2017), compares performance predic-

tion of our method with that of a popular and widely used

CNN—called VGG16 (Simonyan and Zisserman, 2014)—using

a set of WSIs from TCGA lung adenocarcinoma (LUAD) cases.

The training set of the lymphocyte CNN consisted of 20,876

patches. Each patch usually contains 0 to 30 nuclei and was an-

notated by a pathologist as lymphocyte infiltrated or not lympho-

cyte infiltrated. The training set of the necrosis segmentation

CNN consisted of 1,800 patches. Each patch was annotated

with a necrosis region mask segmented by a pathologist. We

sampled 2,480 patches to create the test dataset. The ROC

curve shows that our approach slightly outperforms VGG16 by

3.1% with respect to the area under ROC curve (AUROC) metric

(Figure 2A). We also performed direct comparison of TIL patch

assignments by the Computational Staining pipeline with those

by experienced pathologists by scoring 8 3 8 ‘‘super-patches’’

for TIL content. Three pathologists assessed 400 super-patches

as having low, medium, or high TIL content, while machine-

derived scores were assigned for the patch by counting TIL-pos-

itive patches (thus ranging from 0 to 64). Consistency was high

among each of the pathologists (> 80%), as assessed by re-

scoring of 100 super-patches. As seen in Figure 2B, the median

machine-derived score is quite distinct between the three ordinal

bins. This is evidenced in strong correlation as assessed by the

polyserial coefficient (Drasgow, 2014), designed for comparing

ordinal with continuous values (0.36 with 95% CI [0.27,0.45],

p value = 5.2 3 10�15, R package polycor).

Assessment and Correlates of TIL Spatial Fraction
Spatial Fraction of TILs

The spatial fraction of TILs was estimated as the fraction of TIL-

positive patches among the total number of patches identified on

the tissue sample. A wide range in spatial infiltrate is seen among

the TCGA tumor types (Figure 3A and Table S1), with high infil-

trates in gastric cancer (STAD) with amean of 14.6%, rectal can-

cer (READ) at 13.0%, squamous cell carcinoma in the lung

(LUSC) at 11.6%, while uveal melanoma (UVM) has only 1% esti-

mated TIL fraction, consistent with its inclusion as negative con-

trol (Figure S3A).Wide differences are also seen grouping tumors

by the nature of the immune response, according to a recent im-

mune characterization of all TCGA tumors (Thorsson et al.,

2018)(Figure 3B). The most immunologically active immune sub-

types (e.g., C1, C2) tend to have the greatest spatial infiltration of

lymphocytes. Within documented TCGA subtypes, which are

typically characterized by specific molecular changes in tumor

cells, strong differences are also seen (Figure S2A). EBV-positive

gastric cancer is particularly rich in TILs, with an average of 25%

of spatial regions infiltrated by TILs (Figure 3C). The lung squa-

mous secretory subtype (Wilkerson et al., 2010) is also particu-

larly rich in infiltrate (17%, Figure 3D) as is the mutation-rich

POLE subtype of endometrial cancer. Among breast cancer tu-

mors, the basal subtype has the greatest infiltrate (Figure 3E),

consistent with what has been observed in other studies (Iglesia



Figure 3. TIL Fraction by Tumor Category

(A–E) Percent TIL fraction, the proportion of TIL-positive patches within a TIL map, is shown by various categorizations of TCGA tumor samples. Each plotted

point represents a tumor sample for (A) 13 TCGA tumor types (4,612 cases), (B) six subtypes characterized by differences in the nature of the overall immune

response (Thorsson et al., 2018) (C5 has very few samples here), (C) gastrointestinal adenocarcinoma subtypes, (D) lung squamous cell carcinoma subtypes, and

(E) breast adenocarcinoma subtypes. See also Figure S2.
et al., 2014). Taken together, these data show that the nature of

the infiltrate has strong ties to aspects of the tumor microenvi-

ronment and that the nature of the infiltrate may be reflective of

particular molecular aberration states of tumor cells.

The spatial fraction of TILs was compared with molecular es-

timates of TIL content from molecular genomics assays (Thors-

son et al., 2018). The molecular estimate of TIL fraction is ob-

tained by multiplying an estimate of the overall leukocyte

fraction, based on DNA methylation arrays, with an estimate

of the lymphocyte proportion within the immune compartment

obtained by applying CIBERSORT (Newman et al., 2015) to

RNA sequencing data. Good, albeit imperfect, agreement is

seen between the imaging and molecular estimates (Figure 4A),

with Spearman correlation values ranging from 0.20 to 0.45 for

the most part accompanied by highly significant p values, and

with UVM, the negative control, showing no correlation. The

reasons for the differences between the molecular estimates

and spatial TIL fraction include: (1) molecular data are extracted

from a fresh frozen tissue section in proximity to the formalin-

fixed paraffin-embedded (FFPE) sample used to generate the

diagnostic H&E image, but the exact spatial relation is unknown;

(2) the molecular estimate is proportional to the number

of lymphocytes, whereas the spatial fraction of TILs is estimated

by tissue area; (3) the spatial analysis and TIL fraction

are an assessment of lymphocyte-infiltrated tissue that can

also include non-tumor regions on the diagnostic slides; and
(4) the molecular quantification is obtained from frozen sections

that are highly enriched for tumor as a criterion for project inclu-

sion. We further examined the outlier cases (see Figures 4B and

4C) having high levels of discordance between molecular and

spatial image-derived TIL estimates for several tumor types,

including BRCA, SKCM, LUAD, LUSC, STAD, and READ. We

determined that spatial TILs in non-tumor regions appeared to

play a major explanatory role (Figures S3B and S3C). Attempts

to exclude such areas by manual negative masking and/or

CNN-based automation for tumor recognition will be included

in future efforts in order to reduce the discordance between

the molecular estimates from samples that are highly enriched

for tumor and the spatial TIL estimates derived from diagnostic

H&E images.

Automated Assessment of Local Structures in the TIL
Infiltrate and Association with Molecular and Clinical
Readouts
Local Spatial Structure of the Immune Infiltrate

A unique feature of imaging data is the ability to go beyond total

lymphocytic infiltrate load to the assessment of patterns of lym-

phocytic infiltration. To identify such patterns, we first used affin-

ity propagation (FreyandDueck, 2007) to findspatially connected

and coherent regions (clusters) of TIL image patches (APCluster

R package; Bodenhofer et al., 2011). Examples of H&E images,

TIL maps, and clusters are shown in Figures 5A–5D for selected
Cell Reports 23, 181–193, April 3, 2018 185
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C

Figure 4. Comparison of TIL Proportion from Imaging and Molecular Estimates

(A) Spearman correlation coefficients and p values for comparison of TIL fraction from spatial estimates of TIL maps and molecular estimates of TIL fraction from

processing of cancer genomics data using deconvolution methods (see main text).

(B) Each point represents a breast adenocarcinoma tumor sample, with the value of TIL fraction from TIL maps (x axis) and from molecular estimates (y axis).

