Supporting Information

Kinetic studies on strand displacement in de novo designed parallel heterodimeric coiled coils

Mike C. Groth,^a W. Mathis Rink,^a Nils F. Meyer,^a and Franziska Thomas^{*a, b}

^aInstitute of Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstr. 2, 37077 Göttingen, Germany

^bCenter for Biostructural Imaging of Neurodegeneration, von-Siebold-Straße 3a, 37075 Göttingen, Germany

*To correspondence should be addressed: fthomas@gwdg.de

Table of Content

1.	Peptide sequences	S2
2.	Determination of unfolding constants	S4
3.	CD-titration experiments	S10
4.	FRET-based strand-displacement assay	S22
5.	MALDI-TOF mass spectrometry and HPLC	S52
6.	CD spectroscopy and thermal denaturation of C-truncated heterodimeric coiled coils	\$59
7.	References	S64

1. Peptide sequences

	N-A _x B _y	Sequence and heptad register ^b
		gabcdef gabcdef gabcdef gabcdef
1	N-A ₃	G EIAALEK ENAALEW EIAALEQ GG
2	N-A _{3.5}	G LEQ EIAALEK ENAALEW EIAALEQ GG
3	A4	G EIAALEQ EIAALEK ENAALEW EIAALEQ GG
4	N-B ₃	G KIAALKY KNAALKK KIAALKQ GG
5	N-B _{3.5}	G LKQ KIAALKY KNAALKK KIAALKQ GG
6	B4	G KIAALKQ KIAALKY KNAALKK KIAALKQ GG
7	N-A3*	G EIAALEW ENAALEK EIAALEQ GG
8	N-A _{3.5} *	G LEQ EIAALEW ENAALEK EIAALEQ GG
9	A4*	G EIAALEQ EIAALEW ENAALEK EIAALEQ GG
10	N-B ₃ *	G KIAALKK* KNAALKK KIAALKQ GG
11	N-B _{3.5} *	G LKQ KIAALKK* KNAALKK KIAALKQ GG
12	B4 [*]	G KIAALKQ KIAALKK* KNAALKK KIAALKQ GG
13	N-A ₃ _W15K (N-A _{3comp})	G EIAALEK ENAALEK EIAALEQ GG
14	N-A _{3.5} _W18K (N-A _{3.5comp})	G LEQ EIAALEK ENAALEK EIAALEQ GG
15	A4_W22K (A4comp)	G EIAALEQ EIAALEK ENAALEK EIAALEQ GG

Table S1. Sequences of the *N*-terminally truncated set of *de novo* designed heterodimeric coiled coils. K^{*}-Dansyl-labelled lysine residue.

	C-A _x B _y		Sequence and heptad register ^b				
		gab	cdef	gabcdef	gabcdef	gabcdef	
1	C-A ₃	G EIA	ALEQ	EIAALEK	ENAALEW		GG
2	C-A _{3.5}	G EIA	ALEQ	EIAALEK	ENAALEW	EIAA	GG
3	A4	G EIA	ALEQ	EIAALEK	ENAALEW	EIAALEQ	GG
4	C-B ₃	G KIA	ALKQ	KIAALKY	KNAALKK		GG
5	C-B _{3.5}	G KIA	ALKQ	KIAALKY	KNAALKK	KIAA	GG
6	B4	G KIA	ALKQ	KIAALKY	KNAALKK	KIAALKQ	GG
7	C-A ₃ *	G EIA	ALEQ	EIAALEW	ENAALEK		GG
8	C-A _{3.5} *	G EIA	ALEQ	EIAALEW	ENAALEK	EIAA	GG
9	A4*	G EIA	ALEQ	EIAALEW	ENAALEK	EIAALEQ	GG
10	C-B ₃ *	G KIA	ALKQ	KIAALKK*	KNAALKK		GG
11	C-B _{3.5} *	G KIA	ALKQ	KIAALKK*	KNAALKK	KIAA	GG
12	B4 [*]	G KIA	ALKQ	KIAALKK*	KNAALKK	KIAALKQ	GG
13	C-A ₃ _W22K (C-A _{3comp})	G EIA	ALEQ	EIAALEK	ENAALEK		GG
14	C-A _{3.5} _W22K (C-A _{3.5comp})	G EIA	ALEQ	EIAALEK	ENAALEK	EIAA	GG
15	A ₄ _W22K (A _{4comp})	G EIA	ALEQ	EIAALEK	ENAALEK	EIAALEQ	GG

Table S2. Sequences of the *C*-terminally truncated set of *de novo* designed heterodimeric coiled coils. K*-Dansyl-labelled lysine residue.

A₄ and B₄ are the same in both sets of heterodimeric coiled coils.

2. Determination of unfolding constants

Table S3. Equilibrium constants of dissociation K_D of the N-A_xB_y peptides obtained from the thermal denaturation curves at 50 μ M coiled-coil concentration (N-A₃B₃ – N-A₄B_{3.5}) and 25 μ M (A₄B₄) using FitDis! analysis software.¹

<i>К</i> _D (М)	N-A ₃	N-A _{3.5}	A ₄
N-B₃	(4.5 ± 2.2) 10 ⁻⁶	(8.0 ± 7.2) 10 ⁻⁷	(2.5 ± 1.9) 10 ⁻⁷
N-B _{3.5}	(1.9 ± 1.1) 10 ⁻⁶	(6.4 ± 3.7) 10 ⁻⁹	(9.2 ± 5.9) 10 ⁻¹⁰
B ₄	(8.8 ± 3.5) 10 ⁻⁷	(1.0 ± 1.1) 10 ⁻⁹	(5.7 ± 1.1) 10 ⁻¹⁰

