Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Supporting Information

for

Reactivity Enhancement of a Diphosphene by Reversible *N*-Heterocyclic Carbene Coordination

Debabrata Dhara,^a Pankaj Kalita,^b Subhadip Mondal,^a Ramakirushnan Suriya Narayanan,^a Kaustubh R. Mote,^a Volker Huch,^c Michael Zimmer,^c Cem B. Yildiz,^{*d} David Scheschkewitz,^{*c} Vadapalli Chandrasekhar^{*a,e} and Anukul Jana^{*a}

1.	Content	S1
2.	Thermodynamic data of equilibrium between 1 and 3	S2
3.	Solution state NMR spectra	S3
4.	CP-MAS NMR spectra	S15
5.	UV/vis spectra	S18
6.	Simulation of NMR spectrum of 6	S24
7.	Crystallographic details	S25
8.	Computational details	S30
9.	References	S50

а	Tata Institute of Fundamental Research Hyderabad
	Gopanpally, Hyderabad-500107
	Telangana, India
	E-mail: ajana@tifrh.res.in
b	School of Chemical Sciences, National Institute of Science Education and Research, Bhimpur-Padanpur,
	Jatni, Khurda, Bhubaneswar-752050, Odisha, India

c Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany E-mail: scheschkewitz@mx.uni-saarland.de

d Department of Medicinal and Aromatic Plants, University of Aksaray, Aksaray, Turkey E-mail: cemburakyildiz@aksaray.edu.tr

e Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India E-mail: vc@iitk.ac.in

Thermodynamic data of equilibrium between 1 and 3 from NMR spectroscopy:

A 0.0805 M solution (0.4 mL of tol-d8) of **1** and **2** was taken in NMR tube and ³¹P, and ¹H spectra was measured 10 K interval starting at 253 K up to 293 K. The Integration of ³¹P resonance of P_2 alone and adduct allowed the concentration of both the component to be measured. The equilibrium constants were calculated in usual way.

Т / К	[1] / mM	[2] / mM	[3] / mM	K / M	$\Delta \mathbf{G} / \mathbf{kJ} \mathbf{mol}^{-1}$
253	4.83	4.83	75.67	3243.62	17.01
263	7.24	7.24	73.25	1397.43	15.84
273	10.46	10.46	70.03	640.06	14.67
283	16.1	16.1	64.4	248.44	12.97
293	21.73	21.73	58.76	124.44	11.75

Table S1 Concentrations for 1, 2, and 3 determined via ³¹P NMR spectroscopy at a range of temperatures.

Figure S1 Plot of 1/T vs lnK for the determination of the constant K for the equilibrium between 1+2 and 3.

The linear regression of 1/T vs lnK allowed to determine the value of $\Delta H = -50.74 \pm 1.09 \text{ kJmol}^{-1}$, $\Delta G_{298} = -11.15 \pm 1.07 \text{ kJmol}^{-1}$, $\Delta S_{298} = -132.85 \pm 2.56 \text{ Jmol}^{-1}\text{K}^{-1}$

Figure S2 VT-NMR spectra of 1:1 mixture of 1 and 2 in toluene-*d*₈.

Figure S3 ¹H NMR spectrum of 1:2 mixture of 1 and 2 in benzene- d_6 at RT.

Figure S4 ³¹P{¹H} NMR spectrum of 1:2 mixture of 1 and 2 in benzene- d_6 at RT.

Figure S5 ¹³C{¹H}NMR spectrum of 1:2 of **1** and **2** in benzene- d_6 at RT.

Figure S6 ¹H NMR spectrum of 1:1 of **1** and **2** in benzene- d_6 at RT.

Figure S7 ³¹P{¹H} NMR spectrum of 1:1 of **1** and **2** in benzene- d_6 at RT.

Figure S8 ³¹P{¹H} NMR spectrum of 1:1 of **1** and **2** in THF- d_8 at RT.

Figure S9 ¹H NMR spectrum of **4** in benzene- d_6 at RT.

Figure S10 ³¹P{¹H} NMR spectrum of **4** in benzene- d_6 at RT.

Figure S11 ³¹P NMR spectrum of **4** in benzene- d_6 at RT.

Figure S12 ¹³C{H} NMR spectrum of **4** in benzene- d_6 at RT.

Figure S13 ¹H NMR spectrum of 5 in THF- d_8 at RT.

Figure S14 ³¹P{¹H} NMR spectrum of **5** (with 5% compound **4**)in THF- d_8 at RT.

Figure S15 ³¹P NMR spectrum of 5 (with 5% compound 4) in THF- d_8 at RT.

Figure S16 $^{13}C{^{1}H}$ NMR spectrum of **5** in THF- d_8 at RT.

Figure S17 ³¹P{¹H} NMR spectrum from the crude reaction mixture of catalytic hydrolysis of **1** in THF in presence of one drop of benzene- d_6 at RT.

Figure S18 ¹H NMR spectrum of **6** in benzene- d_6 at RT.

Figure S19 ³¹P NMR spectrum of **6** in benzene- d_6 at RT.

Figure S20 ³¹P{H} NMR spectrum of **6** in benzene- d_6 at RT. -50 °C.

Figure S21 ¹³C{H} NMR spectrum of **6** in benzene- d_6 at RT.

Figure S22 VT-NMR spectra of 6 in toluene- d_8 .

Figure S23 ¹H NMR spectrum of **7** in benzene- d_6 at RT.

Figure S24 ${}^{31}P{}^{1}H$ NMR spectrum of **7** in benzene- d_6 at RT.

Figure S25 ${}^{13}C{}^{1}H$ NMR spectrum of **7** in benzene- d_6 at RT.

ppm

Figure S27 CP-MAS ${}^{31}P{}^{1}H{}$ NMR spectrum of 4 at RT.

Figure S28 CP-MAS ${}^{31}P{}^{1}H$ NMR spectrum of 5 at RT.

Figure S29 CP-MAS ${}^{31}P{}^{1}H$ NMR spectrum of 6 at RT.

Figure S30 CP-MAS ${}^{31}P{}^{1}H$ NMR spectrum of 7 at RT.

Figure S31 UV/vis spectra of **1**(black line) in THF with increasing concentrations of **2**. There is clear isosbestic point at 392 nm. The absorbance at 448 nm is increasing while absorbance at 372 nm is decreasing when equilibrium shifted towards **3**.

Table S2 Concentrations and absorbance for the UV/vis titration of 1 with 2.

A series of solutions with the following concentrations of **1** and **2** were prepared. UV/vis spectra were recorded in THF at 298 K and the absorption maxima at 372 and448 nm were noted.

[1]/mM	[2]/mM	Equivalents of 2	Absorbance at $\lambda_{max} = 448 \text{ nm}$	Absorbance at $\lambda_{max} = 372 \text{ nm}$
1.0885	00	0	0.07986	1.27887
1.0885	0.1208	0.11	0.09496	1.23762
1.0885	0.2416	0.22	0.11675	1.21381
1.0885	0.3624	0.33	0.14963	1.21213
1.0885	0.6039	0.55	0.17802	1.13718
1.0885	1.2079	1.11	0.24104	1.03872
1.0885	1.4495	1.33	0.28081	1.06244
1.0885	1.9327	1.77	0.2989	1.06942
1.0885	2.4158	2.22	0.36518	1.03378
1.0885	2.8990	2.66	0.40283	1.05193
1.0885	3.3822	3.10	0.45361	1.04477
1.0885	3.8653	3.55	0.44189	1.04033
1.0885	4.8317	4.44	0.45351	0.99947

Figure S32 Concentration of 2 vs absorbance at 448 nm with fixed concentration of 1.

The resulting curve was fitted according to the equation describe by Aldrich-Wright.^{S1} From the fitting process it is shown that the equilibrium constant *K* was 214.58 M⁻¹ at 298 K which corresponds to $\Delta G_{298} = -13.30 \text{ KJmol}^{-1}$.

Figure S33 UV/vis spectrum of compound 5.

Figure S34 Linear regression of 5 at 330 nm.

Figure S35 Linear regression of 5 at 390 nm.