(C) As in B for 12 additional TCGA tumor types. See also Figure S3 and the companion manuscript (Thorsson et al., 2018).
cases exemplifying sparse and dense lymphocyte infiltrates. For

each slide, the resulting cluster pattern was characterized using

measures for simple count and extent statistics but also by

clustering indices, which assess more complex characteristics

such as cluster shape. Summary measures include the number

of clustersNcluster, themeannumber of TIL patches in the clusters

NP, the mean of the within-cluster dispersion WCD, and the

meanof cluster spatial extentsCE (seeFigure5E,MethodDetails,

and Table S1). In terms of TIL patch distances to a given cluster

center, the dispersion is related to their variance, while spatial

extent is akin to the maximal distance. Ncluster ranged from 2 to

46 over the entire cohort (4,480 cases, excluding non-tumor

slides), with a median of 12, and the mean cluster membership

was 293 TIL patches. We calculated the clustering indices of

Ball and Hall (1965), Banfield and Raftery (1993), the C index,

and thedeterminant ratio index, as implemented in theRpackage

clusterCrit (see Method Details and Table S1). The Ball-Hall

index is the mean of the dispersion through all of the clusters,

equivalent to the mean of the squared distances of the points of
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the cluster with respect to its center. In our data, the Ball-Hall in-

dex is correlated (rSpearman = 0.95) with the mean cluster extent,

CE. The Banfield-Raftery index is the weighted sum of the loga-

rithmsof themeancluster dispersion,which inour data correlates

with Ncluster (rSpearman = 0.95). We found similarity among

several of the various scores (Figure S4A), including overall

trending of some clustering indices to simpler measures such

as Ncluster and TIL fraction. The C index is derived from pairwise

distances and does not scale with any of the simpler measures.

Values of these scores for the cases depicted in Figures 5A–5D

are shown in Figure 5E. Clustering indices vary widely over

slides, as illustrated in Figure 6A for the Ball-Hall index. Tumors

with relatively high values of this index, such as BRCA and

PRAD, are not among those with highest overall infiltrate (Fig-

ure 3A). Since the Ball-Hall index scales with approximately

cluster extent, this implies that, in some of these tumor types

of moderate infiltrate mass, TIL clusters of relatively large

spatial extent are formed. In summary, this implies that, in some

tumor types, local clustering of TILs may be a more distinctive



Figure 5. Examples of TIL Map Structural

Patterns

(A–D) Four cases representing different degrees of

lymphocyte infiltration. Each example is labeled by

TCGA participant barcode and has the following

three panels. Left: H&E diagnostic image at low

magnification with tumor regions circled in yellow;

middle: TIL map; red represents a positive TIL

patch, blue represents a tissue region with no TIL

patch, while black represents no tissue; right: di-

agrams of clusters of TIL patches derived from the

affinity propagation clustering of the TIL patches.

Line segments connect cluster members with a

central representative for each cluster, and colors

are arbitrarily assigned to aid visual separation of

clusters.

(E) TIL map, cluster statistics, and global patterns

for the four examples in A–D. Each column repre-

sents one way to characterize the TIL map, ranging

from simple measures such as TIL count and

density to more complex ones characterizing de-

tails of cluster properties and image patterns (see

main text). See also Table S2.
feature than overall TIL infiltrate, in comparison with other tumor

types.

Correlates of Local TIL Spatial Structure with Survival

We examined the extent to which TIL fraction might impact

overall survival and the extent to which spatial characteristics

of the tumor microenvironment—beyond overall densities—

may provide additional predictive power of outcome. We

used Cox regression, accounting for age and gender as addi-

tional clinical covariates to perform survival analysis. In order

to mitigate possible problems in interpretation due to the

inherent correlation between some clustering indices and the

TIL densities, we used linear regression to obtain adjusted clus-

ter indices by computing residuals with respect to TIL density

(see Method Details). p values were obtained for four adjusted

indices and 13 tumor types, which were then adjusted for mul-

tiple testing using the Benjamini-Hochberg procedure. Five as-

sociations between cluster index and outcome were significant

(at p < 0.05) and are shown in Figure 6B. Interestingly, the

various indices were significant across different tumor types.

Examples of Kaplan-Meier curves for median-split clustering

indices are shown in Figures 6C (BRCA) and 6D (SKCM). In

SKCM, increased Banfield Raftery-index (‘‘cluster count’’) as-

sociates with superior survival, while in BRCA increased Ball-
C

Hall index (‘‘cluster extent’’) associates

with inferior survival, both adjusted

for overall TIL density. Of interest,

checkpoint inhibition immunotherapy

has been successfully applied to mela-

noma, while breast cancer tumors have

generally been unresponsive to check-

point blockade therapy. The association

of structure with survival, as evidenced

by less favorable survival in tumors with

elevated adjusted Ball-Hall index (‘‘clus-

ter extent’’) could be worthy of further
investigation as a stratification factor for patient tumors in clin-

ical studies of response.

Characterization of Overall TIL Map Structural Patterns
and Association with Molecular Estimates
We undertook further characterization of TIL spatial structure,

looking beyond local spatial structures toward a global structure

classification that reflects standard descriptions in current use

by practicing pathologists. We incorporated qualitative and

semiquantitative descriptions and scoring of the TIL map struc-

tural patterns in the combined intra-tumoral and peri-tumoral

regions (collectively referred to as ‘‘tumor’’) that are grossly

defined by the corresponding H&E-stained whole-slide images.

As seen in the recommendations from of the International TILs

Working Group (Salgado et al., 2015), International Immuno-

oncology Biomarkers Working Group (Hendry et al., 2017a,

2017b), and the prognostic descriptions used to characterize

TILs in cutaneousmelanoma (Crowson et al., 2006), pathologists

classify patterns within the TIL maps in both the intratumoral and

peritumoral regions. Correspondingly, patterns in the 5,202 TIL

maps were visually assigned by a pathologist into one of five

categories: ‘‘Brisk, diffuse’’ for diffusely infiltrative TILs scattered

throughout at least 30% of the area of the tumor (1,856 cases);
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Figure 6. Associations of TIL Local Spatial Structure with Cancer Type and Survival

Associations are shown with cluster indices, which summarize properties of clusters derived from affinity propagation clusters of the TIL map—properties that

provide details on local structure beyond simple densities.

(A) Ball-Hall cluster indices for all slide images considered in the study. The Ball-Hall index is a particular clustering index, summarizing the mean, through all the

clusters, of their mean dispersion and is equivalent to the mean of the squared distances of the points of the cluster with respect to its center. In our data, the Ball-

Hall index is correlated (rSpearman = 0.95) with the mean cluster extent, CE.

(B) Table of significant associations between TIL fraction-adjusted cluster indices and overall survival based on Cox regression, accounting for age and gender as

additional clinical covariates.

(C) Overall survival for median-stratified TIL fraction-adjusted Ball-Hall index in breast cancer. Significance test p value is shown in the lower left.

(D) Same as C but for adjusted Banfield-Raftery index in skin cutaneous melanoma. The Banfield-Raftery index is the weighted sum of the logarithms of the mean

cluster dispersion and, in our data, often correlates with the number of clusters. See also Figure S4.
‘‘Brisk, band-like’’ for immune responses forming band-like

boundaries bordering the tumor at its periphery (1,185); ‘‘Non-

brisk, multi-focal’’ for loosely scattered TILs present in less

than 30% but more than 5% of the area of the tumor (1,083);

‘‘Non-brisk, focal’’ for TILs scattered throughout less than 5%

but greater than 1% of the area of the tumor (874); and finally

‘‘None’’ in 143 cases where few TILs were present involving

1% or less of the area of the tumor (see Method Details). TIL

maps with corresponding H&E images with insufficient or no

grossly identifiable tumor at low magnification were designated

as indeterminate (61). The examples in Figures 5A–5D are cate-

gorized as follows: Figure 5A, TCGA-33-AASL Brisk, diffuse

pattern in a case of squamous cell carcinoma of the lung

showing a relatively strong immune infiltrate within the tumor;