Table S4. Equilibrium constants of dissociation K_D of the C-A_xB_y peptides obtained from the thermal denaturation curves at 50 μ M coiled-coil concentration (C-A₃B₃ – C-A₄B_{3.5}) and 25 μ M (A₄B₄) using FitDis! analysis software.¹

<i>К</i> _D (М)	C-A ₃	C-A _{3.5}	A4
C-B ₃	(4.9 ± 3.5) · 10 ⁻⁶	(2.8 ± 0.5) · 10⁻ ⁶	(3.1 ± 1.5) · 10 ⁻⁶
C-B _{3.5}	(1.5 ± 3.0) · 10 ⁻⁶	(8.9 ± 5.8) · 10 ⁻⁸	(5.5 ± 2.4) · 10 ⁻⁸
B ₄	(8.6 ± 2.1) · 10 ⁻⁷	(7.3 ± 1.1) · 10 ⁻⁹	(5.7 ± 1.06) 10 ⁻¹⁰

Figure S1. CD-thermal denaturation curves of the N-A_xB_y peptides fit to a two-state unfolding model (top) and residuals depicting the quality of the fit (bottom). A) N-A₃B₃, B) N-A₃B_{3.5}, C) N-A₃B₄, D) N-A_{3.5}B₃, E) N-A_{3.5}B_{3.5}, F) N-A_{3.5}B₄, G) N-A₄B₃, H) N-A₄B_{3.5}, I) A₄B₄. Thermal denaturation curves were recorded at 50 μ M coiled-coil concentration (A₄B₄: 25 μ M coiled-coil concentration) in PBS buffer. Data were processed using the FitDis! analysis software.¹

Figure S2. CD-thermal denaturation curves of the C-A_xB_y peptides fit to a two-state unfolding model (top) and residuals depicting the quality of the fit (bottom). A) C-A₃B₃, B) C-A₃B_{3.5}, C) C-A₃B₄, D) C-A_{3.5}B₃, E) C-A_{3.5}B_{3.5}, F) C-A_{3.5}B₄, G) C-A₄B₃, H) C-A₄B_{3.5}. Thermal denaturation curves were recorded at 50 μ M coiled-coil concentration (A₄B₄: 25 μ M coiled-coil concentration) in PBS buffer. Data were processed using the FitDis! analysis software.¹

3. CD-titration experiments

 $\textbf{T} \qquad \mathsf{N}\text{-}\mathsf{A}_4\mathsf{B}_3 \uparrow \downarrow \mathsf{A}_{3.5}$

 $\mathbf{V} \qquad \mathsf{N-A}_{3.5}\mathsf{B}_{3.5} \uparrow \downarrow \mathsf{B}_3$

220 230

λ **[nm]**

240 250

260

270

-150 L____ 180

190

200 210

Figure S3. CD spectra of CD-titration experiments using the *N*-terminal truncated set of heterodimeric coiled coils. The most stable heterodimeric coiled coil is predominantly formed in solution.

 $\textbf{Z} \quad C\text{-}B_{3.5}A_4 \uparrow \downarrow A_{3.5}$

Figure S4. CD spectra of CD-titration experiments experiments using the *C*-terminal truncated set of heterodimeric coiled coils. The most stable heterodimeric coiled coil is predominantly formed in solution.

4. FRET-based strand-displacement assay

Time-resolved measurement of strand displacement monitored by FRET

To measure strand-displacement kinetics, A strands with intrinsically fluorescent Trp and Dansyl-labelled B-strands were used as FRET-donor-acceptor pairs ($\lambda_{ex} = 270$ nm, $\lambda_{em} = 540$ nm, Table S1). Labelled AB pairs were equilibrated at 15 µM concentration in PBS at 20 °C for 1 h and then at 4 °C for another 15 h in *Microfluor 1* 96 well plates, which were treated with 300 µL per well *Roche® Blocking reagent* (1 mg/mL) for 1 h and then washed with PBS (3x 100 µL) prior to use. We used a *Clariostar* platereader form *BMG Labtech* equipped with a 1 mL dispenser to record decrease of the FRET signal as a result of strand exchange. Strand displacement was performed by injecting equimolar amounts of non-labeled A and B strands (competitor peptide P_{comp}), respectively. First, maximum fluorescence (*F*_{max}) over 50 s was measured. Then, 1.5 µL of 1 mM P_{comp} were added and strand displacement was followed over 60 s at 540 nm. To obtain minimum fluorescence (*F*_{min}), another 5 µL of P_{comp} were added. Exemplarily, in Figure S5 time-resolved decrease of FRET signal in N-A₃B₄ upon the addition of non-labelled A₄ is shown. The obtained data was baseline-corrected by F_{min}, normalized to F_{max} and fitted to a single exponential decay (equation 1, Figures S6-S7).

$$F = F_{eq} + F_0 e^{-k_{obs}/t} \tag{1}$$

Figure S5. Strand displacement in N-A₃B₄ by A₄. Labelled N-A₃ and B₄ were equilibrated at 15 μ M peptide concentration in PBS. Change in Dansyl fluorescence was recorded at 540 nm. After 50 s equimolar amounts of non-labelled A₄ were added and fluorescence decrease was monitored for 60 s. To determine *F*_{min}, another 5 μ L non-labelled A₄ were added.

Figure S6. Normalized time-resolved fluorescence decrease upon strand displacement in N-A_xB_y peptides. Fluorescence data was recorded at Dansyl fluorescence at 540 nm (λ_{ex} = 270 nm). Data were baseline-corrected by *F*_{min} and normalized to *F*_{max}, respectively, and is the average of three measurements.

Figure S7. Normalized time-resolved fluorescence decrease upon strand displacement in C-A_xB_y peptides. Fluorescence data was recorded at Dansyl fluorescence at 540 nm (λ_{ex} = 270 nm). Data were baseline-corrected by F_{min} and normalized to F_{max}, respectively, and is the average of three measurements.