Figure S36 Linear regression of 5 at 445 nm.

Figure S37 UV/Vis spectrum of compound 7 in THF.

Figure S38 Linear regression of compound 7 at 446 nm.

Figure S39 Linear regression of compound 7 at 382 nm.

Figure S40 Linear regression of compound 7 at 310 nm.

NMR Simulation

Simulated NMR spectra of **6** for the AA'XX' spin system were calculated using SIMPSON 4.2.1^{S2} using a 4-spin system (two ¹H atoms and two ³¹P atoms) and acquisition parameters (spectral width and acquisition time) same as that used for the experiment. Simulated spectra were processed using Nmrglue^{S3} and plotted using Matplotlib 2.0.2 in Python 3.6. The same chemical shift was used for the two ³¹P as well as the ¹H atoms. The pairwise *J*-couplings between the atoms (${}^{1}J_{(31P, 31P)}$, ${}^{3}J_{(1H, 1H)}$, ${}^{1}J_{(31P, 1H)}$) were varied around the values calculated based on the known dependence of the splitting pattern on the values of these couplings. The values that fit both the multiplet pattern and the intensities are reported along with the simulated spectra in Figures S41 and S42.

Figure S41 Comparison between the experimental (black, upper curve) and simulated (red, lower curve) ¹H NMR spectrum for the *meso* (A) and the d/l (B) compounds. The scalar couplings used for the simulations are shown at the lower right.

Figure S42 Comparison between the experimental (black, upper curve) and simulated (red, lower, inverted curve) ³¹P NMR spectrum for the *meso* (A) and the d/l (B) compounds. The scalar couplings used for the simulations are shown at the lower right.

Crystallographic Details

Single crystal X-ray data of **3**, **5-7** were collected at 100 K and **4** collected at 151 K on a Bruker SMART APEX2 CCD diffractometer using graphite-monochromated Mo K α radiation ($\lambda = 0.71069$ Å). The linear absorption coefficients, scattering factors for the atoms, and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography.^{S4} Data integration and reduction were processed with SAINT software.^{S5} An empirical absorption correction was applied to the collected reflections with SADABS.^{S6} The structure was solved by direct methods using SHELXT^{S7} and refined by full matrix least-squares method based on F² using SHELXL-2016^{S7} via the Olex-2 software.^{S8} All non-hydrogen-atoms were refined with anisotropic displacement parameters. Hydrogens were fixed in their ideal geometries, and their contributions included in the refinement. The program Diamond 3.2k version is used for the creating crystallographic figures.^{S9}

Identification code	VC_AJ_180617
Empirical formula	$C_{55}H_{62}N_2P_2$
Formula weight	813.00
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	10.9502(8)
b/Å	20.9614(14)
c/Å	20.7528(17)
α/°	90
β/°	97.766(6)
γ/°	90
Volume/Å ³	4719.7(6)
Z	4
$\rho_{calc}g/cm^3$	1.144
μ/mm^{-1}	0.130
F(000)	1744.0
Crystal size/mm ³	$0.2\times0.18\times0.16$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	2.774 to 51.344
Index ranges	$\begin{array}{c} \text{-13} \leq h \leq \text{13}, \text{-25} \leq k \leq \text{25}, \text{-25} \leq l \leq \\ \text{24} \end{array}$
Reflections collected	58867
Independent reflections	8812 [$R_{int} = 0.2318$, $R_{sigma} = 0.1292$]
Data/restraints/parameters	8812/0/548
Goodness-of-fit on F ²	1.020
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1019, wR_2 = 0.2455$
Final R indexes [all data]	$R_1 = 0.1815, wR_2 = 0.3108$
Largest diff. peak/hole / e Å ⁻³	0.56/-0.42

Table S3 Crystal data and structure refinement for compound 3 (CCDC: 1588456)

Identification code	sh3914
Empirical formula	$C_{48}H_{52}OP_2$
Formula weight	706.83
Temperature/K	151.25
Crystal system	orthorhombic
Space group	Pbca
a/Å	16.9466(7)
b/Å	20.6986(9)
c/Å	23.0289(10)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	8077.9(6)
Z	8
$\rho_{calc}g/cm^3$	1.162
μ/mm^{-1}	0.142
F(000)	3024.0
Crystal size/mm ³	0.442 imes 0.27 imes 0.154
Radiation	MoKα ($\lambda = 0.71073$)
20 range for data collection/°	3.538 to 55.948
Index ranges	$\begin{array}{l} -22 \leq h \leq 21, -26 \leq k \leq 27, -30 \leq l \leq \\ 27 \end{array}$
Reflections collected	139724
Independent reflections	9733 [$R_{int} = 0.0620, R_{sigma} = 0.0284$]
Data/restraints/parameters	9733/0/480
Goodness-of-fit on F ²	1.025
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0616, wR_2 = 0.1624$
Final R indexes [all data]	$R_1 = 0.0822, wR_2 = 0.1791$
Largest diff. peak/hole / e Å ⁻³	0.94/-0.55

 Table S4 Crystal data and structure refinement for compound 4 (CCDC: 1588457)

Identification code	VC_AJ_SLNF
Empirical formula	$C_{55}H_{64}N_2OP_2$
Formula weight	831.02
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	16.2280(18)
b/Å	16.3739(19)
c/Å	17.6769(19)
$\alpha/^{\circ}$	90
β/°	93.710(8)
$\gamma/^{\circ}$	90
Volume/Å ³	4687.2(9)
Z	4
$\rho_{calc}g/cm^3$	1.178
µ/mm ⁻¹	0.133
F(000)	1784.0
Crystal size/mm ³	$0.16 \times 0.13 \times 0.11$
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	3.302 to 50.844
Index ranges	$-19 \le h \le 19, -19 \le k \le 19, -21 \le l \le 21$
Reflections collected	50415
Independent reflections	8602 [R _{int} = 0.1256, R _{sizence} = 0.0828]
Data/restraints/parameters	8602/0/561
Goodness-of-fit on F^2	1.012
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0549 \text{ w}R_2 = 0.1173$
Final R indexes [all data]	$R_1 = 0.1117, wR_2 = 0.1454$
Largest diff peak/hole / e $Å^{-3}$	0.35/-0.38
Luigest unit. peux noie / CA	0.55/ 0.50

 Table S5 Crystal data and structure refinement for compound 5 (CCDC: 1588458)

Identification code	DD_701
Empirical formula	$C_{48}H_{52}P_2$
Formula weight	690.83
Temperature/K	296.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.3846(12)
b/Å	21.347(3)
c/Å	11.6195(15)
α/°	90
β/°	111.081(9)
$\gamma/^{\circ}$	90
Volume/Å ³	1940.5(5)
Z	2
$\rho_{calc}g/cm^3$	1.182
μ/mm^{-1}	0.145
F(000)	740.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	$MoK\alpha (\lambda = 0.71073)$
2@ range for data collection/°	3.816 to 52.21
Index series	$-10 \le h \le 10, -26 \le k \le 26, -14 \le l \le$
Index ranges	14
Reflections collected	26426
Independent reflections	$3854 [R_{int} = 0.0631, R_{sigma} = 0.0396]$
Data/restraints/parameters	3854/0/236
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0421, wR_2 = 0.1039$
Final R indexes [all data]	$R_1 = 0.0594, wR_2 = 0.1147$
Largest diff. peak/hole / e Å $^{\text{-}3}$	0.33/-0.28

 Table S6 Crystal data and structure refinement for compound 6 (CCDC: 1588459)

 Table S7 Crystal data and structure refinement for compound 7 (CCDC: 1588460)