Figure 5B, TCGA-D3-A2JF Brisk, band-like pattern in a case of

cutaneous melanoma showing immune infiltrates forming

boundaries bordering the tumor at its periphery and < 30%

TILs in the intra-tumoral component; Figure 5C, TCGA-E9-

A22H Non-brisk, multi-focal pattern in a case of invasive ductal

carcinoma of the breast showing a weak immune response

with loosely scattered TILs; Figure 5D, TCGA-EW-A1OX Non-

brisk, focal pattern in a case of invasive ductal carcinoma of

the breast showing a very weak immune response in a focal

area (categories also listed in final column of Figure 5E).
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The TIL map global patterns are not distributed in an equal

manner among TCGA tumor types. Figure 7A shows the ratio

of observed counts over those expected randomly. BRCA is en-

riched in the ‘‘Non-brisk, focal’’ phenotype (374 observed; 166

expected; p value < 3 3 10�16, Fisher’s exact test, Benjamini-

Hochberg adjusted). PAAD is enriched in the ‘‘Non-brisk, multi-

focal’’ phenotype (70 observed; 36 expected; p = 8 3 10�8), as

is PRAD (151; 70; p < 3 3 10�16). The ‘‘Brisk, band-like’’ pheno-

type is most enriched in SKCM (134; 86; 33 10�7) and very rare

in PAAD (7; 37; 2 3 10�9) and PRAD, whereas ‘‘Brisk, diffuse’’ is

more prevalent in STAD, READ, and CESC (p = 2 3 10�13,

4 3 10�6, and 3 3 10�10, respectively). Some TCGA subtypes

also show enrichment in particular patterns (Figure S5A). For

example, EBV-positive GI cancers are enriched in the ‘‘Brisk,

diffuse’’ phenotype (14; 5; 6 3 10�3). Differences are also seen

among immune subtypes (Figure S5B) defined in the TCGA

pan-immune analysis (Thorsson et al., 2018), where the C4 sub-

type is enriched in the ‘‘Non-brisk, focal’’ (82; 44; 63 10�8). This

is noteworthy, as subtype C4 is relatively richer in cells of the

monocyte/macrophage lineage, which may play a role in sculpt-

ing the TME as evidenced in these patterns. Interestingly, the im-

mune subtype C3, which tends to have good prognosis overall,

has relatively few ‘‘Brisk band-like’’ structures (59; 162; < 3 3

10�16), perhaps reflective of the more moderate and tempered



A

B

Figure 7. Association of Spatial Structural

Patternswith Tumor Type andCell Fractions

(A) Each row corresponds to one of four spatial

structure patterns, assigned in a manner consis-

tent with the descriptions currently used to

characterize the nature of the immune infiltrate

in standard histopathological examinations, and

each column is a TCGA tumor types. The values

shown are the sample count for each tumor type

and spatial structure pattern, divided by the counts

expected by chance. The ratio of observed to ex-

pected co-membership counts is shown on a color

scale, where the largest ratios are in red, values

near unity as yellow, and blue represents fewer

than expected counts.

(B) Estimates of the proportion of CD4, CD8, NK

cells, and B cells were segregated by spatial

structure patterns and averaged. Bars show the

proportion within each structural pattern. These

proportions are estimated using molecular data of

the TCGA. See also Figure S5.
immune response or productive infiltration of lymphocytes into

tumor regions. C2, which has relatively poor outcome, is some-

what richer in ‘‘Brisk’’ phenotypes, consistent with expectations

that the relatively large degree of lymphocytic infiltrates are not

adequately controlling tumor growth in this class of tumors. In

summary, the global structural patterns show associations with

distinct immune responses that can be either particular to sub-

types, or shared across multiple tumor types, and may play a

role in the determining the nature of the immune responses in

the corresponding tumor microenvironments.

We also examined whether there was evidence of differences

in the types of lymphocytes, such as signatures for CD4 T cells,

CD8 T cells, B cells, and NK cells, represented in each pheno-

type. These cells cannot be distinguished by the H&E image

analysis, but estimates of their proportions are available through

analysis of the molecular data (Thorsson et al., 2018 andMethod

Details). Averaging these values within structural patterns, we

see emerging relationships (Figures 7B and S5C), where ‘‘Brisk’’

phenotypes have a higher proportion of CD8 T cells than those

seen in the ‘‘Non-Brisk’’ phenotypes (mean 13.2% versus

10.7%, p value < 2.2 3 10�16, Mann–Whitney–Wilcoxon test).

Correspondingly, ‘‘Non-Brisk’’ phenotypes tend to have a

slightly greater proportion of CD4 T cells (p = 0.03). Thus, by

combining molecular estimates of cell proportion with structural

analysis of imagining data, we see evidence that particular T cell

subsets may play distinct roles in the formation of global struc-

tural patterns.

DISCUSSION

The scanned archival H&E archives of the TCGA are a rich but

quite underutilized resource within this project. In effect, it is a

largely ignored source of data that has only been manually and

sporadically mined and awaits more systematic characterization
C

using the variety of analytic tools and an-

alyses currently available. These images

have generally been used solely to ensure
the correct diagnosis, and panels of expert pathologists also

used the images to glean other variables such as mitotic activity,

tumor grade, and histologic subtypes for some of the TCGA

marker papers. The recently published sarcoma TCGA marker

paper utilized automated feature extraction of nuclear properties

for correlation with copy number load and genomic doubling

(Cancer GenomeAtlas Research Network, 2017). The cutaneous

melanoma TCGA marker paper used a visual inspection of

expert pathologists to assess the degree and pattern of lympho-

cytes in the frozen section images of the tissue going to the mo-

lecular platforms to correlate with other genomic and proteomic

assessments of lymphocytic infiltrate and also directly with clin-

ical outcome (Cancer Genome Atlas Network, 2015). This was a

manual process done by expert pathologists, and there was no

attempt at automation. The efforts presented in this present

work represent an initial attempt to systematically employ auto-

mated image processing to assess lymphocytic infiltrates across

multiple TCGA tumor types for correlation with genomic and epi-

genomic assessments of lymphocytic infiltrates, as well as clin-

ical outcome. Our sincere hope is that this early attempt to

exploit this remarkable TCGA resource of associated scanned

histologic images will spur others to similar approaches.

We report a scalable and cost-effective methodology for

computational staining to extract and characterize lymphocytes

and lymphocytic infiltrates in intra-tumoral, peri-tumoral, and

adjacent stromal regions. In comparing TIL fraction identified

via molecular methods to TIL maps derived from digital image

analyses of H&E images, we found good but certainly not perfect

agreement. Several factors may be contributing. First, perfect

agreement is not expected, since the estimates being compared

are not of the same quantity or source. Indeed, the molecular

estimates are analogous to cell count ratios, and the image frac-

tions correspond to the proportion of spatial areas that contain

TILs. Second, the exact spatial relation between the sample
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from which the molecular data is extracted (between the so-

called frozen tissue top-section and bottom-section) and the

diagnostic images from the FFPE examples used to generate

the diagnostic H&E slides is not known. The TILmaps are derived

from high-quality scanned diagnostic FFPE H&E slides from tis-

sue samples in an adjacent or possibly a more distant portion of

the tumor relative to where the top and bottom frozen sections

are sampled. Unfortunately, the frozen section images are not

of a quality that permits robust features extraction. Even though

some degree of correlation is certainly expected since TIL status

is often a property of the tumor as a whole, upon further evalua-

tion, we observed regional differences in a subset of samples

within the overall assessment. These differences are largely ex-

plained by the effect of spatial TILs in non-tumor regions in the

diagnostic H&E images, which appeared quite different than

the spatial TILs in the frozen section samples used for molecular

TIL estimates.