Table S5. Best-fit values of observed rate constants (k_{obs}) and half-lifes ($t_{1/2}$) of strand displacement in N-A_xB_y peptides. Values were obtained from a FRET-based kinetic assay and data fitting by a single exponential decay model (k_{obs} , $t_{1/2}$), and by a competitive binding model using DynaFit.^{2,3} Overall affinities (k_1k_4/k_2k_3) match well with the ratios of the K_D values determined from CD thermal denaturation curves.

N-A _v B _v peptide		Prom	kobs [S ⁻¹]	t1/2 [s]
	/ populat	Δ2	0.037 + 0.003	173+14
		Δ	0.025 ± 0.003	277+33
		A3.5	0.023 ± 0.003	27.7 ± 3.5
	B3	A4	0.063 ± 0.003	11.0 ± 0.5
		B3	0.010 ± 0.004	69.3 ± 27.7
		B _{3.5}	0.046 ± 0.002	15.1 ± 0.7
		B 4	0.055 ± 0.001	12.6 ± 0.2
		A ₃	0.025 ± 0.002	27.7 ± 2.2
		A _{3.5}	0.032 ± 0.001	21.7 ± 0.5
N-A ₃	B	A 4	0.058 ± 0.002	12.0 ± 0.4
	D3.5	B ₃	0.033 ± 0.003	21.0 ± 1.9
		B _{3.5}	0.045 ± 0.002	15.4 ± 0.7
		B 4	0.042±0.002	16.5 ± 0.8
		A ₃	n.a.ª	n.a.ª
		A _{3.5}	0.057 ± 0.001	12.2 ± 0.2
	_	A ₄	0.085 ± 0.002	8.2 ± 0.2
	B ₄	B ₃	0.040 ± 0.004	17.3 ± 1.7
		B _{3.5}	0.048 ± 0.002	14.4 ± 0.6
		B ₄	0.076 ± 0.004	9.1 ± 0.5
		A ₃	n.a.ª	n.a.ª
		A _{3.5}	0.082 ± 0.003	8.5 ± 0.3
	B3	A ₄	0.087 ± 0.002	8.0 ± 0.2
		B3	0.037 ± 0.002	18.7 ± 1.0
		B ₂₅	0.029 ± 0.003	23.9 ± 2.5
		B4	0.064 + 0.002	10.8 + 0.3
		Δ.	n a ^a	n a ^a
		Δ	0.056 ± 0.001	12 4 + 0 2
		Λ.	0.030 ± 0.001	15.4 ± 0.2
N-A _{3.5}	B _{3.5}	R ₄	0.043 ± 0.002	10.2 ± 0.7
		D3	0.008 ± 0.002	10.2 ± 0.5
		D3.5	0.083 ± 0.002	0.8 ± 0.2
		D4	0.071 ± 0.002	5.8 ± 0.5
		A3	0.024 ± 0.005	28.0+6.0
		A3.5	0.024 ± 0.003	20.9 ± 0.0
	B 4	A4 Ba	0.033 ± 0.001	21.0 ± 0.0 14.4 ± 1.5
		Bar	0.048 ± 0.003	173+09
		B4	0.065 ± 0.002	107+02
		Δ	0.032 + 0.008	21 7 + 5 4
		Aar	0.033 ± 0.001	21.0 ± 0.6
	Р	Λ.	0.033 ± 0.001	17 8 + 0 5
	D3	A4 D-	0.059 ± 0.001	10.2 ± 0.2
		D3	0.008 ± 0.002	10.2 ± 0.5
		B3.5	0.079 ± 0.001	8.8±0.1
		B4	0.080 ± 0.001	8.7±0.1
		A3	0.034 ± 0.006	20.4 ± 3.6
		A3.5	0.027 ± 0.002	25./±1.9
N-A ₄	B _{3.5}	A4	0.043 ± 0.002	16.1±0.7
		B3	n.a.ª	n.a.ª
		B _{3.5}	0.092 ± 0.001	7.5 ± 0.1
		B4	0.072 ± 0.001	9.6 ± 0.1
		A ₃	n.a.ª	n.a.ª
		A _{3.5}	0.042 ± 0.002	16.5 ± 0.8
	B 4	A4	0.019 ± 0.002	36.5 ± 3.8
		B ₃	n.a.ª	n.a.ª
		B _{3.5}	0.042 ± 0.002	16.5 ± 0.8
1		B 4	0.012 ± 0.001	57.8 ± 4.8

^aData did not fit the single exponential model.

Table S6. Best-fit values of observed rate constants (k_{obs}) and half-lifes ($t_{1/2}$) of strand displacement in C-A_xB_y peptides. Values were obtained from a FRET-based kinetic assay and data fitting by a single exponential decay model (k_{obs} , $t_{1/2}$), and by a competitive binding model using DynaFit.^{2,3} Overall affinities (k_1k_4/k_2k_3) match well with the ratios of the K_D values determined from CD thermal denaturation curves.