Identification code	VC_AJ_689R
Empirical formula	$C_{31}H_{37}N_2P$
Formula weight	468.59
Temperature/K	100(2)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.304(3)
b/Å	23.286(8)
c/Å	13.900(5)
$\alpha/^{\circ}$	90
β/°	90.34(2)
$\gamma/^{\circ}$	90
Volume/Å ³	2687.8(17)
Z	4
$\rho_{calc}g/cm^3$	1.158
μ/mm^{-1}	0.123
F(000)	1008.0
Crystal size/mm ³	$0.19 \times 0.16 \times 0.14$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.412 to 59.208
Index ranges	$-11 \le h \le 11, -31 \le k \le 32, -18 \le l \le 19$
Reflections collected	47573
Independent reflections	7476 [$R_{int} = 0.0829, R_{sigma} = 0.0661$]
Data/restraints/parameters	7476/0/317
Goodness-of-fit on F ²	1.022
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0556, wR_2 = 0.1330$
Final R indexes [all data]	$R_1 = 0.1245, wR_2 = 0.1634$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.31

Computational Calculation

Computational Method:

All theoretical calculations, in this paper are carried out using the Gaussian16 suite of program.^{S10} The full geometry optimizations of **1-7** and were performed at B3LYP/6-311G(d,p) level of theory. Frequency analyses were performed to determine the ΔE , ΔH , and ΔG relative energies, as given in Table S8 in solution (CPCM method, Solvent = tetrahydrofuran) at B3LYP/6-311G(d,p) level of theory including D3 dispersion correction by Grimme.^{S11,S12} Wiberg bond orders (WBI) as a criterion to estimate the bond orders of chemical structures were also calculated within the natural bond orbital (NBO) analysis for **1-7** (Table S8).^{S13} The spin-spin couplings were calculated by the GIAO method (Solvent = benzene) for *meso-6* and *d/l-6* and selected parameters at B3LYP/6-311G(d,p) level of theory are given in Table S10. The GaussView 5.0 program was employed for visualization of the final geometries of the optimized structures.^{S14}

	$\mathbf{p}^1 \mathbf{p}^2$	\mathbf{P}^{1} - \mathbf{P}^{2}	P ¹ -	P ¹ -C ^{NHC}	C-P ¹ -P ² -C	Pyramidalization	Charge		Charge Hybridization			
	r -r	(WBI)	CNHC	(WBI)	(Dihedral)	P ¹ -NHC	\mathbf{P}^1	\mathbf{P}^2	\mathbf{P}^{1}	\mathbf{P}^2		
1	2.054	1.812	-	-	179.9	-	0.280	0.326	16.54% s; 82.85% p; 0.60% d	17.67% s; 81.76% p; 0.58% d		
3	2.183	1.116	1.899	0.849	149.9	319.0	0.494	-0.116	19.79% s; 79.88% p; 0.34% d	11.67% s; 87.77% p; 0.56% d		
	$\mathbf{P}^1_{\mathbf{P}}\mathbf{P}^2$	\mathbf{P}^{1} - \mathbf{P}^{2}	P ¹ -0	P ¹ =O	C-P1-P ² -C	Pyramidalization	Charge		Charge		Hybrid	lization
	1 -1	(WBI)	1 -0	(WBI)	(Dihedral)	\mathbf{P}^2	\mathbf{P}^1	\mathbf{P}^2	\mathbf{P}^1	\mathbf{P}^2		
4	2.251	0.870	1.510	1.252	170.0	291.7	1.410	0.258	22.86% s; 76.21% p; 0.93% d	10.64% s; 88.81% p; 0.54% d		
5	2.159	1.092	1.539	0.969	174.3	-	1345	-0.187	32.83% s; 66.43% p; 0.74% d	11.72% s; 87.72% p; 0.56% d		
meso-6	2.298	0.954	-	-	179.9	290.9	0.296	0.296	10.40% s; 89.15% p; 0.45% d	10.40% s; 89.15% p; 0.45% d		
<i>d/l-</i> 6	2.289	0.950	-	-	176.6	294.3	0.297	0.297	11.45% s; 88.08% p; 0.46% d	11.45% s; 88.08% p; 0.46% d		
	P ¹ -	\mathbf{P}^{1} - \mathbf{C}^{1}	P¹-C8	P¹-C8	C1-P1-C8	-	Charge		Charge		Hybrid	lization
	C	(WBI)	1 .00	(WBI)	(Angle)		\mathbf{P}^{1}	C	P ¹	C ¹		
7	1.792	1.188	1.861	0.976	102.3	-	0.154	0.152	16.70% s; 82.53% p; 0.78% d	41.44% S; 58.50% p; 0.06% d		

 Table S8 Selected structural parameters of the compounds 1-7 at the B3LYP/6-311G(d,p) level of theory.

Table S9 Thermodynamic values of the reactions at the B3LYP-D3/6-311G(d,p) level of theory (CPCM method, Solvent = THF).

	ΔΕ	ΔH	ΔG
$1 + 2 \rightarrow 3$	-22.7	-22.3	-6.7
$1+H_2O\rightarrow 4$	-25.6	-25.3	-18.9
$3+H_2O\rightarrow 4+2$	-2.9	-3.0	-12.1
$3 + H_2O \rightarrow 5$	-22.4	-25.1	-11.9
$4 + 2 \rightarrow 5$	-19.4	-22.1	+0.15
$1 + \mathrm{NH}_3\mathrm{BH}_3 \rightarrow dl6 + \mathrm{NH}_2\mathrm{BH}_2$	-21.2	-20.3	-22.9
$3 + 2NH_3BH3 \rightarrow dl6 + 10 + 2NH_2BH_2$	-0.9	-1.7	-17.7
$meso6 \rightarrow dl6$	+0.96	+0.34	+2.3

Table S10 Selected *spin-spin* coupling values for the compounds *meso-6* (Left) and d/l-6 (Right) at the B3LYP/6-311G(d,p) level of theory (CPCM, Solvent = Benzene).

 $\label{eq:stable} \textbf{Table S11} Selected frontier molecular orbitals of the compounds \textbf{1-7} at the B3LYP/6-311G(d,p) level of theory.$

Table S12 Cartesian coordinates and energy values of 1 in THF.

P,1.159223,0.114924,-0.123598 P.-0.875486,-0.090906,0.071202 C,-1.335805,-0.19189,1.864526 C,-2.745776,-0.255225,2.053124 C,-3.27719,-0.367631,3.340513 C,-2.4481,-0.418333,4.452792 C,-1.071171,-0.352986,4.278913 C,-0.497059,-0.237862,3.008708 C,1.000036,-0.171197,2.972793 C,1.75366,-1.360579,2.919227 C,3.145052,-1.283396,2.970956 C,3.813503,-0.06275,3.079984 C,3.047777,1.099389,3.147411 C,1.651758,1.069714,3.099422 C,0.875462,2.363998,3.162646 C,5.322401,-0.009518,3.115459 C,1.080573,-2.70746,2.79956 C,-3.7299,-0.202424,0.916559 C,-4.238755,1.038259,0.482954 C,-5.20053,1.061483,-0.526734 C,-5.679758,-0.108917,-1.118245 C,-5.170392,-1.324698,-0.667239 C,-4.206433,-1.394523,0.342023 C,-3.680293,-2.740379,0.782621 C,-6.724496,-0.050734,-2.20711 C,-3.746472,2.336582,1.078091 C,1.210257,0.180639,-1.992348 C,1.260893,1.436082,-2.635712 C,1.422537,1.489761,-4.02417 C,1.552592,0.326506,-4.774159 C,1.531158,-0.908339,-4.136115 C,1.369935,-1.001601,-2.749346 C,1.400332,-2.366795,-2.123377 C,0.258282,-3.194062,-2.168195 C,0.323799,-4.472793,-1.614142 C,1.490412,-4.966875,-1.026975 C,2.612944,-4.142852,-1.013755 C,2.592163,-2.853045,-1.552884 C,3.849252,-2.014965,-1.50938 C,1.524971,-6.348656,-0.418498 C,-1.028858,-2.72274,-2.80241 C,1.168557,2.728144,-1.875101 C,2.323775,3.285876,-1.289704 C,2.225837,4.508873,-0.62383 C,1.019375,5.201799,-0.524446 C,-0.106664,4.642835,-1.12729 C,-0.05516,3.422586,-1.805479 C,-1.307934,2.870552,-2.442641 C,0.938167,6.511965,0.22226 C,3.66231,2.588595,-1.365697 H,-4.354317,-0.413552,3.457774 H,-2.869829,-0.507096,5.447973 H,-0.413303,-0.388889,5.14056 H,3.721149,-2.203321,2.929705 H,3.546807,2.058891,3.245513 H,1.541817,3.203751,3.367622 H,0.106132,2.340326,3.938544 H,0.37055,2.565069,2.212787 H,5.746514,-0.190612,2.122182

