Transcriptome and Co-expression Network Analyses Identify Key Genes Regulating Nitrogen Use Efficiency in *Brassica juncea* L.

Parul Goel^{1,2,#}, Nitesh Kumar Sharma^{1,2, #}, Monika Bhuria^{1,2}, Vishal Sharma^{1,2}, Rohit Chauhan¹, Shivalika Pathania¹, Mohit Kumar Swarnkar¹, Vandna Chawla¹, Vishal Acharya¹, Ravi Shankar^{1,2,*} Anil Kumar Singh^{1,2,3,*}

¹Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061 (HP) India

²Academy of Scientific and Innovative Research, New Delhi

³ICAR-Indian Institute of Agricultural Biotechnology, PDU Campus, IINRG, Namkum, Ranchi-834010, India

[#]These authors contributed equally to this manuscript

*Correspondence and request for material should be addressed to A.K.S. (email: <u>anils13@gmail.com</u>) or R.S. (email: <u>ravish@ihbt.res.in</u>)

Supplementary Fig S1: Venn diagram showing transcripts annotated under GO, EC and KEGG

Supplementary Fig S2: Functional Annotation detail of transcriptome data: (A): Occurrence of different biological processes and molecular processes (B) based on GO slim categories with their corresponding percentage, (C): Top-20 KEGG pathways on the basis of their transcript abundance.

Supplementary Fig S3: Top-20 transcription factor (TF) families on the basis of transcript abundance.

Supplementary Fig S4: Validation of the RNA-seq data from qRT-PCR: The expression level of eleven genes is measured through qRT-PCR in all 30 comparative conditions of (A) Pusa Bold and (B) Pusa Jaikisan. *Ubq9* was used as endogenous reference. The qRT-PCR data was significantly correlated with RNA-seq data (r=0.76, p<0.0001)

Supplementary Fig S5: Filtering and pre-processing of data: Sample 17 was eliminated as outlier from Pusa Bold.

Supplementary Fig S6: Positive correlation and significant p-values of average gene expression (cor=1, p \leq 1e-200) (a) and overall connectivity (cor=0.61, p \leq 1e-200) (b).

Scale independence

Mean connectivity

Supplementary Fig S7: Evaluation of network topology of Pusa Bold for various soft thresholding powers using pickSoftThreshold function and appropriate power.

Supplementary Fig S8: Evaluation of network topology of Pusa Jaikisan for various soft thresholding powers using pickSoftThreshold function and appropriate power.

Supplementary Fig S9: Hierarchical clustering based on DisTOM: 29 modules in (A) Pusa Bold and 35 modules in (B) Pusa Jaikisan were obtained by deepslit 2 and 3.

Correspodence of PJK and PB consensus modules

Supplementary Fig S10: Consensus match of Pusa Bold and Pusa Jaikisan modules: Modules identifier in the Pusa Bold were compared with most similar module in the Pusa Jaikisan based on significant overlap genes using overlap Table function of WGCNA

Pusa Bold Pusa Jai Kisan

Pusa Bold Pusa Jai Kisan

Pusa Bold

Pusa Jai Kisan

Transcriptome analysis

Supplementary Fig S11: Experimental design to study growth parameters and transcriptome analysis of Pusa Bold and Pusa Jaikisan in response to various nitrate treatments.

Supplementary Fig S12: Melt curves results of all the genes used for qRT-PCR analysis.

Continued

Supplementary Fig S12: Melt curves results of all the genes used for qRT-PCR analysis.