C-A _v B _v peptide		Promo	kobs [5 ⁻¹]	t1/2 [s]
C / txby	peptide	Δ	0.034 + 0.002	20.4 + 1.2
		A3	0.054 ± 0.002	12 0 + 0 6
		A3.5	0.030 ± 0.002	15.9±0.0
	B ₃	A4	0.044 ± 0.001	15.8±0.4
		B3	0.059 ± 0.003	11.7±0.6
		B _{3.5}	0.057 ± 0.002	12.2 ± 0.4
		B 4	0.078 ± 0.002	8.9 ± 0.2
		A ₃	0.037 ± 0.001	18.7 ± 0.5
		A _{3.5}	0.055 ± 0.002	12.6 ± 0.5
C-A3	B	A 4	0.048 ± 0.001	14.4 ± 0.3
- 0	03.5	B ₃	0.033 ± 0.002	21.0 ± 1.3
		B _{3.5}	0.102 ± 0.006	6.8 ± 0.4
		B 4	0.031 ± 0.002	22.4 ± 1.4
		A ₃	0.039 ± 0.001	17.8 ± 0.5
		A _{3.5}	0.039 ± 0.001	17.8 ± 0.5
		A 4	0.036 ± 0.001	19.3 ± 0.5
	B 4	B ₃	0.050 ± 0.003	13.9 ± 0.8
		B _{3.5}	0.060 ± 0.002	11.6 ± 0.4
		B 4	0.041 ± 0.001	16.9 ± 0.4
		A ₃	0.041 ± 0.001	16.9 ± 0.4
		A _{3.5}	0.050 ± 0.001	13.9 ± 0.3
	B3	A ₄	0.040 ± 0.001	17.3 ± 0.4
	-	B ₃	0.050 ± 0.002	13.9 ± 0.6
		B35	0.040 ± 0.001	17.3 ± 0.4
		B4	0.024 + 0.001	28.9 + 1.2
		Δ.	0.030 + 0.004	23 1 + 3 1
		Δ	0.036 + 0.001	193+05
	B _{3.5}	Δ.	0.053 + 0.001	13 1 + 0 3
C-A _{3.5}		B ₂	0.032 ± 0.001	21 7 + 1 /
		Bar	0.088 ± 0.003	79+03
		D3.5 B.	0.060 ± 0.003	116+04
		Δ.	0.000 ± 0.002	11.0 ± 0.4
	B4	Λ.r	0.022 + 0.001	11.d. 31 5 + 1 /
		Δ.	0.022 ± 0.001	40 8 + 2 4
		B ₂	n a a	n a ^a
		Bas	0.046 + 0.004	151+13
		B ₄	0.074 ± 0.001	9.4 ± 0.1
		A ₃	0.025 ± 0.003	27.7 ± 3.3
		A35	0.054 + 0.001	12.8 + 0.2
	Ba	A ₄	0.030 + 0.001	23.1 + 0.8
	-3	B ₂	0.026 + 0.003	267+31
		Bar	0.054 + 0.001	128+02
		B.	0.063 ± 0.001	11.0 ± 0.2
		Δ2	0.000 ± 0.002	n 2 ª
		A	0.050 ± 0.001	11.d.
		Δ.	0.035 ± 0.001	1/ 1 + 0 2
C-A ₄	B _{3.5}	R.	0.04.7 ± 0.001	20 4 + 2 4
		Bac	0.054 ± 0.004	11 4 ± 0 4
		B.	0.001 ± 0.002	10 2 + 0 2
		Δ.	0.007 ± 0.001	10.5 ± 0.2
		A3	11.d."	11.d." 20 5 ± 1 3
		A3.5	0.010 ± 0.002	20.5 ± 4.5 26 5 ± 2 0
	B 4	R ₂	0.013 ± 0.002	50.5 ± 5.0 n a ª
		Bar	n 2 ^a	n a a
		B3.5	0.012 ± 0.001	57.8 ± 4.8

^aData did not fit the single exponential model.

Kinetic analysis of the time-resolved displacement using DynaFit

Fluorescence data of time-resolved strand displacement were fit to a competitive binding model using the fitting software DynaFit.^{2,3} DynaFit uses a general numerical method for the determination of rate constants that characterize simultaneous and competitive binding of a ligand to two receptors R₁ and R₂ presuming a dissociative pathway for receptor displacement. In the context of heterodimeric coiled coils of the type AB R₁ and R₂ can be regarded as A and A_{comp} or as B and B_{comp}, respectively. A dissociative pathway for coil-strand displacement can be presumed as the underlying coiled-coil design results in non-promiscuous coiled-coil interaction.

$$A + B \stackrel{k_1}{\underset{k_2}{\longleftarrow}} AB$$

$$A + B_{comp} \xrightarrow{k_3} AB_{comp}$$
 or $A_{comp} + B \xrightarrow{k_3} A_{comp}B$

Scheme S1. Presumed dissociative mechanism of strand-displacement in AB heterodimeric coiled coils.

The time-resolved fluorescence data was converted into concentration of free A or B in the time course of displacement by A_{comp} or B_{comp} and competitive reformation of the AB coiled coil. Therefore, F_{max} was assigned to zero conversion of the initial AB coiled-coil complex (15 µM AB and 15 µM P_{comp}) and F_{min} was assigned to full strand displacement in AB (15 µM AB_{comp} or $A_{comp}B$ and 15 µM A or B) to AP_{comp} or $P_{comp}B$, respectively. We presumed that strand-displacement kinetics are the same in coiled coils of the same lengths of the individual strands whether or not labelled or unlabelled. Fitting of both events, displacement of A or B form the initial AB complex and re-association, gives relative rate constants k_1 to k_4 from which the overall affinities (k_1k_4/k_2k_3) can be calculated. The results are summarized in tables S5 and S6. The curve fitting is shown in figures S8-S13. **Table S 7.** Best-fit values of rate constants of competitive strand displacement in N-A_xB_y peptides obtained from DynaFit analysis. Ratio of overall affinities (k_1k_4/k_2k_3) matches well with the ratio of the K_D values determined from CD thermal denaturation curves. P_{comp} is the general term for peptide competitor (A_{comp} or B_{comp}).