H,5.73234,-0.770115,3.785713 H,5.678877,0.965616,3.453694 H,1.821638,-3.50776,2.768086 H,0.482539,-2.772562,1.88618 H,0.406897,-2.897801,3.639803 H,-5.588313,2.020958,-0.857411 H,-5.530774,-2.248114,-1.110774 H,-2.603781,-2.822348,0.603635 H,-3.837733,-2.907631,1.851691 H,-4.173711,-3.546817,0.237042 H,-6.37854,0.545436,-3.057086 H,-7.649985,0.408721,-1.845457 H,-6.969863,-1.048318,-2.576542 H,-2.698665,2.517613,0.818123 H,-3.806279,2.332216,2.169381 H,-4.333104,3.179384,0.707885 H,1.455142,2.458723,-4.510956 H,1.681728,0.382489,-5.849472 H,1.650895,-1.82034,-4.711109 H,-0.560207,-5.103133,-1.649803 H,3.538054,-4.51249,-0.581082 H,4.717813,-2.63553,-1.279921 H,3.779942,-1.241848,-0.737143 H,4.031806,-1.507207,-2.458899 H,2.550638,-6.690231,-0.263704 H,1.021426,-6.363672,0.554225 H,1.018048,-7.078091,-1.055995 H,-1.822129,-3.458628,-2.657385 H,-0.912604,-2.560655,-3.878042 H,-1.363251,-1.775498,-2.371187 H,3.121113,4.934495,-0.179496 H,-1.05324,5.172961,-1.077365 H,-1.565071,1.890452,-2.030301 H,-2.154169,3.53929,-2.274496 H,-1.189228,2.738789,-3.521559 H,1.797606,7.150707,0.001358 H,0.925259,6.348132,1.305265 H,0.03197,7.06346,-0.03741 H,3.701484,1.737399,-0.67808 H,4.469103,3.272087,-1.09405 H,3.862618,2.202551,-2.367442

Zero-point correction=	0.829936 (Hartree/Particle)
Thermal correction to Energy=	0.878296
Thermal correction to Enthalpy=	0.879240
Thermal correction to Gibbs Free Ene	ergy= 0.743189
Sum of electronic and zero-point Ener	rgies= -2541.790561
Sum of electronic and thermal Energie	es= -2541.742201
Sum of electronic and thermal Enthal	pies= -2541.741257
Sum of electronic and thermal Free En	nergies= -2541.877308

Table S13 Cartesian coordinates and energy values of 2 in THF.

N,1.060515,-0.708087,0.000098 N,-1.060524,-0.708066,0.00074 C,-0.000016,-1.567764,0.000189 C,0.680674,0.639596,-0.000023 C,-0.680662,0.639609,-0.000094 C,1.659023,1.76642,-0.000145 H,2.307357,1.745464,0.882682

H,1.138676,2.725506,-0.001679		
H,2.309091,1.743575,-0.88163		
C,-1.659006,1.766438,0.00018		
H,-2.309197,1.743905,-0.881224		
H,-1.138658,2.725524,-0.00109		
H,-2.307214,1.745166,0.88309		
C,-2.435357,-1.176807,-0.000203		
H,-2.972771,-0.832791,0.88848		
H,-2.97226,-0.833204,-0.889354		
H,-2.401529,-2.264078,0.000055		
C,2.435347,-1.176811,0.000013		
H,2.972241,-0.833658,-0.889325		
H,2.972762,-0.832342,0.888511		
H,2.401548,-2.264086,0.000787		
Zero-point correction=	0.18130)7 (Hartree/Particle)
Thermal correction to Energy=	0.1	91583
Thermal correction to Enthalpy=	0.1	92527
Thermal correction to Gibbs Free Ener	rgv=	0.146438
Sum of electronic and zero-point Ener	gies=	-383.374856
Sum of electronic and thermal Energie	es=	-383.364580
Sum of electronic and thermal Enthalr	oies=	-383.363635
Sum of electronic and thermal Free Er	nergies=	-383.409725
	0	

Table S14 Cartesian coordinates and energy values of 3 in THF.

P,-0.560779,-0.434131,0.401237 P.1.083137,0.653049,-0.539095 N,-2.600831,0.896943,-1.338136 N,-3.32616,-0.758958,-0.157091 C,1.432425,-1.620152,-2.469546 C,-1.818181,2.615552,1.63102 C,0.062578,-2.230455,-2.360919 C,-3.181031,2.846206,1.367407 C,-0.865909,3.595717,1.264068 C,0.554177,-1.817475,2.989181 C,-1.393752,1.483082,2.529849 C,3.225149,-0.028827,-2.091651 C,-0.28175,-0.580747,3.191258 C,-0.75973,0.26703,2.149141 C,-3.565661,4.003003,0.678778 H,-4.621186,4.166846,0.479248 C,1.90945,-0.485347,-1.758272 C,-1.295108,4.737949,0.585177 H,-0.556321,5.484947,0.309938 C,-0.960588,-1.789504,-3.219911 C,-0.145726,-3.3773,-1.568252 C,-2.638328,4.961633,0.275875 C,0.00295,-3.106019,3.097875 C,1.959233,-1.670875,2.898733 C,2.220607,-4.100335,2.880122 C,3.867958,1.160774,-1.431165 C,2.757691,-2.811779,2.830317 H,3.834287,-2.688833,2.759419 C,0.843848,-4.222378,3.02924 H,0.403806,-5.213066,3.108689 C,-2.239861,0.041737,-0.349335 C,2.248089,-2.258467,-3.416011 H,1.848394,-3.125596,-3.932882 C,3.688241,2.458163,-1.94907

C.3.995691.-0.681497.-3.053081 H,4.987107,-0.296061,-3.269348 C,-1.816452,2.018841,-1.85283 H,-2.171375,2.946651,-1.407389 H,-1.924299,2.058179,-2.936533 H,-0.766729,1.859703,-1.597483 C,2.612569,-0.310659,2.92831 H,2.403319,0.250686,2.011824 H,3.694644,-0.408917,3.025999 H,2.249013,0.286548,3.768543 C,3.523037,-1.806137,-3.719105 H,4.130883,-2.312231,-4.460627 C,-1.368773,-4.046649,-1.640697 H,-1.513788,-4.937152,-1.034638 C,-3.906686,0.648754,-1.748341 C,-1.606261,1.763241,3.889108 H,-2.092095,2.697233,4.150113 C,0.944546,-3.897889,-0.666458 H,1.833891,-4.174297,-1.239706 H,0.607548,-4.775491,-0.112239 H,1.252413,-3.139396,0.05659 C,-2.175482,-2.482866,-3.259115 H,-2.953694,-2.141101,-3.936504 C,4.344568,3.53202,-1.344979 H,4.192488,4.530857,-1.745215 C,0.583714,3.479092,1.666625 H,0.679306,3.406512,2.754378 H,1.146162,4.3527,1.332729 H,1.060294,2.594748,1.238048 C,-4.366045,-0.393844,-1.00093 C,-0.509534,-0.252576,4.532124 H,-0.132968,-0.92282,5.29696 C,-0.733723,-0.623463,-4.153103 H,-0.25821,0.214494,-3.640527 H,-1.675475,-0.285389,-4.593308 H,-0.065861,-0.906124,-4.973361 C,4.739906,0.963049,-0.344055 C,-4.259138,1.91786,1.880439 H,-3.924959,0.881885,1.917635 H,-5.154307,1.976158,1.257 H,-4.552059,2.190993,2.900164 C,-1.470839,-3.348723,3.339468 H,-2.042263,-2.423013,3.368177 H,-1.622514,-3.858404,4.296663 H,-1.894065,-3.995691,2.564629 C,-1.188136,0.902539,4.890072 H,-1.364733,1.140913,5.933134 C,5.374961,2.064078,0.234522 H,6.034969,1.90283,1.082493 C,3.112609,-5.313935,2.778937 H,3.441545,-5.474525,1.7466 H,2.594734,-6.218626,3.105341 H,4.01209,-5.199269,3.390168 C,2.797546,2.702193,-3.144315 H,3.144065,2.147734,-4.021251 H,2.773462,3.763787,-3.400536 H,1.774659,2.374258,-2.938592 C,-2.39539,-3.621687,-2.48653 C,-4.579818,1.452501,-2.80812 H,-4.574177,2.518892,-2.565354 H,-5.618058,1.138885,-2.917085