Integrated analysis of TIL maps and molecular data reveals

patterns and associations that can improve our understanding

of the tumor microenvironment, and we illustrate some emerging

relationships in this work. Both local patterns and overall struc-

tural patterns are differentially represented among tumor types,

immune subtypes, and tumor molecular subtypes, the latter of

which are typically driven by particular molecular alterations

in the tumor cell compartment. This implies that the nature of

spatial lymphocytic infiltrate state may be reflective of particular

aberration states of tumor cells. In some tumor types (such as

PAAD and PRAD), local clustering of TILs may be amore distinc-

tive feature than overall TIL infiltrate, as compared with other tu-

mor types. Structural patterns are further seen to be associated

with survival, implying that the nature and effectiveness of im-

mune response is encoded in patterns that may be assessable

at the time of tumor diagnosis. For example, in breast cancer,

less favorable survival in tumors with elevated adjusted Ball-

Hall index (‘‘cluster extent’’) might be worth further investigation

in terms of stratification of patient tumors in clinical studies of

response. Overall structural patterns show associations with im-

mune responses that are shared acrossmultiple tumor types and

may thus play a role in the determining the nature of those re-

sponses. For example, tumors with C2 immune subtypes, which

tend to have relatively poor outcome, are somewhat richer in

‘‘Brisk’’ phenotypes, consistent with expectations that the rela-

tively large degree of lymphocytic infiltrates are not adequately

controlling tumor growth in these tissues. The immune subtype

C3, which tends to have good prognosis overall, has fewer

‘‘Brisk band-like’’ structures, perhaps reflective of the more

moderate and tempered immune response, or productive infil-

tration of lymphocytes into tumor regions. In contrast, tumors

with the C4 immune subtype, which tends to be rich in cells of

the monocyte/macrophage lineage, tend to have more ‘‘Non-

brisk, focal’’ structures that may play a role in sculpting the

TME as evidenced in these patterns. Finally, these patterns are

enriched in particular T cell subpopulations as derived from

molecular measures. For example, ‘‘Brisk’’ phenotypes have a

higher proportion of CD8 T cells than those seen in the ‘‘Non-

Brisk’’ phenotypes.

A number of factors can contribute to cancer patient outcome.

In our analyses, we attempted to control for age and sex, but
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other factors such as tumor grade could affect the presence

or function of tumor-infiltrating lymphocytes. Grade is more

challenging to control for across tumor types, as some are not

graded such as melanoma while others such as breast and

prostate cancer have very different grading systems that are

challenging to compare rigorously. We readily accept that tumor

grade and potentially other factors could influence lymphocytic

infiltrates in both degree and pattern.

These analyses and early results demonstrate the vast poten-

tial of combining analysis of spatial structure with advanced

genomics and molecular assessment, as the TIL information is

being provided in the context of tumor molecular data wide

in detail and in scope. The TCGA molecular datasets and the

characterizations performed on them through the work of the

PanCancer Atlas consortium, including those on the tumor-

immune interface and the tumor microenvironment, provide an

extraordinarily rich source of correlative molecular information

for our discovered TIL patterns.

H&E imaging is performed routinely in labs throughout the

world as a component of tumor diagnostics. Methods for ex-

tracting information on TILs from H&E scanned images are

potentially of enormous research validity and possible clinical

applicability—hundreds of thousands of whole-slide images

exist in public repositories, in hospital system databases, and

many more will be generated for years to come. In a clinical

setting, rapid and automated identification of the degree and na-

ture of TIL infiltrate might be instrumental in determining whether

options for immunotherapy should be explored or whether more

detailed and costly immune diagnostics should be introduced.

Indeed, our approach might also complement immunopheno-

typing data, and the patterns of immune infiltration assessed

by pathologists are already widely employed in the standard

clinical reports of primary melanomas as a prognostic factor.

Applying methods like those we present here could also allow

for very incisive research at very reasonable price points and

levels of convenience. These kinds of analyses can only improve

with more detailed molecular-marker-based assays such as

immunohistochemistry, which are not currently applied in most

standard clinical settings due to lack of clinical necessity. Since

the TCGA cohorts often predate the broad clinical application of

effective immunotherapy such as checkpoint inhibitors and

contain little data regarding outcomes with such therapy, asso-

ciation of our TIL estimates and derived infiltration patterns await

more appropriate datasets to test associations.

We believe our CNN-derived TIL mapping provides a repro-

ducible and robust tool for the assessment of these lymphocytic

infiltrates. The ability to assess this tumor feature is rapidly

becoming vital to both clinical diagnosis and translational

research for onco-immunologic cancer care. These results

show that this approach correlates with molecular assessments

of TILs generated by the molecular platforms of the TCGA and

can also correlates with clinical outcome for certain tumor types.

Importantly, this study shows the value of feature extraction from

the information-rich resource of the scanned H&E image archive

of the TCGA. This resource has not been exploited to the degree

of the other TCGA molecular and clinical outcome resource and

clearly not to the degree it can support. This present study dem-

onstrates value that can be added by careful examination of this



rich resource, and it is our sincere hope that others will soon

explore the many facets of these imaging data.
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index.html

clusterCrit The Comprehensive R Archive

Network (CRAN)

https://cran.r-project.org/web/packages/clusterCrit/

polycor Drasgow, 2014 https://cran.r-project.org/package=polycor

Other

Data (images, clinical and molecular) used

in this study

National Cancer Institute

Genomics Data Commons

https://gdc.cancer.gov/about-data/publications/tilmap
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Vésteinn Thorsson

(Vesteinn.Thorsson@systemsbiology.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
A total of 4612 participants were included in this study. This study contained both males and females, with inclusions of genders

dependent on tumor types. There were 2655 females and 1957 males. TCGA’s goal was to characterize adult human tumors; there-

fore, the vastmajority of participants were over the age of 18. However, one participant under the age of 18 had tissue submitted prior

to clinical data. Age was missing for 40 participants. The range of ages was 15–90 (maximum set to 90 for protection of human sub-

jects) with a median age of diagnosis of 63 years of age. Institutional review boards at each tissue source site reviewed protocols and

consent documentation and approved submission of cases to TCGA. Detailed clinical, pathologic and molecular characterization of

these participants, as well as inclusion criteria and quality control procedures have been previously published for each of the indi-

vidual TGCA cancer types.

Sample Inclusion Criteria
Surgical resection of biopsy bio-specimens were collected from patients that had not received prior treatment for their disease

(ablation, chemotherapy, or radiotherapy). Institutional review boards at each tissue source site reviewed protocols and consent

documentation and approved submission of cases to TCGA. Cases were staged according to the American Joint Committee on

Cancer (AJCC). Each frozen primary tumor specimen had a companion normal tissue specimen (blood or blood components,

including DNA extracted at the tissue source site). Adjacent tissue was submitted for some cases. Specimens were shipped over-

night using a cryoport that maintained an average temperature of less than �180�C.
Pathology quality control was performed on each tumor and normal tissue (if available) specimen from either a frozen section slide

prepared by the BCR or from a frozen section slide prepared by the Tissue Source Site (TSS). Hematoxylin and eosin (H&E) stained

sections from each sample were subjected to independent pathology review to confirm that the tumor specimen was histologically

consistent with the allowable hepatocellular carcinomas and the adjacent tissue specimen contained no tumor cells. Adjacent tissue

with cirrhotic changes was not acceptable as a germline control, but was characterized if accompanied by DNA from a patient-

matched blood specimen. The percent tumor nuclei, percent necrosis, and other pathology annotations were also assessed. Tumor

samples with R 60% tumor nuclei and % 20% or less necrosis were submitted for nucleic acid extraction.
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TCGA Tumor Types Used in this Study

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

COAD Colon adenocarcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

PAAD Pancreatic adenocarcinoma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

UCEC Uterine Corpus Endometrial Carcinoma

UVM Uveal Melanoma

METHOD DETAILS

Image and Molecular Data Acquisition
Whole-slide tissue images were obtained from the public TCGA Data Portal (images are currently available from the Genomic Data

Commons (GDC) Legacy Archive, following the deprecation of the TCGA Data Portal). Our study uses the diagnostic images, with

some images from frozen tissue specimens used in the analysis of discrepancies with molecular estimates. The images were down-

loaded in the native image format, Aperio SVS files, in which they had been scanned. An SVS file stores an image in multiple reso-

lutions, including the highest resolution the image data was captured; for example in an image that is acquired at a 40xmagnification,

each pixel is �0.25 3 0.25 microns. An open source library called OpenSlide (http://openslide.org/formats/aperio/) was used to

extract the highest resolution image data for our study. 5455 diagnostic slides were analyzed the 13 TCGA tumor types in the study.

