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Supplementary Experimental Procedures 

 

Reduced representative bisulfite sequencing 

Reduced Representation Bisulfite Sequencing (RRBS) of mouse blood samples was performed 

previously (Petkovich et al. 2017). Quality of high throughput sequence libraries was verified using 

“FastQC v.0.10.1” package (www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trim Galore! 

v.0.4.0 was used for adapter removal and quality trimming. The TrimGalore tool 

(www.bioinformatics.babraham.ac.uk/projects/trim_galore/) was performed with settings 

optimized for RRBS. Methylation sites were detected using Bismark v.0.14.5 according to the 

program’s manual. 

Genomic databases 

We used several databases to annotate CpG sites. RnBeads R package (Assenov et al. 2014) was 

employed to annotate genes (Genes-1) and promoters (Promoters-1), and the RnBeads package 

used Ensembl gene definitions and defined promoters as regions spanning 1,500 bases upstream 

and 500 bases downstream of the transcription start site (TSS) of the corresponding gene. We used 

annotatr R package (Cavalcante & Sartor 2017) to annotate genes (Genes-2; original database: 

UCSC genes), promoters (Promoters-2; 1 kb upstream of the TSS), CpG islands (CGIs), CGI 

shores (CGI-shores; 2 kb upstream/downstream from the ends of CGIs), CGI shelves (CGI-

shelves, 2 kb upstream/downstream of the farthest upstream/downstream limits of CGI shores), the 

remaining CGI Open Sea genomic regions (CGI-open-sea), 1-5 kb upstream of the TSS (Genes-

upstream-1-to-5-kb), 3’- and 5’-untranslated regions (3’UTRs, 5’UTRs), exons (Exons), first 

exons (First-exons), introns (Introns), intergenic regions (Intergenic), exon-intron and intron-exon 

boundaries (Exon-intron-boundaries, Intron-exon-boundaries; defined as 200 bp up/downstream 

of any boundary between an exon and intron), enhancers (Enhancers-fantom5; original database 

FANTOM5 (Andersson et al. 2014)), long non-coding RNA (Long-noncoding-RNAs; original 

database: GENCODE). We used the Mouse ENCODE Consortium (Yue et al. 2014) data to 

annotate seven different histone modifications (Histone-H3K27m3, Histone-H3K36m3, Histone-

H3K4m1-m3, Histone-H3K4m1-H3K36m3, Histone-H3K4m1, Histone-H3K4m3, Histone-

Unmarked; the database was merged from 15 different mouse tissues and cell types), DNase 

hypersensitive sites (DHS), predicted promoters (Promoters-encode), predicted enhancers 

(Enhancers-encode), transcription factor binding sites (TFBS) and the mouse specific and human-

mouse homologs of the listed genomic regions.  

We downloaded genomic repetitive regions (Repeats) using the UCSC Table Browser 

(Rosenbloom et al. 2015; Karolchik et al. 2004), and super-enhancers from the SEA database 

(Super-enhancers-1) (Wei et al. 2016) and the dbSUPER database (Super-enhancers-2) (Khan & 

Zhang 2016). Evolutionary conserved regions (Ecr) were defined as at least 100 bp long and 70% 

identity regions, and core evolutionary conserved regions (Core-ecr) were at least 350 bp and 77% 

identity regions between mouse and 10 different species (Human, Macaque, Chimp, Rat, Dog, 

Opossum, Chicken, Frog, Zebrafish, and Fugu). These regions were downloaded from 
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https://ecrbase.dcode.org (Loots & Ovcharenko 2007). Ultra conserved regions (UCR) were 

downloaded from http://ucbase.unimore.it (Lomonaco et al. 2014; Bejerano et al. 2004). Micro 

RNA (microRNAs) genomic coordinates were downloaded from http://www.mirbase.org 

(Kozomara & Griffiths-Jones 2014). Genomic coordinates were mapped to mm10 with UCSC 

Batch Coordinate Conversion (liftOver) tool (Hinrichs et al. 2006) when the original genome 

assembly was not mm10 in certain databases. Genomic coordinates of regions were filtered out; if 

we could not detect DNA methylation, we kept the coordinates of the regions, in which at least one 

methylated CpG could have been measured. 