H,-4.092999,1.331409,-3.780618 C,-3.065864,6.215754,-0.449443 H,-4.147994,6.243801,-0.59428 H,-2.592857,6.289536,-1.433912 H,-2.780912,7.111845,0.110421 C,-3.378787,-1.872117,0.779645 H,-2.370887,-2.268811,0.885643 H,-4.033307,-2.646316,0.384112 H,-3.744909,-1.544997,1.755036 C,5.188404,3.358886,-0.24751 C,5.009082,-0.424198,0.188191 H,4.080141,-0.967514,0.37315 H,5.578049,-0.378707,1.119394 H,5.585393,-1.017508,-0.528755 C,-5.689448,-1.080612,-1.001445 H,-5.607906,-2.122301,-1.325936 H,-6.373353,-0.576574,-1.684319 H,-6.147759,-1.074727,-0.007952 C,-3.678798,-4.411502,-2.603574 H,-3.542956,-5.290292,-3.243545 H,-4.480233,-3.812897,-3.044257 H,-4.02011,-4.778,-1.630773 C,5.90704,4.533674,0.373542 H,6.827311,4.770428,-0.172741 H,6.186348,4.326984,1.409457 H,5.284916,5.432664,0.364857

Zero-point correction=	1.015711 (Hartree/Particle)
Thermal correction to Energy=	1.075962
Thermal correction to Enthalpy=	1.076906
Thermal correction to Gibbs Free Ener	rgy= 0.919413
Sum of electronic and zero-point Ener	gies= -2925.201595
Sum of electronic and thermal Energie	es= -2925.141344
Sum of electronic and thermal Enthalp	oies= -2925.140400
Sum of electronic and thermal Free Er	ergies= -2925.297893

Table S15 Cartesian coordinates and energy values of 4 in THF.

P.0.506993.-0.642716.-0.572968 P,-0.823216,0.619807,0.733355 O,0.00098,-0.930133,-1.966539 C,-0.947781,2.186223,-0.270445 C,0.036168,3.184951,-0.068505 C,-0.087154,4.421043,-0.70993 H,0.677298,5.172457,-0.54573 C,-1.172607,4.696102,-1.530697 H,-1.261654,5.661388,-2.016888 C,-2.151369,3.728669,-1.710369 H,-3.01227,3.9376,-2.335775 C,-2.064888,2.473303,-1.094414 C,1.230819,3.002337,0.823672 C,1.109531,3.181769,2.219407 C,2.249976,3.09253,3.017113 H,2.149388,3.235507,4.089214 C,3.514168,2.847282,2.478044 C,3.61689,2.702256,1.096813 H,4.59155,2.52918,0.650566 C,2.501389,2.783533,0.257065 C,-0.219859,3.496101,2.86271 H,-0.738682,4.303067,2.339484

H.-0.082814.3.79576.3.903427 H,-0.881354,2.624384,2.849725 C,4.726664,2.735245,3.3708 H,4.795901,1.737344,3.817988 H,4.684109,3.455539,4.191807 H,5.649911,2.910885,2.814345 C,2.70745,2.685659,-1.238947 H,2.851581,3.679893,-1.676371 H,1.855368,2.238086,-1.751481 H,3.594105,2.091403,-1.467502 C,-3.222729,1.545335,-1.335174 C,-4.289437,1.512432,-0.414313 C,-5.41185,0.731415,-0.696252 H,-6.233228,0.721155,0.014376 C,-5.512007,-0.016616,-1.868883 C,-4.453879,0.044055,-2.77399 H,-4.517148,-0.516374,-3.702132 C,-3.312142,0.814605,-2.537527 C,-4.25096,2.316878,0.865092 H,-3.481694,1.948545,1.551735 H,-5.209893,2.26057,1.38362 H,-4.027986,3.370004,0.674982 C,-6.723183,-0.875571,-2.144411 H,-6.57961,-1.893776,-1.765219 H,-6.92061,-0.954331,-3.216148 H.-7.617568,-0.471986,-1.663673 C,-2.208201,0.838009,-3.566994 H,-1.91168,1.858782,-3.821351 H,-2.532079,0.341417,-4.484138 H,-1.322424,0.31682,-3.191829 C,1.055992,-2.171664,0.311286 C,2.364844,-2.640183,0.031953 C,2.78073,-3.861936,0.571397 H,3.784022,-4.21026,0.352569 C,1.931909,-4.626242,1.360625 H,2.267995,-5.575208,1.763999 C,0.646763,-4.171951,1.621154 H,-0.028848,-4.765534,2.226845 C,0.187208,-2.95565,1.102744 C,3.365247,-1.908999,-0.820187 C,4.351692,-1.116039,-0.201518 C,5.326657,-0.504265,-0.992903 H,6.08728,0.102376,-0.510222 C,5.358477,-0.664857,-2.377977 C,4.387799,-1.475802,-2.965299 H,4.406706,-1.632144,-4.039904 C,3.393948,-2.109468,-2.216008 C,4.380492,-0.927109,1.297677 H,5.207079,-0.276747,1.587914 H,4.499867,-1.880367,1.820282 H,3.455977,-0.474912,1.666673 C,6.406491,0.0214,-3.221231 H,7.242968,0.370964,-2.612177 H,5.987883,0.891294,-3.738867 H,6.80308,-0.64996,-3.98756 C,2.386384,-2.992679,-2.913165 H,2.285851,-3.959592,-2.413042 H,2.688581,-3.174668,-3.946269 H,1.400137,-2.519606,-2.919634 C,-1.227179,-2.581609,1.434945 C,-2.268844,-2.885869,0.537081

C,-3.585737,-2.606221,0.915344 H,-4.385869,-2.833243,0.218536 C,-3.899724,-2.054048,2.155116 C,-2.851998,-1.777789,3.035614 H,-3.073988,-1.352294,4.010121 C,-1.522703,-2.036725,2.703727 C,-1.997789,-3.513662,-0.810692 H,-1.476544,-2.820944,-1.477774 H,-2.933842,-3.805009,-1.290348 H,-1.372452,-4.405673,-0.715251 C,-5.329705,-1.774624,2.550392 H,-6.01909,-2.005422,1.736505 H,-5.46764,-0.723112,2.819052 H,-5.622953,-2.37215,3.419578 C,-0.433236,-1.735209,3.707142 H,-0.851131,-1.254134,4.593191 H,0.324809,-1.067861,3.289225 H,0.082058,-2.644725,4.029063 H,1.692796,0.121649,-0.535949 H,-2.004092,0.010619,0.254418

Zero-point correction=	0.854341 (Hartree/Particle)
Thermal correction to Energy=	0.907024
Thermal correction to Enthalpy=	0.907969
Thermal correction to Gibbs Free Ene	rgy= 0.760630
Sum of electronic and zero-point Ener	gies= -2618.263464
Sum of electronic and thermal Energie	es= -2618.210780
Sum of electronic and thermal Enthalp	bies= -2618.209836
Sum of electronic and thermal Free Er	nergies= -2618.357174

Table S16 Cartesian coordinates and energy values of 5 in THF.