Clinical and molecular data were obtained from processed and quality controlled files of the PanCancer Atlas consortium,

available at (https://gdc.cancer.gov/about-data/publications/pancanatlas).

Convolutional Neural Networks for TIL Maps
Our overall methodology consists of two CNNs (a lymphocyte-infiltrated classification CNN (lymphocyte CNN) and a necrosis

segmentation CNN), as well as mechanisms for capturing and incorporating feedback from pathologists, to evaluate and refine a

generated Tumor-Infiltrating Lymphocyte (TIL) Map.

As is presented in the Results section, the lymphocyte CNN classifies image patches. Only foreground patches are processed

and classified. To determine if a patch is a foreground patch, our analysis pipeline checks if the patch has enough tissue using

the variance in Red, Green and Blue channels of the patch. A patch is labeled background and discarded if ðsðRedÞ +
sðGreenÞ + sðBlueÞÞ=3< 18. The values of the Red, Green, and Blue channels range from 0 to 255. The threshold value of 18 was

selected by adjusting it across several slides. We compute percent TIL values using only the foreground patches (i.e., patches

with tissue). Note the set of patches with tissue includes TIL patches.

TIL%= ðNumber of TIL PatchesÞ=ðNumber of Patches with TissueÞ
The lymphocyte CNN is a semi-supervised CNN, initialized by an unupervised Convolutional Autoencoder (CAE). The CNN and the

CAE are designed to have relatively high resolution input such that one can recognize individual lymphocytes. We have chosen to

apply unsupervised CAE pre-training because many studies have shown that it boosts the performance of the CNN, please refer

to our technical report (Hou et al., 2017). Using the lung adenocarcinoma (LUAD) patches, we empirically showed that the CNN

without pre-training achieved significantly lower area under the curve (AUC). The CAE encodes (compresses) an input image patch

of 503 50 mm2 (1003 100 square pixels, corresponding to 20xmagnification) into several vectors of length 100, and then reconstruct

the input image patch using these encoding vectors. We train the CAE in an unsupervised fashion, to minimize the pixel-wise image

patch reconstruction error, with limited number of encoding vectors. By doing this, the CAE implicitly learns to encode the position,

appearance and morphology etc. of nuclei, in the encoding vectors. Our guideline of designing the architecture of the CAE

is that, each encoding vector, in the ideal case, should be capable of encoding one and only one nucleus. As a result, the CAE

has 13 encoding layers and 3 pooling layers. The lymphocyte CNN is built based on the trained CAE: we discard the decoding

(reconstruction) part of the CAE, and added several more layers on the encoding vectors. Therefore, our lymphocyte CNN is a

18-layer network with 14 convolutional layers, 3 pooling layers, and 1 fully connected layer (Zhao et al., 2017).

We use two different CNNs for classification of necrosis regions and TILs, because our experiments showed necrosis regions and

lymphocytes are best recognized and classified at different image scales. The necrosis CNN model performs best with larger input

tissue regions, whereas the lymphocyte CNNmodel achieves the best results with local, high-resolution image patches. The necrosis

segmentation CNN is used to eliminate false positives from the lymphocyte CNN in necrotic regions. In these regions, nuclei may
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have characteristics similar to those in lymphocyte infiltrated regions. Because recognizing a region of 503 50 mm2 need contextual

information in a larger region, we model this as a segmentation problem with larger input patches at a relatively lower resolution:

500 3 500 mm2 patches are extracted from the image and downsampled 3 times. The resulting patch is 333 3 333 pixels at

20x magnification. The necrosis segmentation CNN outputs pixel-wise segmentation results. We use DeconvNet (Noh et al.,

2015) for this task because it is designed to predict pixel-wise class labels and handle structures and objects atmultiple scales (which

is more suitable for segmentation than patch-level classification) and it has been shown to achieve high prediction accuracy with

several benchmark image datasets. We train DeconvNet to classify each pixel as inside or outside a necrosis region. The output

of the necrosis segmentation CNN is resized to match the output resolution of the lymphocyte CNN. If over half of a 50x50 patch

intersects with a necrotic region, the patch is classified as non-lymphocyte-infiltrated.

Convolutional Autoencoder Details
The Convolutional Autoencoder (CAE) contains one branch with a small number of low resolution, dense features maps, and a sec-

ond branch with high resolution, but sparse feature maps The high resolution sparse feature maps are designed to capture fore-

ground objects (e.g., cancer cell nuclei and lymphocytes) - these objects are sparsely distributed in the tissue and contain substantial

high spatial frequency color and texture variability. The network learns foreground feature maps in a ‘‘crosswise sparse’’ manner:

neurons across all feature maps are not activated (output zero) in most feature map locations. Only neurons in a few feature map

locations can be activated. Since the non-activated neurons have no influence in the later decoding layers, the image foreground

is reconstructed using only the non-zero responses in the foreground encoding feature maps. The low resolution dense

feature maps are designed to encode background color and texture of the background. We first model the background (tissue,

cytoplasm etc.) and then extract the foreground that contains nuclei.

The supervised CNN takes the unsupervised encoded features from the unsupervised CAE for classification. We initialize the pa-

rameters in these layers to be the same as the parameters in the CAE. We attach four 1x1 convolutional layers after the foreground

encoding layer and two 3x3 convolutional layers after the background encoding layer. Each added layer has 320 convolutional filters.

We then apply global average pooling on the two branches. The pooled features are then concatenated together, followed by a final

classification layer with sigmoid activation function (Hou et al., 2017).

CNN Training and Testing Details
We train our CAE on the unlabeled dataset, minimizing the pixel-wise root mean squared error between the input images and the

reconstructed images. No regularization loss is deployed. We use stochastic gradient descent with batch size 32, learning rate

0.03 and momentum 0.9, and train the network until convergence (6 epochs).

For the lymphocyte CNN (constructed from the CAE) training, we use stochastic gradient descent with batch size 100, learning rate

0.001, andmomentum 0.985. We train the CNN until convergence (64 epochs) and divide the learning rate by 10 at the 20th, 32th, and

52th epoch. We use sigmoid as the nonlinearity function in the last layer and log-likelihood as the loss function. No regularization loss

is deployed. We apply three types of data augmentation. First, the input images are randomly cropped from a larger image. Second,

the colors of the input images are randomly perturbed. Third, we randomly rotate andmirror the input images.We trained theCAE and

CNN on a single Tesla K40 GPU. During testing phase, we augmented the test patch 24 times and averaged the prediction results.

The CAE and CNN used the Theano library (http://deeplearning.net/software/theano/).

CNN-VGG Comparison Experiment Details
We fine-tuned the VGG 16-layer network which was pre-trained on ImageNet. Fine-tuning the VGG16 network has been shown to be

robust for pathology image classification (Xu et.al. 2015; Hou et al., 2016b). We used stochastic gradient descent with batch size 32,

learning rate 0.0001, and momentum 0.985. We trained the lymphocyte CNN until convergence (32 epochs). We used the same loss

function and data augmentation method used for the proposed CNN. To match the input size of the VGG16 network, we re-sized the

input patches from 100 3 100 pixels to 224 3 224 pixels. Same as the proposed CNN, during testing phase, we augment the test

patch 24 times and average the prediction results.