Statistical analysis 

After data preprocessing and filtering, we used linear regression to examine the relationship 

between age and methylation levels and included 4 confounding factors: flow cell, library, adaptor 

and the number of aligned paired end reads of the samples. When site-by-site linear regressions 

and multiple data transformations were performed, we added the value 1 to every methylation 

fraction value to avoid incompatibility between the methylation value 0 and certain data 

transformations (Supplementary Table 1); we further chose the best fitting model based on the 

Akaike information criterion. We declared a site to be significant, if the p-value, adjusted by the 

Benjamini-Hochberg procedure, was smaller than 0.05. To avoid overfitting, we excluded 

significant sites, for which there was a direction change in the regression slope upon comparison 

of the linear regression with all our confounders and without the confounders. To determine the 

enrichment of increasing or decreasing (I/D) sites in certain genomic regions, we created a 

contingency table including the number of I/D sites in the genomic region, the number of I/D sites 

outside the region, the number of non-I/D sites in the region and the number of non-I/D sites outside 

the region, followed by a Fisher exact test. 

To visualize the overall methylation change pattern in genes, we calculated relative positions for 

CpGs. The relative position 0 was assigned to the TSS, and 1 was the end of the gene. We also 

extended this analysis to the regions of the same length upstream and downstream of the gene and 

subjected them to the generalized additive model, using RnBeads R package, with a modification 

wherein we only included the significantly changing sites. To investigate the differences between 

the homolog elements, mouse-specific elements and all predicted elements, we performed 

Student’s t-test between the regression slopes of every site in these regions and calculated adjusted 

p-values, using Benjamini-Hochberg procedure. When we examined the effect of the CpG islands, 

shores and shelves, we removed, from every region, the sites that could be assigned to (i) CGI, (ii) 

CGI and CGI shores, and (iii) CGI, CGI shore and CGI shelves, based on the built-in annotation 

of the RnBeads R package for these genomic regions, and performed a linear regression for every 

region using just the significantly changing sites. We included the four technical confounders, as 

described previously, and normalized every site by extracting the mean and dividing it by the 

standard deviation. In addition, we included, as confounders in every site, whether the site was 

present in a CGI shore, shelf or Open Sea region to avoid bias of the different aging trends. 

Permutation tests were calculated by extracting the mean of the two compared groups, then 

merging the two groups into one. From the merged group, we randomly selected values for two 

groups (including the same number of values as the original groups). We extracted the means and 
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repeated the process 10,000 times. P-value was calculated by counting the number of cases, where 

the absolute value of the mean extraction of the randomly selected groups was larger than the 

absolute value of the original mean extraction, divided by 10,000. When testing the difference 

between increasing, decreasing and all sites, we aggregated the age groups by calculating the mean 

methylation across lifespan for every site. 

Pathway enrichment analysis 

To identify pathways associated with genes and promoters with changing methylation status during 

aging, we performed a pathway GSEA on a pre-ranked list of promoters and genes (Subramanian 

et al. 2005). This list included the sites annotated as promoters or gene bodies and z-scores, 

calculated as: 

– 𝑙𝑛(𝑃) ∗ 𝑆, 

where P is the p-value of the linear regression of the site and S is the sign of the regression slope. 

For every promoter and gene, we calculated the mean of the z-scores of every site annotated to that 

genomic region. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) 

Biological Process (BP) and Molecular Function (MF) databases were used in this analysis. 