P,0.592069,-0.644898,0.455775 P,0.713319,1.433197,-0.118545 O,-0.662532,-1.484436,0.156207 C,3.414414,-2.136273,-2.357254 H,4.470966,-2.233592,-2.12798 C,2.867899,-0.857983,-2.462322 C,2.180938,-0.728265,2.824719 C,0.922817,0.652457,-2.986567 C,-2.18965,1.26629,2.765049 C,4.353174,-0.141915,1.674999 C,-0.171662,-0.205479,3.192908 C,2.64587,-3.288416,-2.537336 C,1.492186,-0.714777,-2.748008 C,0.884242,-0.507735,2.29689 C,3.396843,-1.11611,2.025077 C,1.295613,-3.12965,-2.834196 H,0.677684,-4.011003,-2.985732 C,-1.628803,-0.024221,2.847014 C,-0.38159,6.288683,0.249459 C,0.709495,-1.865467,-2.950894 C,2.401508,-0.619329,4.203163 H,3.402206,-0.794741,4.582839 C,-1.253986,4.373628,-0.982124 C,0.763586,1.001867,-4.334882 H,1.000635,0.258111,-5.089524 C,-3.576552,1.396646,2.627704 H,-3.998647,2.395844,2.567792 C,1.370884,-0.299977,5.074336

H,1.556262,-0.216799,6.139796 C,0.624995,1.593862,-1.961461 C,3.661814,-2.476906,1.776884 C,0.896821,5.953428,-0.195681 H,1.741015,6.568525,0.103879 C,0.04314,4.043645,-1.4153 C,0.133146,3.223756,-3.735999 H,-0.14507,4.23703,-4.008988 C,0.09649,-0.102509,4.565509 H,-0.724561,0.128993,5.235464 C,1.128726,4.850972,-1.020438 C,4.867241,-2.838549,1.170962 H,5.064915,-3.890514,0.985536 C,0.263427,2.911776,-2.382978 C,-3.853196,-0.974827,2.692962 H,-4.49653,-1.8513,2.696042 C,5.542164,-0.549203,1.065461 H,6.271958,0.207562,0.792016 C,-2.47419,-1.15228,2.826275 C,5.823248,-1.890844,0.809123 C,-1.445196,5.485452,-0.159484 H,-2.452263,5.728972,0.16838 C,-4.427512,0.293584,2.597058 C,-0.751596,-1.759569,-3.317473 H,-1.255572,-1.024287,-2.689783 H,-1.248701,-2.725929,-3.196985 H,-0.885388,-1.444066,-4.357189 C.0.358977,2.270773,-4.724392 H,0.252275,2.521751,-5.773948 C,-1.337482,2.509088,2.829468 H,-0.673269,2.497813,3.697259 H,-1.961355,3.40321,2.886833 H,-0.706342,2.587377,1.938842 C,4.122867,1.323532,1.957884 H,3.198689,1.673939,1.489026 H,4.950546,1.923888,1.5746 H,4.037003,1.515484,3.031675 C,-1.914417,-2.547055,2.969316 H,-1.234436,-2.764561,2.141829 H,-2.71795,-3.288561,2.978538 H.-1.346313.-2.657312.3.897312 C,3.755441,0.350649,-2.294531 H,4.788516,0.049338,-2.113246 H,3.423289,0.963159,-1.45177 H,3.729067,0.985421,-3.185097 C,3.271366,-4.658196,-2.422818 H,4.041358,-4.809511,-3.186673 H,2.525874,-5.448046,-2.542042 H,3.75198,-4.792739,-1.449009 C,2.668021,-3.551017,2.154655 H,2.39122,-3.490372,3.210719 H,3.082871,-4.543562,1.967104 H,1.742926,-3.458713,1.577264 C,-0.600802,7.468299,1.167051 H,-0.426319,7.192753,2.213289 H,-1.623859,7.845793,1.094493 H,0.080122,8.29034,0.930775 C,-2.435905,3.523328,-1.378805 H,-2.562838,3.485679,-2.464681 H,-3.358731,3.907377,-0.937417 H,-2.283475,2.497741,-1.031592

C,2.536163,4.5401,-1.471625 H,3.240295,5.276413,-1.078087 H,2.618284,4.536583,-2.562125 H,2.845177,3.550753,-1.123208 C,-5.927632,0.468842,2.528734 H,-6.356091,0.594114,3.52941 H,-6.414908,-0.400469,2.077982 H,-6.203618,1.354571,1.949839 C,7.138018,-2.302619,0.189511 H,7.943591,-2.29755,0.932201 H,7.433652,-1.619446,-0.611351 H,7.084311,-3.310458,-0.228547 H,1.722074,-1.413743,0.100125 N,-3.785874,-3.574996,-0.870436 N,-3.89948,-1.424467,-1.029114 C,-5.130521,-1.9168,-1.455266 C,-5.062052,-3.279998,-1.355716 C,-3.108416,-2.437392,-0.682245 H,-2.079082,-2.296094,-0.31778 C,-3.244307,-4.905283,-0.605736 H,-3.831965,-5.407911,0.163828 H,-2.219312,-4.793143,-0.258327 H,-3.250713,-5.504008,-1.517626 C,-6.063973,-4.339174,-1.666028 H,-5.703624,-5.025389,-2.438644 H,-6.986611,-3.8886,-2.030613 H,-6.313531,-4.933664,-0.781694 C,-6.231912,-1.020309,-1.907243 H,-6.5333,-0.329468,-1.114741 H,-7.106397,-1.604511,-2.192908 H,-5.931566,-0.422133,-2.772362 C,-3.485527,-0.018368,-0.9487 H,-3.519219,0.431382,-1.941099 H,-2.466926,0.006511,-0.56047 H,-4.141317,0.51803,-0.264697

Zero-point correction=	1.038753 (Hartree/Particle)
Thermal correction to Energy=	1.098433
Thermal correction to Enthalpy=	1.099377
Thermal correction to Gibbs Free Ene	rgy= 0.941391
Sum of electronic and zero-point Ener	rgies= -3001.669289
Sum of electronic and thermal Energie	es= -3001.609609
Sum of electronic and thermal Enthalp	pies= -3001.608665
Sum of electronic and thermal Free Er	nergies= -3001.766651

Table S17 Cartesian coordinates and energy values of *d*/*l*-6 in THF.

P,0.055919,0.82572,0.788859 C,0.00169,2.364156,-0.265102 C,-3.437278,1.92558,-1.166865 C,1.231304,2.972926,-0.614486 C,-1.207294,2.992627,-0.661431 C,3.020213,2.905379,1.155126 C,2.583136,2.525967,-0.132858 C,3.482694,1.905883,-1.020442 C,-2.587352,2.566123,-0.248902 C,3.059524,1.477059,-2.406922 H,2.205222,0.796356,-2.367217 H,3.875772,0.958228,-2.912631 H,2.765383,2.329118,-3.026277 C,4.800733,1.68828,-0.609421 H,5.490202,1.216543,-1.301964 C,-5.289886,2.089969,0.413912 C,5.254189,2.063441,0.652197 C,-1.15734,4.149561,-1.44832 H,-2.090772,4.617762,-1.740621 C,1.234243,4.126834,-1.408781 H,2.187022,4.576912,-1.664311 C,-4.771603,1.695148,-0.815527 H,-5.42083,1.202031,-1.532292 C,4.342015,2.658869,1.524231 H,4.672329,2.961988,2.513916 C,-3.092325,2.969857,1.007334 C,0.051449,4.708306,-1.839465 H,0.069832,5.603998,-2.450577 C,-2.96002,1.520553,-2.543552 H,-3.00157,2.36392,-3.241426 H,-3.587466,0.724366,-2.948985 H,-1.926943,1.170537,-2.534297 C,2.099536,3.594794,2.133915 H,1.586276,4.445204,1.677964 H,2.658863,3.957651,2.998356 H,1.327969,2.909484,2.499271 C,-4.428541,2.720134,1.314874 H,-4.812774,3.045281,2.277728 C,6.691008,1.85395,1.066837 H,6.759469,1.28477,1.999179 H,7.196419,2.810239,1.237251 H,7.251569,1.314292,0.301204 C,-6.737345,1.85526,0.773208 H,-7.212137,2.775814,1.12533 H,-6.833299,1.116937,1.576347 H,-7.306598,1.490554,-0.08382 C,-2.226064,3.698266,2.008574 H,-1.420032,3.06373,2.389303 H,-2.819558,4.026947,2.863688 H,-1.751801,4.577234,1.564011 H,-1.332898,0.783128,1.063105 P,0.063992,-0.829925,-0.792155 C,0.010584,-2.364141,0.267964 C,3.492334,-1.894286,1.017565 C,-1.196739,-2.993228,0.666337 C,1.242329,-2.968008,0.622011 C,-3.07797,-2.977127,-1.007437 C,-2.577189,-2.571864,0.249477 C,-3.430187,-1.929913,1.164235 C,2.592254,-2.521221,0.135913 C,-2.957116,-1.522618,2.541591 H,-1.926083,-1.166641,2.534115 H,-3.589791,-0.730628,2.947051 H,-2.994269,-2.366874,3.238712 C,-4.762758,-1.698965,0.80747 H,-5.414294,-1.203442,1.520465 C,5.260856,-2.059704,-0.657264 C,-5.277059,-2.09529,-0.423391 C,1.246786,-4.115862,1.423828 H,2.199726,-4.563465,1.683255 C,-1.144983,-4.145944,1.460189 H,-2.077584,-4.614551,1.754181 C,4.809393,-1.676843,0.602686 H,5.499388,-1.199999,1.291102

