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Figure S1. Assigned 
1
H NMR spectrum for (a) purified PBeMA37 macro-CTA in CD2Cl2 and (b) 

PBeMA37-PBzMA100 in CDCl3.  
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Figure S2. Digital images recorded for a series of 20% w/w dispersions of PBeMA37-PBzMAx spheres prepared 

in mineral oil at (a) 20 °C and (b) 50 °C. 
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Figure S3. Selected transmission electron micrographs obtained for a 0.10% w/w dispersions of (a) PBeMA37-

PBzMA100 spheres prepared at 50 °C, (b) PBeMA37-PBzMA300 spheres prepared at 50 °C, and (c) PBeMA37-

PBzMA100 spheres prepared at 20 °C. Image analysis on 50 PBeMA37-PBzMA100 nanoparticles prepared at 

20 °C indicated a mean core diameter of 16.2 ± 1.8 nm, and a sphere-to-sphere distance of 23.5 ± 2.76 nm. 
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Figure S4. Small-angle X-ray scattering (SAXS) patterns recorded for (a) a 1.0% w/w dispersion and 

(b) a 20% w/w dispersion of PBeMA37-PBzMA100 spheres in mineral oil at 50 °C before cooling (red 

squares), after cooling to 20 °C (black circles) and after reheating to 50 °C (blue triangles). The 

structure factor [S(q)] observed for a 1.0% w/w dispersion at 20 °C is determined normalizing the 

pattern obtained at 20 °C relative to that collected at 50 °C for the same dispersion, and is indicated by 

the orange line in (a), with the fit to the sticky hard-sphere model shown as a black dashed curve. 
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Figure S5. Wide-angle X-ray scattering (WAXS) patterns recorded at 20 °C for a 20% w/w 

dispersion of PBeMA37-PBzMA100 spheres in mineral oil (blue data), mineral oil (black data) and the 

difference between these patterns (red data). The first two experimental patterns were normalized by 

their maximum intensities. 
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SAXS models 

In general, the X-ray intensity scattered by a dispersion of particles [usually represented by 

the scattering cross section per unit sample volume, 
𝑑𝛴

𝑑𝛺
(𝑞)] can be expressed as: 

𝑑𝛴
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∞
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2
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where 𝐹(𝑞, 𝑟1, … , 𝑟k) is their form factor, 𝑟1, … , 𝑟k is a set of k parameters describing the 

particle structural morphology, 𝛹(𝑟1,… , 𝑟k) is the distribution function, SSF(q) is the structure 

factor and N is the particle number density per unit sample volume expressed as: 
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∞

0
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where 𝑉(𝑟1,… , 𝑟k) is volume of the particle and φ is their volume fraction in the dispersion. 

 

The spherical micelle form factor for Equation S1 can be expressed as:
1
 

 

𝐹s_mic(𝑞) = 𝑁s
2𝛽s

2𝐴s
2(𝑞, 𝑅s) + 𝑁s𝛽c

2𝐹c(𝑞, 𝑅g) + 𝑁s(𝑁s − 1)𝛽c
2𝐴c

2(𝑞)

+ 2𝑁s
2𝛽s𝛽c𝐴s(𝑞, 𝑅s)𝐴c(𝑞) 
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where Rs is the radius of the spherical micelle core, Rg is the radius of gyration of the PBeMA 

coronal block. The core block and the corona block X-ray scattering length contrast is given 

by 𝛽s = 𝑉s(𝜉s − 𝜉sol) and 𝛽c = 𝑉c(𝜉c − 𝜉sol), respectively. Here ξs, ξc and ξsol are the X-ray 

scattering length densities of the core block (ξPBzMA = 10.38 x 10
10

 cm
-2

), the corona block 

(ξPBeMA = 9.26 x 10
10

 cm
-2

) and the mineral oil solvent (ξsol = 7.63 x 10
10

 cm
-2

), respectively. 
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Vs and Vc are volumes of the core block (VPBzMA) and the corona block (VPBeMA37), 

respectively. The volumes were obtained from 𝑉 =
𝑀n,pol

𝑁A𝜌
 using the density of PBzMA 

(ρPBzMA = 1.15 g cm
-3

)
2
 and the solid-state homopolymer density of PBeMA determined by 

helium pycnometry (ρPBeMA = 0.97 g cm
-3

), where Mn,pol corresponds to the number-average 

molecular weight of the block determined by 
1
H NMR spectroscopy. The scattering 

amplitude of the micelle core is expressed via sphere form factor amplitude: 

𝐴c(𝑞, 𝑅s) = Φ(𝑞𝑅s)exp (−
𝑞2𝜎2

2
) S4 

 

where Φ(𝑞𝑅s) =
3[sin(𝑞𝑅s)−𝑞𝑅scos(𝑞𝑅s)]

(𝑞𝑅s)3
. A sigmoidal interface between the two blocks was 

assumed for the spherical micelle form factor (Equation S4). This is described by the 

exponent term with a width σ accounting for a decaying scattering length density at the 

membrane surface. This σ value was fixed at 0.22 nm during fitting. 