To identify pathways associated with age-related changes of methylation status, which can or 

cannot be explained by increasing entropy, we performed pathway enrichment analysis for 

promoters and genes that showed changes based on the original methylation fraction (OMF) or the 

residual methylation fraction (RMF) using Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (Huang et al. 2009a; Huang et al. 2009b). Z-scores were calculated by using 

the equation (1) for sites showing increasing or decreasing changes based on (i) just the OMF; and 

(ii) both in OMF and RMF. Increasing or decreasing trends were determined by the changes based 

on the OMF. Average z-score was calculated for every site annotated to promoters or genes. We 

used the first 2,000 genomic regions with the highest absolute z-scores as an input for the DAVID 

analysis. We used KEGG, GO BP and MF databases with the threshold FDR = 0.05.   

Analyses of calorie restriction  

Investigating the effect of the calorie restriction (CR), we analyzed 20 C57BL/6 male mice in 4 

age groups (10, 18, 23, 27 months). Using the original 141 C57BL/6 mice (16 age groups) as 

controls, we built a linear model including age, CR (0 for control and 1 for CR) and the time after 

treatment (TAT), which is the difference between the age of mouse and 4 months (i.e. the start of 

CR) in the case of the intervention group and 0 in control animals. Using this model, we could 

estimate the initial shift (IS) at the beginning of the CR treatment (4 months) and calculate the 

difference in the rate of changes during aging in the CR group versus the control group, using the 

TAT which represents the cumulative change. We performed a site-by-site linear regression 

including the above mentioned variables and used a partial F-test to decide if IS and the TAT had 

a significant effect together (Benjamini-Hochberg FDR = 0.05). Partial F-test was calculated by 

fitting the reduced (including only the age) and the full (including the age, CR and TAT) models 

separately and thereafter comparing them using Analysis of variance (ANOVA). Then we used the 
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significant sites based on the F-test and determined, for every site, whether IS and TAT had a 

significant effect separately (Benjamini-Hochberg FDR = 0.05). To investigate the relation 

between the age-, initial shift- and cumulative effect-related changes we performed a linear 

regression between the linear model coefficients of these features. 

We also investigated DNA methylation of blood samples from 22 (10 control and 12 CR) B6D2F1 

male mice. Two age groups were analyzed in both subsets (20 and 27 months in controls, 21 and 

27 months in CR). We applied a linear model and included age, intervention and flow cell as 

technical confounders. We compared the CR-related changes between the B6D2F1 and the 

C57BL/6 strain. To be able to make this comparison, we recalculated the C57BL/6 analysis, 

including only age and CR, but not TAT. Comparison between the two strains was by a linear 

regression between the CR-related linear model coefficients of the strains. 

Analysis of publicly available data 

We downloaded publicly available human and mouse data for comparative analyses of our 

findings. The dataset of 656 human whole blood samples (Hannum et al. 2013) was downloaded 

from NCBI’s Gene Expression Omnibus: GSE40279. We performed multidimensional scaling and 

5 samples were identified as outlier samples and excluded from further analyses. Site-by-site linear 

regressions and multiple data transformations were performed as detailed above and four 

confounding factors were included in the linear regressions: gender, ethnicity, source and plate 

information. Entropy analysis was performed on the human data as detailed above for mouse 

samples. We downloaded 24 mouse liver methylation data (Cole et al. 2017; Hahn et al. 2017) with 

accession numbers GSE89275 and GSE92486. We used the sites that were present in all samples 

and had higher coverage than 5x in more than 50% of samples in any age group and in calorie 

restriction samples. Furthermore, we used RnBeads R package to aggregate the measured sites, 

which belonged to the same CpG, to exclude high coverage outliers and sites that were overlapping 

with single nucleotide polymorphism. We built a linear model, including age (2, 5, 22, 26 months), 

calorie restriction (0 for control and 1 for CR), time after treatment and the source of the sample. 

To investigate the relationship between the age-, initial shift- and cumulative effect-related changes 

we performed linear regression between the linear model coefficients of these features. 
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Supplementary Figures 

 

Supplementary Figure 1. Global state of the mouse blood DNA methylome. (A) Multi-

dimensional scaling (MDS) of 141 C57Bl/6 male samples. Colors represent ages as shown on the 

right. Samples are represented by sample ID, wherein the first two numbers represent age and the 

second two represent identification number in an age group. (B) Mean methylation fraction of 

every site. Linear regression parameters were calculated by using every site.  
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Supplementary Figure 2. Age-related changes in the mouse blood DNA methylome. (A) 

Percentage of CpG sites that significantly changed methylation levels, increased methylation and 

decreased methylation with age. (B) Mean methylation fraction of significantly changing sites. 