C,-4.412971,-2.726712,-1.320481 H,-4.793009,-3.051055,-2.285252 C,3.027913,-2.910826,-1.14986 C.0.064605,-4.697901,1.856507 H,0.085298,-5.589932,2.473049 C,3.072542,-1.463284,2.404307 H,2.80946,-2.317739,3.03478 H,3.880067,-0.918158,2.895884 H,2.199715,-0.806562,2.368745 C,-2.207802,-3.705215,-2.005692 H,-1.727415,-4.578816,-1.557294 H,-2.799696,-4.041941,-2.858802 H,-1.406384,-3.067003,-2.390122 C,4.349077,-2.66621,-1.522172 H,4.680002,-2.980487,-2.508137 C,-6.727272,-1.875264,-0.781535 H,-6.827557,-1.305097,-1.710416 H,-7.24437,-2.828293,-0.932961 H,-7.254278,-1.331566,0.004324 C,6.69036,-1.828682,-1.085267 H,7.135355,-2.741051,-1.493115 H,6.752875,-1.064201,-1.867295 H,7.308017,-1.498299,-0.24787 C,2.107106,-3.609479,-2.121617 H,1.334209,-2.927732,-2.491104 H,2.665746,-3.977742,-2.984205 H,1.595267,-4.457077,-1.659000 H,-1.323371,-0.793622,-1.073869 Zero-point correctio

Zero-point correction=	0.848425 (Hartree/Particle)
Thermal correction to Energy=	0.898898
Thermal correction to Enthalpy=	0.899842
Thermal correction to Gibbs Free Ener	gy= 0.759007
Sum of electronic and zero-point Energy	gies= -2542.992725
Sum of electronic and thermal Energie	s= -2542.942253
Sum of electronic and thermal Enthalp	ies= -2542.941308
Sum of electronic and thermal Free En	ergies= -2543.082143

Table S18 Cartesian coordinates and energy values of meso-6 in THF.

P,-0.168015,0.817696,0.78925 C,-0.363489,2.339537,-0.271387 C,-3.766512,1.598766,-1.08978 C,0.802659,3.054134,-0.641743 C,-1.628596,2.864051,-0.638733 C,2.621588,3.110147,1.100128 C,2.194499,2.715447,-0.188154 C,3.127123,2.18392,-1.097672 C,-2.96042,2.327518,-0.196212 C,2.73816,1.794358,-2.506889 H,1.712954,1.427704,-2.568094 H,3.403265,1.015785,-2.886495 H,2.809872,2.649974,-3.187581 C,4.463315,2.052075,-0.706384 H,5.174733,1.637414,-1.413738 C,-5.606423,1.652212,0.514558 C,4.905049,2.443727,0.553664 C,-1.692392,4.024943,-1.420234 H,-2.668485,4.412692,-1.690208 C,0.692744,4.204609,-1.431495

H,1.598319,4.733684,-1.706709 C,-5.074673,1.278026,-0.717354 H,-5.694234,0.726314,-1.416971 C,3.963313,2.959617,1.445746 H,4.28565,3.275392,2.433997 C,-3.475607,2.707618,1.060927 C,-0.5446,4.685245,-1.834512 H,-0.615526,5.580785,-2.441968 C,-3.246026,1.161789,-2.43942 H,-2.946867,2.014351,-3.055422 H,-4.008247,0.60159,-2.983563 H,-2.367762,0.518913,-2.333929 C,1.670031,3.724863,2.098991 H,1.086057,4.534516,1.654272 H,2.217579,4.128153,2.952951 H,0.959679,2.983263,2.476707 C,-4.78444,2.357554,1.394236 H,-5.17826,2.665185,2.358914 C,6.360449,2.348476,0.94383 H,6.482127,1.873438,1.921703 H,6.814596,3.342951,1.010839 H,6.932318,1.772128,0.214536 C,-7.024653,1.30269,0.897501 H,-7.534564,2.155518,1.354259 H,-7.050206,0.484726,1.625902 H,-7.606569,0.989301,0.028307 C,-2.650296,3.507956,2.042154 H,-1.789347,2.938616,2.405917 H,-3.249719,3.790963,2.909424 H,-2.256206,4.420733,1.587572 H,-1.553019,0.542093,0.900057 P,0.167118,-0.818718,-0.789685 C,0.364234,-2.340086,0.27127 C,3.769632,-1.600452,1.082561 C,-0.801318,-3.054167,0.644452 C,1.62995,-2.864687,0.636101 C,-2.624467,-3.110594,-1.093132 C,-2.194093,-2.715256,0.193921 C,-3.12426,-2.182761,1.105305 C,2.960864,-2.328542,0.190382 C,-2.73194,-1.792297,2.513347 H,-1.705886,-1.427705,2.572353 H,-3.394783,-1.011906,2.893187 H,-2.804282,-2.64695,3.195199 C,-4.461387,-2.050643,0.717153 H,-5.170918,-1.635045,1.425789 C,5.605058,-1.653136,-0.526923 C,-4.906373,-2.443133,-0.541441 C,1.695212,-4.025245,1.418042 H,2.671813,-4.413075,1.686052 C,-0.689959,-4.204286,1.434515 H,-1.595054,-4.733041,1.711912 C,5.076628,-1.279821,0.707048 H,5.698389,-0.72915,1.405593 C,-3.966981,-2.960067,-1.43547 H,-4.291859,-3.276637,-2.422642 C,3.472552,-2.70783,-1.068113 C,0.548157,-4.685059,1.835088 H,0.620142,-5.580344,2.442791 C,3.252438,-1.164032,2.433646 H,2.949379,-2.016363,3.047959

H,4.017818,-0.608782,2.978429 H,2.377241,-0.516602,2.33016 C,-1.675467,-3.726145,-2.093913 H,-1.089928,-4.53503,-1.649892 H,-2.225242,-4.130648,-2.945867 H,-0.96646,-2.984683,-2.474459 C,4.780855,-2.357744,-1.404641 H,5.172233,-2.665097,-2.370346 C,-6.362593,-2.34694,-0.928306 H,-6.487049,-1.860433,-1.900211 H,-6.814296,-3.341645,-1.006695 H,-6.934587,-1.780699,-0.191202 C,7.021349,-1.29991,-0.913396 H,7.507622,-2.125773,-1.439563 H,7.046646,-0.432208,-1.581954 H,7.625247,-1.057075,-0.036398 C,2.644622,-3.507013,-2.048075 H,1.787098,-2.93419,-2.41465 H,3.243723,-3.795378,-2.913808 H,2.245277,-4.416429,-1.591516 H,1.551944,-0.54255,-0.901492

Zero-point correction=	0.848463 (Hartree/Particle)
Thermal correction to Energy=	0.899919
Thermal correction to Enthalpy=	0.900864
Thermal correction to Gibbs Free Ene	rgy= 0.756899
Sum of electronic and zero-point Ener	gies= -2542.994262
Sum of electronic and thermal Energie	es= -2542.942806
Sum of electronic and thermal Enthalp	bies= -2542.941862
Sum of electronic and thermal Free Er	nergies= -2543.085826

Table S19 Cartesian coordinates and energy values of 7 in THF.