AB pe	ptide	Pcomp	<i>k</i> ₁ [μM ⁻¹ s ⁻¹]	k₂ [s⁻¹]	<i>k</i> ₃ [μM⁻¹s⁻¹]	<i>k</i> ₄ [s⁻¹]	k1k4/k2k3	K₀(comp)/K₀
		A ₃	0.14 ± 0.05	0.02 ± 0.002	0.15 ± 0.04	0.02 ± 0.002	0.93	1.0
		A _{3.5}	0.16 ± 0.08	0.019 ± 0.004	0.05 ± 0.01	(7.0 ± 1.2) · 10 ⁻⁴	0.12	0.18
	B₃	A ₄	0.19 ± 0.07	0.064 ± 0.004	0.28 ± 0.08	$(1.7 \pm 0.2) \cdot 10^{-3}$	0.02	0.06
		B3	0.10 ± 0.03	$(6.0 \pm 0.8) \cdot 10^{-3}$	0.10 ± 0.04	(6.0 ± 0.8) · 10 ⁻³	1.0	1.0
		B _{3.5}	0.20 ± 0.05	0.03 ± 0.002	0.38 ± 0.06	0.01 ± 0.0008	0.18	0.43
		B ₄	0.21 ± 0.05	0.04 ± 0.002	0.32 ± 0.07	(9.0 ± 0.6) · 10 ⁻³	0.15	0.20
		A ₃	0.29 ± 0.08	0.012 ± 0.0007	0.29 ± 0.06	0.012 ± 0.0007	1.0	1.0
		A _{3.5}	0.30 ± 0.13	0.03 ± 0.002	0.80 ± 0.24	$(1.2 \pm 0.2) \cdot 10^{-3}$	0.02	0.003
NI 0		A ₄	0.28 ± 0.07	0.056 ± 0.002	0.88 ± 0.17	$(3.4 \pm 0.3) \cdot 10^{-3}$	0.02	< 0.001
N-A ₃	B _{3.5}	B ₃	0.20 ± 0.05	0.01 ± 0.0007	0.13 ± 0.03	0.03 ± 0.002	4.6	2.3
		B3.5	0.36 ± 0.12	0.02 ± 0.001	0.36 ± 0.10	0.02 ± 0.001	1.0	1.0
		B4	0.36 ± 0.11	0.024 ± 0.001	0.77 ± 0.19	0.023 ± 0.002	0.45	0.46
		Δ3	0.18 + 0.08	$(3.0 \pm 0.5) \cdot 10^{-3}$	0.18 + 0.21	$(3.0 \pm 0.5) \cdot 10^{-3}$	1.0	1.0
		A3 5	0.20 ± 0.08	0.10 ± 0.01	0.09 ± 0.03	$(1.4 \pm 0.1) \cdot 10^{-3}$	0.03	0.001
		A ₄	0.37 ± 0.11	0.11 ± 0.004	1.18 ± 0.29	$(7.4 \pm 1.2) \cdot 10^{-4}$	0.02	< 0.001
	B 4	B ₃	0.22 ± 0.05	(8.5 ± 0.5) · 10 ⁻³	0.14 ± 0.03	0.04 ± 0.003	7.4	5.1
		B _{3.5}	0.43 ± 0.21	0.022 ± 0.002	0.20 ± 0.09	0.029 ± 0.002	2.8	2,27
		B 4	0.44 ± 0.3	0.041 ± 0.02	0.43 ± 0.34	0.041 ± 0.007	1.0	1.0
		A ₃	0.06 ± 0.02	$(6.8 \pm 1.1) \cdot 10^{-4}$	0.21 ± 0.11	0.02 ± 0.004	8.4	5.5
		A _{3.5}	0.28 ± 0.09	0.036 ± 0.003	0.28 ± 0.08	0.037 ± 0.003	1.03	1.0
	B₃	A ₄	0.46 ± 0.17	0.11 ± 0.006	0.29 ± 0.11	(9.5 ± 0.5) · 10 ⁻³	0.14	0.32
	23	B₃	0.27 ± 0.09	0.017 ± 0.01	0.26 ± 0.3	0.017 ± 0.006	1.04	1.0
		B _{3.5}	0.16 ± 0.03	0.02 ± 0.0009	0.99 ± 0.14	0.01 ± 0.002	0.08	0.008
		B ₄	0.25 ± 0.09	0.07 ± 0.004	0.31 ± 0.1	(4.1 ± 0.3) · 10 ⁻³	0.05	0.001
	B 3.5	A3	0.39 ± 0.24	$(2.5 \pm 0.4) \cdot 10^{-3}$	0.11 ± 0.06	0.03 ± 0.002	42.5	> 100
		A3.5	0.26 ± 0.05	0.028 ± 0.006	0.31 ± 0.11	0.03 ± 0.002	0.90	1.0
		A ₄	0.36 ± 0.14	0.048 ± 0.003	0.28 ± 0.09	0.01 ± 0.0006	0.30	0.14
N-A3.5		Ba	0.36 + 0.19	0.01 + 0.003	0.05 + 0.02	0.02 + 0.0007	14.4	> 100
		Bas	0.32 + 0.07	0.037 + 0.002	0.33 + 0.06	0.04 ± 0.002	1.0	1.0
		Ba	0.44 + 0.18	0.094 + 0.007	0.16 + 0.06	0.01 + 0.0005	0.35	0.16
	B 4	A3	0.17 + 0.05	$(1.4 + 0.1) \cdot 10^{-3}$	0.38 + 0.12	0.09 ± 0.01	28.8	> 100
		A3.5	0.20 ± 0.11	$(6.4 \pm 1.0) \cdot 10^{-3}$	0.20 ± 0.10	$(6.4 \pm 1.0) \cdot 10^{-3}$	1.0	1.0
		A ₄	0.19 ± 0.042	0.02 ± 0.0009	0.50 ± 0.07	0.01 ± 0.0009	0.19	0.55
		B3	0.16 ± 0.09	$(4.2 \pm 0.2) \cdot 10^{-3}$	0.14 ± 0.03	0.07 ± 0.006	19.0	> 100
		B _{3.5}	0.37 ± 0.06	0.011 ± 0.0005	0.91 ± 0.12	0.09 ± 0.011	3.5	6.4
		B ₄	0.28 ± 0.06	0.03 ± 0.001	0.28 ± 0.05	0.03 ± 0.001	1.0	1.0
		A ₃	0.31 ± 0.18	$(1.4 \pm 0.2) \cdot 10^{-3}$	0.34 ± 0.2	(9.2 ± 1.3) · 10 ⁻²	6.0	5.1
		A _{3.5}	0.39 ± 0.06	(6.7 ± 0.4) · 10 ⁻³	1.51 ± 0.3	0.21 ± 0.05	8.1	2.2
	B₃	A 4	0.58 ± 0.13	0.02 ± 0.0007	0.50 ± 0.10	0.02 ± 0.0007	1.10	1.0
		B ₃	0.14 ± 0.03	0.04 ± 0.01	0.14 ± 0.12	0.04 ± 0.007	1.0	1.0
		B _{3.5}	0.22 ± 0.04	0.12 ± 0.004	0.51 ± 0.09	(5.7 ± 0.6) · 10 ⁻⁴	0.002	0.004
		B 4	0.20 ± 0.04	0.096 ± 0.003	0.84 ± 0.13	$(1.5 \pm 0.2) \cdot 10^{-3}$	0.004	0.002
		A ₃	0.29 ± 0.1	(4.1 ± 0.4) · 10 ⁻³	0.07 ± 0.02	0.06 ± 0.003	60.6	> 100
		A _{3.5}	0.24 ± 0.07	0.01 ± 0.0009	0.21 ± 0.05	0.03 ± 0.002	3.4	6.9
Ν_Δ.		A 4	0.20 ± 0.05	0.026 ± 0.002	0.20 ± 0.04	0.025 ± 0.002	0.96	1.0
19-74	B _{3.5}	B ₃	0.19 ± 0.03	(9.9 ± 0.9) · 10 ⁻⁴	0.03 ± 0.007	0.11 ± 0.003	> 100	> 100
		B _{3.5}	0.22 ± 0.05	0.03 ± 0.002	0.24 ± 0.04	0.04 ± 0.002	1.22	1.0
		B 4	0.27 ± 0.08	0.09 ± 0.006	0.09 ± 0.02	0.01 ± 0.0005	0.33	0.62
		A ₃	0.34 ± 0.13	(8.1 ± 0.9) · 10 ⁻⁴	0.14 ± 0.05	0.13 ± 0.008	> 100	> 100
		A _{3.5}	0.17 ± 0.04	0.01 ± 0.0009	0.07 ± 0.01	0.02 ± 0.001	4.9	1.7
	в	A ₄	0.11 ± 0.24	0.013 ± 0.04	0.11 ± 0.30	0.013 ± 0.04	1.0	1.0
	B 4	B ₃	0.25 ± 0.06	$(1.2 \pm 0.1) \cdot 10^{-3}$	0.07 ± 0.02	0.11 ± 0.005	> 100	> 100
		B _{3.5}	0.17 ± 0.02	0.01 ± 0.0004	0.38 ± 0.03	0.07 ± 0.006	3.1	1.6
		B ₄	0.32 ± 0.08	0.013 ± 0.0006	0.32 ± 0.06	0.013 ± 0.0006	1.0	1.0