Iterative Model Training and Data Labeling
We have implemented an iterative workflow as depicted in Figure S1 in order to train the CNN models. First, an unsupervised image

analysis of WSIs is executed to initialize a CNN model. This model is refined in an iterative process in which CNN predictions are

reviewed, corrected and refined by expert pathologists and the CNN model is re-trained with the updated data in order to improve

its classification performance. After a training phase, the CNN model is applied to patches in the test set. For each test patch, the

lymphocyte CNNproduces a probability of the patch being a lymphocyte-infiltrated patch. The label of the patch is decided by simple

thresholding; if the probability value is above a predefined threshold, the patch is classified as lymphocyte-infiltrated.

Training a fully supervised CNN requires a large number of training instances with ground truth labels. Masci et al. (Masci et al.,

2011) have shown that utilizing unlabeled instances can boost the performance of a CNN. Drawing from those findings, we first

trained an unsupervised Convolutional Auto-Encoder (CAE) to learn the representation of nuclei and lymphocytes in histopathology

images and initialize the lymphocyte CNN (Zhao et al., 2017). In this way, the initial lymphocyte CNNmodel captures the appearance

of histopathology images without supervised training. We initialized the weights of the necrosis segmentation CNN randomly
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following the DeconvNet approach. We then trained the CNNs with labeled images. The training phases of the CNNs involve a cross-

validation step to assess prediction performance and avoid overfitting (Hou et al., 2017).

Review and Refinement of CNN Predictions
We developed a web application, called the TIL-Map editor, to support the review and refinement by the pathologists of the tumor-

infiltrating lymphocyte patch predictions and the segmentation of necrotic regions. The TIL-Map editor extends caMicroscope

(Sharma et al., 2014) interface to enable the visualization of patch-level classification labels as a heatmap overlay on a WSI. It is

distributed as part of a suite of tools called QuIP - Quantitative Imaging for Pathology (Saltz et al., 2017). QuIP is an open-source

software systemwhich consists of a suite of integrated data services andweb-based user applications designed for themanagement

and analysis of whole-slide tissue images and indexing and exploration of image features. When using the TIL-Map editor, a user can

interactively visualize, pan, and zoom-in/out of the whole-slide tissue image and interactively pan and zoom around the image, in a

manner similar to various online mapping systems. It display the TIL-Maps, as polygonal overlays that appear over the H&E image.

The intermediate and final TIL Maps are stored in the QuIP FeatureDB, whichmanages and indexes both the imagemetadata and the

TIL classification results. Figure 2B shows an example heatmap along with the TIL-Map editor.

Each patch in a WSI is represented as a rectangle and associated with a classification label and the probability value computed by

the CNN. This information is stored as a data element (document) in FeatureDB and indexed to speed up queries by the TIL-Map

editor to retrieve and display subsets of patches. After classification results for a set of WSIs have been loaded to the database,

a pathologist can use a web browser to view and update the classification results. The pathologist would use the TIL-Map editor

to examine an image, query FeatureDB to retrieve patches visible within the view point and zoom level and display them as a

two-color heatmap. The pathologist can edit the heatmap using the ‘‘Lymphocyte Sensitivity,’’ ‘‘Necrosis Specificity,’’ ‘‘Smooth-

ness’’ sliders in a panel. These slides allow the pathologist to change the threshold value which determines if a patch should be clas-

sified as lymphocyte-infiltrated or not. For finer-grain editing of individual patches or sets of patches, the pathologist can use the

‘‘Markup Edit’’ function to markup specific patches and label them as lymphocyte-infiltrated or not-lymphocyte-infiltrated. The

pathologist can then save the updated patch labels to the database. The updated patch labels are used to retrain the CNN. Changes

to the heatmap are only visible to the user him/herself: multiple users can work independently selecting lymphocyte sensitivity and

making finer-grain editing in the same slide without knowing each other’s editing choices.

In this work, a team of three pathologists from Stony Brook Medicine and MD Anderson Cancer Center reviewed and refined 10 to

20 WSIs in each cancer type using the TIL-Map editor. Each image was assigned to two pathologists. Each pathologist separately

adjusted the ‘‘Lymphocyte Sensitivity,’’ ‘‘Necrosis Specificity,’’ ‘‘Smoothness’’ thresholds and manually edited regions in the images

using the ‘‘Markup Edit’’ tool in order to generate an accurate patch-level classification in the entire image. Depending on the pathol-

ogists consensus, if retraining was needed, the pathologists collaboratively generated a consensus lymphocyte heatmap for each

image. Data from these consensus heatmaps was input back to the lymphocyte CNN in a training step to further improve its

performance.

Determining Lymphocyte Selection Thresholds
The trained lymphocyte and necrosis CNNswas applied to 5455 diagnostic slides available for the 13 TCGA tumor types in the study.

We then determined selection thresholds based on overall probability estimates for each slide to correct for possible slide-specific

bias, in which the CNNwas seen to systematically over or under predicts lymphocytes depending on the overall characteristics of the

whole slide. The process of determining the lymphocyte selection thresholds is shown in Figure S1. The first step is to classify each

slide into categories that reflect whether there is systematic over or under prediction of lymphocytes. To do this. for each slide, ten

patches were sampled from 10 ranges of the lymphocyte CNN’s scores (0.10-0.20, 0.20-0.25, 0.25-0.30, 0.30-0.40, 0.40-0.50,

0.60-0.70, 0.70-0.80, 0.80-0.90, 0.90-1.00). Three pathologists labeled them as lymphocyte infiltrated or not. Based on the number

of labeled lymphocyte/non-lymphocyte patches, each slide was categorized into 1 of 7 groups: Groups A-G, based corresponding to

0,1,2,3-7,8,9, and 10 positive patches respectively. The second step is to select a threshold in each group. In each group, we

randomly selected 8 slides and manually adjusted thresholds for each of them using our visual TIL-Map editor. The threshold of

all slides in one group was set to be the average threshold selected for the eight slides sampled in that group. Note that if we cate-

gorize the slides intomore number of groups, thenwe have tomanually select thresholds formore slides, since per group, ameaning-

ful averaged threshold requires a minimum number of selected thresholds. On the other hand, if we categorize the slides into fewer

groups, the intra-group variance of possible slide-specific biases might be too large. Therefore, we select seven as the number of

groups, striking a balance between efficiency and effectiveness.

Subsequent to processing as described above, incomplete TIL maps or those with failed predictions were removed, and for LUAD

additional manual review was performed to remove TIL maps derived from poor slides, such as those that were out-of-focus or only

partially visible. This resulted in 5202 TIL maps (see Figure S1C, Table S2) for further analysis and distribution. For a number of TCGA

cases, multiple diagnostics slides are available, distinguished by TCGA slide ID barcode suffixes DX1, DX2,., DX13. All cases have

a DX1 diagnostic slide; hence these slides and corresponding TIL maps were used in subsequent correlative analyses. The 5202

slide-derived TIL maps correspond to 4759 TCGA participants and slide IDs with suffix DX1.
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Molecular Data Estimates of Immune Response
We used estimates of tumor and immune characteristics derived and made available in (Thorsson et al., 2018). The estimate of TIL

fraction by genomics measurements is obtained as described therein, by multiplying overall leukocyte fraction derived from DNA

methylation with an aggregated proportion of immune-cell fractions within the immune compartment estimated using CIBERSORT

(Newman et al., 2015). The lymphocyte fraction is an aggregation of CIBERSORT estimates of naive and memory B cells, naive,

resting and activated memory CD4 T cells, follicular helper T cells, T regulatory cells, gamma-delta T cells, CD8 T cells, activated

and resting NK cells and plasma cells. To compare with these data with TIL estimates from images, participant and slide barcodes

were restricted to those satisfying the inclusion criteria of the TCGA PanCancer Atlas and Immune Response Working Group. Of the

4705 caseswith characterized TILmap clusters and patterns (see below), 4612were thus available for molecular data integration and

comparison (Table S1, see also Figure S1C, Table S2).