P,-0.489714,0.343871,-1.094784 N,1.911516,1.78702,-1.326067 N,1.015209,2.067501,0.63477 C,-0.724696,-0.819176,0.339591 C,0.335636,-1.581016,0.912892 C,0.063661,-2.494009,1.939505 H,0.886607,-3.059738,2.364108 C,-1.232213,-2.722695,2.385151 H,-1.424144,-3.445261,3.170714 C,-2.280648,-2.035969,1.785906 H,-3.302118,-2.225914,2.098463 C,-2.05138,-1.094678,0.776966 C,-3.262295,-0.430638,0.181642 C,-3.766775,-0.86433,-1.063945 C,-4.914738,-0.26623,-1.582995 H,-5.293474,-0.608789,-2.541885 C,-5.589978,0.751871,-0.909106 C,-5.098995,1.143403,0.332972 H,-5.618728,1.919268,0.888654 C,-3.959247,0.561543,0.896123 C,-3.543269,0.99908,2.283695 H,-4.040719,0.394529,3.050599 H,-3.823227,2.040524,2.461346 H,-2.472028,0.892601,2.447068 C,-3.098438,-1.971289,-1.845542 H,-2.167745,-1.624443,-2.305026 H,-3.752057,-2.326139,-2.645287

H,-2.846095,-2.820723,-1.20654 C,-6.803636,1.413551,-1.517033 H,-7.417713,1.899224,-0.755036 H,-7.429921,0.68989,-2.045617 H,-6.511691,2.181019,-2.242555 C,1.757169,-1.553082,0.415681 C,2.084694,-2.231353,-0.784079 C,3.409415,-2.26108,-1.21573 H,3.644602,-2.786854,-2.137259 C,4.442183,-1.658615,-0.492102 C,4.111308,-1.036511,0.706265 H,4.897826,-0.584747,1.304914 C,2.79394,-0.989528,1.18129 C,1.034821,-2.95743,-1.588306 H,0.462498,-3.647168,-0.962431 H,1.494979,-3.530029,-2.396448 H,0.323459,-2.250879,-2.024869 C,5.871461,-1.729443,-0.97619 H,6.270914,-2.745058,-0.882652 H,6.520632,-1.06617,-0.400096 H,5.953255,-1.449648,-2.030791 C,2.556142,-0.375576,2.543108 H,1.532085,-0.030782,2.668733 H,3.233963,0.464807,2.714085 H,2.743504,-1.107861,3.336706 C,0.871366,1.369005,-0.537653 C,2.686924,2.734595,-0.657905 C,2.133179,2.904472,0.57276 C,2.177809,1.284798,-2.663714 H,1.64479,0.340077,-2.771891 H,3.248233,1.12315,-2.793566 H,1.817629,1.980622,-3.426626 C,3.897151,3.35212,-1.272244 H,4.67421,2.608726,-1.477947 H,4.32399,4.09859,-0.602278 H,3.659865,3.851979,-2.216645 C,2.554677,3.776759,1.707033 H,1.821235,4.561031,1.92275 H,3.498367,4.269567,1.472445 H,2.70099,3.199834,2.625414 C,-0.033685,2.142327,1.637552 H,-0.994203,2.201401,1.120205 H,0.114875,3.028148,2.252612 H,-0.045271,1.260252,2.27793

Zero-point correction=	0.598967 (Hartree/Particle)
Thermal correction to Energy=	0.633274
Thermal correction to Enthalpy=	0.634218
Thermal correction to Gibbs Free Ene	rgy= 0.533309
Sum of electronic and zero-point Ener	gies= -1654.297079
Sum of electronic and thermal Energie	es= -1654.262772
Sum of electronic and thermal Enthalp	bies= -1654.261828
Sum of electronic and thermal Free En	nergies= -1654.362738

Table S20 Cartesian coordinates and energy values of H₂O in THF.

O,0.,0.,0.1187102 H,0.,0.75704,-0.4748408 H,0.,-0.75704,-0.4748408

Zero-point correction=	0.021307 (Hartree/Particle)
Thermal correction to Energy=	0.024143
Thermal correction to Enthalpy=	0.025087
Thermal correction to Gibbs Free Ener	rgy= 0.003660
Sum of electronic and zero-point Ener	gies= -76.432033
Sum of electronic and thermal Energie	es= -76.429198
Sum of electronic and thermal Enthalp	bies= -76.428254
Sum of electronic and thermal Free Er	nergies= -76.449680

Table S21 Cartesian coordinates and energy values of $NH_3 \cdot BH_3$ in THF.

N,-0.000000556,0.,0.730063 H,0.769046,0.556361,1.09627 H,0.0972996763,-0.9441939208,1.09627 H,-0.866345843,0.3878329208,1.09627 B,-0.0000000556,0.,-0.933407 H,-0.120229,1.161239,-1.244073 H,1.0657768905,-0.4764981798,-1.244073 H,-0.9455480572,-0.6847408202,-1.244073

Zero-point correction=	0.069657 (Hartree/Particle)
Thermal correction to Energy=	0.073467
Thermal correction to Enthalpy=	0.074411
Thermal correction to Gibbs Free Ener	rgy= 0.047209
Sum of electronic and zero-point Ener	gies= -83.196059
Sum of electronic and thermal Energie	es= -83.192250
Sum of electronic and thermal Enthalp	oies= -83.191305
Sum of electronic and thermal Free Er	nergies= -83.218507

Table S22 Cartesian coordinates and energy values of NH₂BH₂ in THF.

 $\begin{array}{l} N, -0.6106870625, -0.00003425, -0.00002875\\ H, -1.1630630625, 0.84362875, -0.00009075\\ H, -1.1628910625, -0.84390425, 0.00031025\\ B, 0.7773449375, -0.00002625, -0.00005475\\ H, 1.3575459375, -1.04221025, -0.00003475\\ H, 1.3564929375, 1.04285675, 0.00029025\\ \end{array}$

0.047739 (Hartree/Particle)
0.050975
0.051919
rgy= 0.025338
gies= -82.027773
es= -82.024537
bies= -82.023593
nergies= -82.050174

References

- S1 F. H. Stootman, D. M. Fisher, A. Rodger, J. R. Aldrich-Wright, Analyst, 2006, 131, 1145–1151.
- S2 Z. Tošner, R. Andersen, B. Stevensson, M. Edén, N. C. Nielsena and T. Vosegaard, J. Magn. Reson., 2014, 246, 79–93.
- S3 J. J. Helmus and C. P. Jaroniec, *J Biomol NMR*, 2013, **55**, 355–367.
- S4 International Tables for X-Ray Crystallography; Kynoch Press: Birmingham, England, 1952, Vol. III.
- S5 SAINT+, version 6.02; Bruker AXS: Madison, WI, 1999.
- S6 L. Krause, R Herbst-Irmer, G. M. Sheldrick and D. Stalke, J. Appl. Cryst., 2015, 48, 3–10.
- S7 G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.
- S8 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.
- S9 K. Bradenburg, *Diamond*, version 3.2k; Crystal Impact GbR: Bonn, Germany, 2015.
- S10 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Peterson, et al., Gaussian 16 Revision A.
- S11 M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comp. Chem., 2003, 24, 669-681.
- S12 a) F.Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297–3305; b) Y.Zhao, D. G. Truhlar, *Theor. Chem. Account*, 2008, 120, 215-241; c) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J.Chem. Phys.*, 2010, 132, 154104.
- S13 K. B. Wiberg, Tetrahedron, 1968, 24, 1083-1096.
- S14 R. Dennington, T. Keith and J. Millam, Semichem Inc., Shawnee Mission, KS, GaussView, Version 5, 2009.