Figure S8. Dynafit results of least-squares fits of strand displacement in N-A₃B peptides using a competitive binding model.

Figure S9. Dynafit results of least-squares fits strand displacement in N-A_{3.5}B peptides using a competitive binding model.

Figure S10. Dynafit results of least-squares fits strand displacement in N-A₄B peptides using a competitive binding model.

Table S8. Best-fit values of rate constants of competitive strand displacement in C-A_xB_y peptides obtained from DynaFit analysis. Ratio of overall affinities (k_1k_4/k_2k_2) matches well with the ration of the K_D values determined from CD-thermal denaturation curves. P_{comp} is the general term for peptide competitor (A_{comp} or B_{comp}).

AB pe	ptide	Pcomp	<i>k</i> ₁[μM⁻¹s⁻¹]	<i>k</i> ₂ [s ⁻¹]	<i>k</i> ₃ [μM⁻¹s⁻¹]	<i>k</i> ₄ [s⁻¹]	k1k4/k2k3	K₀(comp)/K₀
		A ₃	0.15 ± 0.02	0.01 ± 0.0006	0.15 ± 0.02	0.01 ± 0.0006	1.0	1.0
		A _{3.5}	0.15 ± 0.02	0.04 ± 0.002	0.17 ± 0.02	0.01 ± 0.0004	0.22	0.57
	B ₃	A ₄	0.23 ± 0.07	0.03 ± 0.002	0.17 ± 0.04	0.01 ± 0.0006	0.45	0.63
		B ₃	0.13 ± 0.04	0.035 ± 0.02	0.13 ± 0.2	0.035 ± 0.01	1.0	1.0
		B _{3.5}	0.21 ± 0.06	0.07 ± 0.007	0.06 ± 0.01	(8.9 ± 0.4) · 10 ⁻³	0.45	0.31
		B ₄	0.21 ± 0.06	0.18 ± 0.02	0.06 ± 0.02	$(6.8 \pm 0.5) \cdot 10^{-3}$	0.13	0.18
		A ₃	0.31 ± 0.06	0.021 ± 0.0009	0.25 ± 0.04	0.018 ± 0.0007	1.06	1.0
		A _{3.5}	0.13 ± 0.03	0.06 ± 0.003	0.17 ± 0.03	$(2.1 \pm 0.2) \cdot 10^{-3}$	0.03	0.06
C A	_	A 4	0.25 ± 0.03	0.047 ± 0.0007	4.9 ± 0.57	$(1.7 \pm 0.9) \cdot 10^{-4}$	< 0.001	0.04
C-A3	B _{3.5}	B ₃	0.20 ± 0.03	(8.9 ± 0.3) · 10 ⁻³	0.55 ± 0.08	0.05 ± 0.006	2.0	3.3
		B _{3.5}	0.17 ± 0.09	0.06 ± 0.04	0.17 ± 0.23	0.06 ± 0.01	1.0	1.0
		B ₄	0.12 ± 0.02	0.02 ± 0.0006	0.59 ± 0.08	0.04 ± 0.006	0.41	0.57
		A ₃	0.24 ± 0.04	0.02 ± 0.0006	0.24 ± 0.03	0.02 ± 0.0006	1.0	1.0
		A _{3.5}	0.11 ± 0.01	0.04 ± 0.001	0.29 ± 0.02	$(1.6 \pm 0.1) \cdot 10^{-3}$	0.02	0.008
	-	A ₄	0.12 ± 0.02	0.04 ± 0.001	0.15 ± 0.01	(9.4 ± 5.1) · 10 ⁻⁵	0.002	< 0.001
	B 4	B ₃	0.12 ± 0.01	(6.6 ± 0.3) · 10 ⁻³	0.30 ± 0.05	0.14 ± 0.03	8.5	5.7
		B _{3.5}	0.28 ± 0.11	0.03 ± 0.003	0.07 ± 0.02	0.02 ± 0.0007	2.7	1.7
		B 4	0.15 ± 0.02	0.02 ± 0.007	0.15 ± 0.12	0.02 ± 0.005	1.0	1.0
		A ₃	0.15 ± 0.02	0.01 ± 0.0004	0.12 ± 0.01	0.04 ± 0.002	5.0	1.8
		A _{3.5}	0.33 ± 0.05	0.02 ± 0.0007	0.33 ± 0.04	0.02 ± 0.0007	1.0	1.0
	B ₃	A 4	0.29 ± 0.03	0.02 ± 0.0004	0.66 ± 0.05	0.03 ± 0.001	0.66	1.1
		B ₃	0.35 ± 0.14	0.03 ± 0.018	0.35 ± 0.52	0.03 ± 0.01	1.0	1.0