Local Spatial Structure of Immune Infiltrate
We used the APCluster R package (Bodenhofer et al., 2011) to apply the affinity propagation algorithm to obtain local TIL cluster pat-

terns. The affinity propagation approach (Frey and Dueck, 2007) simultaneously considers all data points as potential exemplars (i.e.,

the centers of clusters) from among possible data points. Treating each data point as a node in a network, it recursively transmits real-

valued messages along edges of the network until it finds a good set of exemplars and corresponding clusters. We define the sim-

ilarities between data points (TIL patches) as the negative square Euclidean distance between them. Aside from the similarity matrix

itself, themost important input parameter is the so-called ‘‘input preference’’ which can be interpreted as the tendency of a data sam-

ple to become an exemplar. The function apcluster in the package contains an argument q that allows setting the ‘input preference’

parameter to a certain quantile of the input similarities: resulting in the median for q = 0.5 and in the minimum for q = 0. To select this

parameter, we generated synthetic data points in a plane comprising two distinct Gaussian clouds of points. Using the synthetic data,

we observed that q = 0 was best able to cluster these points into two clusters, and used this value for identifying TIL clusters. Of the

5202 TIL maps, 5144 clustering results were generated (see Figure S1C, Table S2), with the remainder failing to complete clustering

runs in time or failing due to memory errors, mostly in slides with numerous TILs.

Cluster characterization was made using simple measures of counts and membership and cluster indices from the R package

clusterCrit by Bernard Desgraupes. The Ball-Hall, Banfield-Raftery, C Index, and Determinant Ration indices are detailed in the pack-

age documentation.
Variable Definition or Reference

Number of TIL Patches TIL patch count

TIL fraction (TIL patch count)/(Total number of available patches on tissue slice)

Number of TIL Clusters Number of clusters, from affinity propagation clustering

Cluster Size Mean Mean of the cluster membership counts

Cluster Size Standard Deviation Standard deviation of the cluster membership counts

Within-Cluster Dispersion Mean Mean of the values of WGSSk, the within-cluster dispersion (see below)

Within-Cluster Dispersion Standard

Deviation

Standard deviation of the values of WGSSk

Cluster Extent Mean Mean of the maximum distances to clusters exemplars. The cluster examplar is the most

representative TIL patch for the cluster, as defined in the affinity propagation method

Cluster Extent Standard Deviation Standard deviation of the maximum distances to exemplars

Ball Hall Index Ball and Hall (1965). Available at: http://www.dtic.mil/docs/citations/AD0699616

Banfield Raftery Index Banfield and Raftery (1993)

C Index Hubert and Schultz (1976)

Determinant Ratio Index Scott and Symons (1971)

Ball Hall Index - TIL count adjusted ‘Adjusted’ refers to the residual of the corresponding index after regression against %TIL density

Banfield Raftery Index - TIL count

adjusted

‘Adjusted’ refers to the residual of the corresponding index after regression against %TIL density

C Index - TIL count adjusted ‘Adjusted’ refers to the residual of the corresponding index after regression against %TIL density

Determinant Ratio Index - TIL count

adjusted

‘Adjusted’ refers to the residual of the corresponding index after regression against %TIL density
In the above, WGSSk is a within-cluster dispersion which is the sum of the squared distances between the observations and the

barycenter of the cluster (see https://CRAN.R-project.org/package=clusterCrit) for details. To compute the adjusted indices, linear

regression was used to model the relationship between the clustering index and the%TIL density. The regression residual was used
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as the adjusted index. Cluster characteristic were generated for all 5144 slides with cluster results (4705 with DX1 suffix)(see Fig-

ure S1C, Table S2) and adjusted indices for 4509 cases.

Assessment of TIL Map Structural Patterns
In order to perform a comprehensive assessment of the TIL map structural patterns, the collection of 5202 H&E images (see above,

4759 with DX1 suffix) and the corresponding TIL maps were visually inspected to ensure that each H&E image had a correctly

matched TIL map, after which, a subset of 500 H&E images and corresponding TIL maps were closely inspected at higher power

magnification (100x to 200x) in 30-50 fields to ensure that the lymphocyte-detection algorithm was performing as intended and

not mistakenly identifying tumor cells as lymphocytes across the various tumor types as a quality-control measure. We further em-

ployed H&E images and corresponding TILmaps from cases of uveal melanoma as negative controls becausemelanoma tumor cells

and melanotic pigment can be a difficult challenge for the lymphocyte-detection algorithm.

After the negative controls were verified and quality measures were satisfactorily addressed, TIL maps (total N = 4455) were as-

sessed in a two part fashion by a qualitative description and a semiquantitative score based on visual inspection with respect to the

tumor region only, which is determined by histopathologic evaluation at low-power magnification (40x) of the corresponding H&E

diagnostic whole-slide image. The tumor region represents the combined intra-tumoral and peri-tumoral regions and excludes

the adjacent non-tumor regions.

The qualitative description characterizes the nature of the immune infiltrate with respect to the gross spatial distribution of the TILs

in only the tumor region with terms like ‘‘Focal’’ (localized), ‘‘Multi-focal’’ (loosely scattered), ‘‘Diffuse’’ (spread out over a large area),

and ‘‘Band-like’’ (well-defined boundaries bordering the tumor at its periphery). The semiquantitative scoring evaluates the relative

strength of the immune response terms like ‘‘None,’’ ‘‘Non-brisk’’ (minimal tomild partial immune response), and ‘‘Brisk’’ (moderate to

strong immune response).

Taken together, ‘‘Non-brisk, focal’’ is indicative of a ‘‘very weak’’ but minimally present immune response with a low density of TILs

in a localized area of the tumor, whereas ‘‘Non-brisk, multi-focal’’ is indicative of a weak partial immune response with loosely scat-

tered TILs in a few areas of the tumor. However, ‘‘Brisk, diffuse’’ represents a moderate to strong immune response with a relatively

dense and spread out pattern of TILs across > 30% of the tumor even if there are band-like boundaries bordering the tumor at its

periphery. The ‘‘Brisk, band-like’’ description was reserved for cases where the TIL map patterns showed relatively organized struc-

tures that appear as boundaries bordering the tumor at its periphery and < 30% TILs in the intra-tumoral component. ‘‘None’’ was

selected in cases where few TILs were present in less than 1% of the area of the tumor and ‘‘Indeterminate’’ was used if there was

insufficient or no grossly identifiable tumor in the H&E image at low-power with the corresponding TIL map regardless of pattern and

semiquantitative distribution of TILs.
Summary Table of Criteria Used to Characterize TIL Map Structural Patterns

Category Immune Response Qualitative Pattern Proportion of Tumor composed of Lymphocytes

Indeterminate Insufficient and/or no tumor in the

H&E image at low-power

Not applicable Not applicable

None No response No pattern <1% TILs

Non-brisk, focal Very Weak (minimal) Localized <5% TILs

Non-brisk, multi-focal Weak (mild) Loosely scattered foci >5%-30% TILs

Brisk, diffuse Moderate to Strong Diffuse and dense infiltrate >30% TILs in the intra-tumoral component*

Brisk, band-like Not applicable Infiltrate bordering the tumor

at its periphery

<30% TILs in the intra-tumoral component*

*If the TIL map patterns revealed both diffuse and band-like immune responses, the predominant pattern was characterized and the difference

between ‘‘Brisk, diffuse’’ and ‘‘Brisk, band-like’’ was based on whether the relative distribution of TILs in the intra-tumoral component appeared to

be greater than or less than 30%, respectively.
DATA AND SOFTWARE AVAILABILITY

The original H&E stained whole-slide images used in this work can be downloaded from the Genomic Data Commons. All TCGAmo-

lecular data can be obtained from the Genomic Data Commons, as well as derived data matrices of the PanCancer Atlas. Integration

with immune signatures of the TCGA immune response working group is available through CRI iAtlas web resource. Links to these

data resources can be found at the accompanying publication manuscript page (https://gdc.cancer.gov/about-data/publications/

tilmap).