 

The scattering amplitude of the spherical micelle corona is: 

 

𝐴c(𝑞) =
∫ 𝜇c(𝑟)
𝑅s+2𝑠

𝑅s

sin(𝑞𝑟)
𝑞𝑟 𝑟2𝑑𝑟

∫ 𝜇c(𝑟)𝑟2𝑑𝑟
𝑅s+2𝑠

𝑅s

exp (−
𝑞2𝜎2

2
) S5 

 

The radial profile, μc(r), can be expressed by a linear combination of two cubic b splines, 

with two fitting parameters s and a corresponding to the width of the electron density corona 

profile and the function weight coefficient, respectively. This information can be found 

elsewhere,
3, 4

 as can the approximate integrated form of Equation S5. The self-correlation 

term for the corona block is given by the Debye function: 
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𝐹c(𝑞, 𝑅g) =
2[exp(−𝑞2𝑅g

2) − 1 + 𝑞2𝑅g
2]

𝑞4𝑅g
4  S6 

 

where Rg is the radius of gyration of the PBeMA coronal block. The aggregation number of 

the spherical micelle is: 

𝑁s = (1 − 𝑥sol)

4
3 𝜋𝑅s

3

𝑉s
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where xsol is the volume fraction of solvent in the PBzMA micelle core. An effective structure 

factor expression proposed for interacting spherical micelles
5
 has been used in Equation S1: 

 

𝑆SF(𝑞) = 1 +
𝐴s_mic
av (𝑞)2[𝑆(𝑞) − 1]

𝐹s_mic(𝑞)
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Herein the scattering amplitude of the average radial scattering length density distribution of 

micelles is used as 𝐴s_mic
av (𝑞) = 𝑁s[𝛽s𝐴s(𝑞, 𝑅s) + 𝛽c𝐴c(𝑞)] and 𝑆SF(𝑞) is either: (1) a hard-

sphere interaction structure factor based on the Percus-Yevick approximation,
6
 SPY (q, DPY, 

fPY), where DPY is the interaction distance and fPY is the effective hard-sphere volume fraction 

or (2) a sticky hard-sphere interaction structure factor,
7
 SSHS (q, DSHS, fSHS, τ), where DSHS is 

the interaction distance, fSHS is the effective hard-sphere volume fraction and τ is the so-called 

‘stickiness parameter’, which was fixed at 0.10 in all cases. A polydispersity of the micelle 

core radius (Rs) was incorporated in the structural model (Equation S1) assuming a Gaussian 

distribution: 

 

𝛹(𝑟1) =
1

√2𝜋𝜎𝑅s2
exp (−

(𝑟1 − 𝑅s)
2

2𝜎𝑅s2
) S9 



S9 
 

 

 

where σRs is the standard deviation for Rs. In accordance with Equation S2 the number density 

per unit sample volume for the micelle model is expressed as: 

 

𝑁 =
𝜑

∫ 𝑉(𝑟1)𝛹(𝑟1)𝑑𝑟1
∞

0
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where φ is the volume fraction of copolymer in a sample and 
1
( )V r  is the total volume of 

copolymer in a spherical micelle [𝑉(𝑟1) = (𝑉s + 𝑉c)𝑁s(𝑟1)]. 

 

The model fitting to the SAXS pattern of 1.0% w/w PBeMA37-PBzMA100 spheres at 50 °C 

indicated an experimental Rg for the corona PBeMA block equal to 1.49 nm, which is 

physically reasonable, since it lies close to a rough theoretical estimate for the parameter. 

Thus, assuming that the projected contour length of a PBeMA monomer is 0.255 nm (two C-

C bonds in all-trans conformation), the total contour length of a PBeMA37 block, LPBeMA37 = 

37 x 0.255 nm = 9.435 nm. Given a mean Kuhn length of 1.53 nm (based on the known 

literature value for PMMA
8
) an estimated unperturbed radius of gyration, Rg = (9.435 x 

1.53/6)
0.5

, or 1.55 nm is calculated. 

 

An additional population represented by a power law dependence of scattering intensity 

(𝐵𝑞−𝑝, where B is a constant and p is an exponent) was incorporated when fitting the SAXS 

pattern recorded at 20 °C. This approach enabled the upturn in scattering intensity observed 

at low q corresponding to large scattering objects formed by a micelle aggregation (Figures 7 

and S2) to be approximated. It is reasonable to assume that the overall structural morphology 

can be described by mass fractals where p corresponds to the fractal dimension. Additionally, 
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a Gaussian peak (𝐴exp [−(
𝑞−𝑞peak

𝑤𝑖𝑑𝑡ℎ
)
2

]) was added to the model in order to account for the 

subtle feature observed at q ~ 1.8 nm
-1

 for the 20% w/w dispersion at 20 °C (Figure 7b, black 

data). Thus, the entire scattering pattern would be described as: 

 

𝐼(𝑞) =
𝑑𝛴

𝑑𝛺
(𝑞) + 𝐵𝑞−𝑝 + 𝐴exp [−(

𝑞 − 𝑞peak

𝑤𝑖𝑑𝑡ℎ
)
2

] S11 

 

where the first term represents scattering from spherical micelles (Equations S1 and S2). 
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