		B _{3.5}	0.13 ± 0.03	0.19 ± 0.03	0.03 ± 0.003	(5.2 ± 0.2) · 10 ⁻³	0.11	0.03
		B 4	0.45 ± 0.25	0.02 ± 0.002	0.19 ± 0.06	(9.9 ± 4.2) · 10 ⁻⁵	0.01	0.003
	B3.5	A ₃	0.21 ± 0.06	$(1.7 \pm 0.1) \cdot 10^{-3}$	0.24 ± 0.06	0.07 ± 0.005	36	18
		A _{3.5}	0.21 ± 0.04	0.02 ± 0.006	0.21 ± 0.17	0.02 ± 0.004	1.0	1.0
C-A35		A 4	0.24 ± 0.03	0.03 ± 0.0007	0.40 ± 0.03	0.02 ± 0.0007	0.4	0.58
C 7 15.5		B ₃	0.26 ± 0.04	$(5.2 \pm 0.2) \cdot 10^{-3}$	0.36 ± 0.05	0.07 ± 0.005	9.7	31
		B _{3.5}	0.21 ± 0.06	0.05 ± 0.02	0.21 ± 0.13	0.05 ± 0.005	1.0	1.0
		B 4	0.16 ± 0.04	0.18 ± 0.02	0.05 ± 0.008	$(1.8 \pm 0.1) \cdot 10^{-3}$	0.03	0.10
	B₄	A ₃	0.14 ± 0.03	$(1.4 \pm 0.09) \cdot 10^{-3}$	0.08 ± 0.02	0.04 ± 0.002	50	>100
		A _{3.5}	0.20 ± 0.03	0.01 ± 0.0004	0.20 ± 0.02	0.01 ± 0.0004	1.0	1.0
		A ₄	0.18 ± 0.02	0.01 ± 0.002	0.92 ± 0.23	0.002 ± 0.0005	0.04	0.08
		B ₃	0.15 ± 0.05	$(5.5 \pm 0.7) \cdot 10^{-4}$	0.05 ± 0.02	0.02 ± 0.0007	>100	>100
		B _{3.5}	0.14 ± 0.03	$(1.8 \pm 0.1) \cdot 10^{-3}$	0.27 ± 0.06	0.16 ± 0.03	46	12
		B4	0.19 ± 0.03	0.03 ± 0.001	0.19 ± 0.02	0.03 ± 0.001	1.0	1.0
		A3	0.21 ± 0.04	0.01 ± 0.0006	0.25 ± 0.04	0.03 ± 0.002	2.5	1.6
		A3.5	0.31 ± 0.05	0.03 ± 0.001	0.13 ± 0.02	0.02 ± 0.0004	1.59	0.9
	B ₃	A4	0.24 ± 0.02	0.016 ± 0.0004	0.21 ± 0.02	0.014 ± 0.0004	1.0	1.0
		B3	0.16 ± 0.39	0.02 ± 0.07	0.17 ± 4.2	0.02 ± 0.08	1.0	1.0
		B3.5	0.11 ± 0.07	0.46 ± 0.26	0.012 ± 0.0009	$(5.1 \pm 0.3) \cdot 10^{-3}$	0.10	0.02
		D4	0.20 ± 0.09	$(7.1 \pm 0.7) \cdot 10^{-4}$	$(1.6 \pm 0.5) \pm 10^{-3}$	$(1.3 \pm 0.1) \cdot 10^{\circ}$	0.01 >100	< U.UU1 77
		A3	0.24 ± 0.06	$(7.1 \pm 0.7) \cdot 10^{-4}$	$(1.0 \pm 0.5) \cdot 10^{-3}$	0.03 ± 0.0006	>100	27
		A3.5	0.23 ± 0.03	0.01 ± 0.0004	0.17 ± 0.02	0.03 ± 0.0009	4.1	1.0
C-A ₄	B _{3.5}	A4	0.29 ± 0.03	(2.2 ± 0.1) 10-3	0.29 ± 0.03	0.02 ± 0.0006	17	1.0
		D3 B.	0.25 ± 0.05	$(3.3 \pm 0.1) \cdot 10^{\circ}$	0.27 ± 0.05	0.00 ± 0.003	1.0	1 0
		B.	0.23 ± 0.03	0.031 ± 0.002	0.20 ± 0.05	(0.023 ± 0.001)	1.0	1.0
		Δ4	0.22 ± 0.07	(0.45 ± 0.08)	0.03 ± 0.009	$(3.1 \pm 0.3) \cdot 10$	0.009	0.01 \100
		Δ	0.10 ± 0.04 0.15 ± 0.04	$(3.9 \pm 0.7) \cdot 10^{-3}$	0.15 ± 0.05	0.03 ± 0.001	57 79	13
		Δ.	0.11 ± 0.24	0.013 + 0.04	0.11 ± 0.30	0.013 + 0.04	1.0	1.0
	B ₄	B ₃	0.05 ± 0.009	$(1.1 \pm 0.06) \cdot 10^{-3}$	0.14 ± 0.03	0.21 ± 0.05	68	>100
		B _{3.5}	0.20 ± 0.06	$(9.2 \pm 0.8) \cdot 10^{-4}$	0.20 ± 0.06	0.13 ± 0.01	>100	97
		B ₄	0.32 ± 0.08	0.013 ± 0.0006	0.32 ± 0.06	0.013 ± 0.0006	1.0	1.0