The analysis codes used in this work is version controlled has also been containerized and made available as a Docker image. The

QuIP software for iterative refinement of CNNprediction results is also available. The training datasets for theCNNmodels and the TIL
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maps generated in this study are also available for download. These different software resources aswell as the TILmaps are available

on the Cancer Imaging Archive, at: https://doi.org/10.7937/K9/TCIA.2018.Y75F9W1

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical details of all experiments are reported in the text, figure legends and figures, including statistical analysis performed,

statistical significance and counts.
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Figure S1; Related to Figure 1. Details of Slide Processing (A) Fusion of Lymphocyte and Necrosis CNN. A 
large input H&E patch (lower left in figure) is processed to yield a TIL map, shown in upper right. The lymphocyte 
CNN (upper left) first takes smaller patches of 50x50 microns within the large patch at 20X magnification and 
predicts if those patches are lymphocyte-infiltrated and displays predictions as a “heatmap”, superimposed on the 
H&E image (upper middle, TIL positive patches shown in dark orange). The necrosis CNN (lower left and lower 
middle) takes the larger region with more contextual information to predict if patches are mostly necrotic (shown in 
light orange). The two results are combined (upper right) for the final tumor infiltration lymphocyte prediction (TIL-
positive patches in dark orange). (B) Determination of Lymphocyte Selection Thresholds. In this phase, our 
quality control step picks out slides that have significantly over- or under-predicted lymphocytes and adjusts the 
lymphocyte sensitivities and necrosis specificities for these slides.(C) Flowchart of slide image processing in the 
project. A summary of three main steps in processing of image files. At each step, a set of slides is excluded from 
further processing, as follows Excluded 1:  Reasons no TIL Map was generated Corrupt Image File: either the image 
file is corrupted, unable to be read, or the image only contains a small portion of the whole slide;  Low Resolution: 
The image does not have enough high resolution (of at least 20X) to be processed by the CNN model;  Out of focus: 
The image is out of focus; Bad Image File: The image is either captured with bad quality, or marked by markers; 
Processing/Prediction Failed: Either the pipeline failed processing those slides because of malfunctions such as 
process being killed in the middle of the process, or the lymphocyte predictions are not good (i.e., a visual inspection 
of the images showed too many incorrectly labeled patches -- results for some of the images, for example, had a 
high false positive rate due to the cytology of the tumor cells that closely resembled lymphocytes); Duplicated 
Image File: there is another image file corresponding to the same diagnostic slide barcode  Excluded 2 , Reasons no 
Cluster File was Generated In clustering indices process, some of the slides have too many TIL patches. As a result, 
either the clustering indices algorithm cannot fit them into memory to process or it may take too long to finish 
clustering those slides. Those slides do not yield cluster file results. Excluded 3, Exclusions to Create Final List of 
Single Slide per Participant For each participant we choose a single slide where multiple slides are available, as 
follows we choose only the slide containing label DX1 (not DX2,DX3,..). In 15 cases there were two DX1 slides for 
each patient, and one was slide chosen by random sampling. Finally, only slides from TCGA participants with data 
included in the PanCancer Atlas cohort (the PanCancer Atlas whitelist) are retained for final integrative analysis 
work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

20

40

60

BL
CA

.1

BL
CA

.2

BL
CA

.3

BL
CA

.4

BR
CA

.B
as

al

BR
CA

.H
er

2

BR
CA

.L
um

A

BR
CA

.L
um

B

BR
CA

.N
or

m
al

G
I.C

IN

G
I.E

BV

G
I.G

S

G
I.H

M
−i

nd
el

G
I.H

M
−S

NV

LU
AD

.1

LU
AD

.2

LU
AD

.3

LU
AD

.4

LU
AD

.5

LU
AD

.6

LU
SC

.b
as

al

LU
SC

.c
la

ss
ic

al

LU
SC

.p
rim

iti
ve

LU
SC

.s
ec

re
to

ry

PR
AD

.1
−E

RG

PR
AD

.2
−E

TV
1

PR
AD

.3
−E

TV
4

PR
AD

.4
−F

LI
1

PR
AD

.5
−S

PO
P

PR
AD

.6
−F

OX
A1

PR
AD

.7
−I

DH
1

PR
AD

.8
−o

th
er

SK
CM

.−

SK
CM

.B
RA

F_
Ho

ts
po

t_
M

ut
an

ts

SK
CM

.N
F1

_A
ny

_M
ut

an
ts

SK
CM

.R
AS

_H
ot

sp
ot

_M
ut

an
ts

SK
CM

.T
rip

le
_W

T

UC
EC

.

UC
EC

.C
N_

HI
G

H

UC
EC

.C
N_

LO
W

UC
EC

.M
SI

UC
EC

.P
O

LE

Tumor Subtype

Fr
ac

tio
n

Lymphocyte Spatial Region Fraction in TCGA Subtypes



Figure S2; Related to Figure 3. TIL Fraction by Tumor Category  (A). Percent TIL fraction, the proportion of 
TIL-positive patches within a TIL map, is shown for TCGA molecular subtypes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Figure S3; Related to Figure 4. Examples of the Negative Control and Discordant Results between Molecular 
and Image-derived Analyses for TIL estimates (A) The uveal melanoma cases, exemplified here by TCGA-V4-
A9EM, served as our group of negative controls for the lymphocyte-detection algorithm, as this tumor type is not 
generally associated with notable immune infiltrates. After the initial assessment of the H&E image (left) and 
corresponding TIL map (center), we performed additional histopathologic evaluation to confirm the absence of 
lymphocytes (right), showing the representative sections at higher magnification. The uveal melanoma cases show 
how the lymphocyte-detection algorithm correctly distinguishes tumor cells and aggregates of melanotic pigment by 
not labelling them as lymphocytes in a very challenging and complex scenario.(B) An example representing the 
discordant results between the high molecular and low image-derived TIL estimates where the H&E of the FFPE is 
virtually devoid of lymphocytes, whereas the frozen section has mild to patchy moderate level of lymphocytes. 
Images are presented in the following sequence from left to right in the left panel: H&E diagnostic image at low-
magnification, TIL map, and the fresh frozen section for molecular genomics assays at low magnification. For TIL 
maps: red represents a positive TIL patch; blue represents a tissue region with no TIL patch; black represents no 
tissue. Right panels: Representative sections at higher magnification. (C) An example of the discordance of low 
molecular and high image-derived TIL estimates where the H&E of the FFPE contains numerous lymphocytes in the 
peritumoral regions and distant stroma, whereas the frozen section consists of relatively pure tumor with minimal 
lymphocytes. Images are presented in the following sequence from left to right in the top panel: H&E diagnostic 
image at low-magnification, TIL map, and the fresh frozen section for molecular genomics assays at low 
magnification and the bottom panels show representative sections at higher magnification. 
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Figure S4; Related to Figure 6. Relation Among Scores of Local Spatial Structure of the Tumor Immune 
Infiltrate Pearson correlation coefficients relating each cluster characterization to all others. The colorbar shows the 
correlation coefficient value. 
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Figure S5; Related to Figure 7. Enrichment of TIL Structural Patterns Enrichment of structural patterns among 
TCGA tumor molecular subtypes (A) and among immune subtypes (B). The ratio of observed to expected values is 
shown on a color scale, where the largest ratios are in red, values near unity as yellow and lower than expected in 
blue. (C) Distribution of scores for cellular fraction of TIL from molecular estimates, segregated by TIL structural 
pattern. 
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