Figure S11. Dynafit results of least-squares fits strand displacement in C-A₃B peptides using a competitive binding model.

Figure S12. Dynafit results of least-squares fits strand displacement in C-A_{3.5}B peptides using a competitive binding model.

Figure S13 Dynafit results of least-squares fits strand displacement in C-A₄B peptides using a competitive binding model.

5. MALDI-TOF mass spectrometry and HPLC

Figure S14 MALDI/TOF mass spectra and HPLC traces of coiled-coil single strands of the *C*-truncated set of heterodimeric coiled coils (A-B: C-A₃ calc. $[M+H^+]$: 2552.2, C-D: C-A_{3.5} calc. $[M+Na^+]$ 2961.2, E-F: A₄ calc. $[M+H^+]$: 3309.6, G-H: C-B₃ calc. $[M+H^+]$: 2525.1, I-J: C-B_{3.5} calc. $[M+H^+]$: 2909.6, K-L: B₄ calc. $[M+H^+]$: 3279.0).

Figure S15. MALDI/TOF mass spectra and HPLC traces of coiled-coil single strands of the N-truncated set of heterodimeric coiled coils (A-B: N-A₃^{*} calc. [M+H⁺]: 2553.3, C-D: N-A_{3.5}^{*} calc. [M+Na⁺]: 2945.5, E-F: A₄^{*} calc. [M+H⁺]: 3309.6, G-H: N-B₃^{*} calc. [M+H⁺]: 2723.3, I-J: N-B_{3.5}^{*} calc. [M+H⁺]: 3093.8, K-L: B₄^{*} calc. [M+H⁺]: 3476.3).

Figure S16. MALDI/TOF mass spectra and HPLC traces of coiled-coil single strands of the *C*-truncated set of heterodimeric coiled coils (A-B: C-A₃^{*} calc. [M+H⁺]: 2553.2, C-D: C-A_{3.5}^{*} calc. [M+H⁺]: 3937.4, E-F: C-B₃^{*} calc. [M+H⁺]: 2723.3, G-H: C-B_{3.5}^{*} calc. [M+H⁺]: 3106.9).

Figure S17. MALDI/TOF mass spectra and HPLC traces of non-labelled A-peptides of the *N*-truncated set of heterodimeric coiled coils (A-B: N-A3_W15K calc. [M+H⁺]: 2496.7, C-D: N-A3.5_W18K calc. [M+H⁺]: 2867.1, E-F: A4_W22K calc. [M+H⁺]: 3251.6).

Figure S18. MALDI/TOF mass spectra and HPLC traces of coiled-coil single strands of the *C*-truncated set of heterodimeric coiled coils (A-B: C-A₃_W22K calc. [M+H⁺]: 2496.7, C-D: C-A_{3.5}_W22K calc. [M+H⁺]: 2881.2).

6. CD spectroscopy and thermal denaturation of *C*-truncated heterodimeric coiled coils

Figure S19. CD spectra (left) and thermal denaturation curves (right) of the coiled-coil single strands of the *C*-terminal truncated set of parallel heterodimeric coiled coils.

Figure S20. CD spectra (left) and thermal denaturation curves (right) of all possible combinations of *C*-terminal truncated set of parallel heterodimeric coiled coils.

7. References

- 1 M. Rabe, A. Boyle, H. R. Zope, F. Versluis and A. Kros, *Biopolymers*, 2015, **104**, 65–72.
- 2 P. Kuzmic, Anal. Biochem., 1996, **237**, 260–273.
- 3 P. Kuzmic, Anal. Biochem., 1999, **267**, 17–23.