Regression parameters were calculated using every CpG site that changed with age. 
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Supplementary figure 3. Sites with robust changes during early adulthood in mice. (A) Mean 

of significantly decreasing sites with the best model: 𝑙𝑛(𝑎𝑔𝑒)~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛–
1

3. (B) Mean of 

significantly increasing sites with the best model: 𝑙𝑛(𝑎𝑔𝑒)~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛–
1

3. 
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Supplementary figure 4. Sites with robust changes during late adulthood in humans. (A) 

Mean of significantly increasing sites with the best model: 𝑎𝑔𝑒~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛–
1

3 in 651 human 

samples from the age of 19 to 101 years. (B) Mean of significantly decreasing sites with the best 

model: 𝑎𝑔𝑒~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛–
1

3 in 651 human samples from the age of 19 to 101 years. 
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Supplementary figure 5. Sites with robust changes during early adulthood in humans. (A) 

Mean of significantly increasing sites with the best model: 𝑙𝑛(𝑎𝑔𝑒)~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛–
1

3 in 651 human 

samples from the age of 19 to 101 years. (B) Mean of significantly decreasing sites with the best 

model: 𝑙𝑛(𝑎𝑔𝑒)~𝑚𝑒𝑡ℎ𝑦𝑙𝑎𝑡𝑖𝑜𝑛–
1

3 in 651 human samples from the age of 19 to 101 years. 
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Supplementary Figure 6. Relationship between the methylation state and the direction of 

change. Correlation and linear regression between the linear regression slope and mean 

methylation fraction for every site. 
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Supplementary Figure 7. Age-related changes in DNA methylation of certain genomic 

elements. (A) Age-related changes in methylation of long non-coding RNAs. (B) Age-related 

changes in methylation of repetitive elements in the genome. Relative positions are shown as 0 

(where the element begins) and 1 (where the element ends) and extended upstream (-1) and 

downstream (2) according to the length of the genomic region. Lines were calculated by 

generalized additive model based on the significantly changed sites. Color scheme shows the age, 

dotted lines show individual samples, and thick lines show age groups.  
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Supplementary Figure 8. Correction for cell type heterogeneity. Regression slope of linear 

regression for every genomic region, including only the significant sites, based on the 

RefFreeEWAS analysis. 
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Supplementary Figure 9. Pathway gene set enrichment analysis of genes with changing 

methylation levels during aging. Examples of significantly enriched pathways in gene bodies. 

Pathways enriched by hypomethylated genes are colored in blue, and pathways enriched by 

hypermethylated genes are colored in red. KEGG and GO databases were used as a pathway 

annotation for the analysis. 
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Supplementary Figure 10. Examples of sites that change methylation with age following CR. 

(A) Site with the initial shift, but no significant cumulative effect. (B) Site with the cumulative 

effect, but without a significant initial shift. (C) Site with the significant initial shift and also 

cumulative effect. In each case, the control group has a significant age-related change. 
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Supplementary Figure 11. Age-related DNA methylation changes that characterize calorie 

restriction in 24 publicly available mouse samples. (A) Correlation between linear model 

coefficients of age-related changes and the initial shift (IS). (B) Correlation between the linear 

model coefficients of age-related changes and cumulative changes under the CR regime (TAT). 

(C) Correlation between coefficients of cumulative changes and IS changes in response to CR. 
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Supplementary Figure 12. Methylation state of samples following long-term calorie 

restriction. (A) Correlation between linear model coefficients of oldest (27 months) calorie 

restriction (CR) samples versus control samples and the regression slope of the significant age-

related changes in the control group. (B) Correlation between linear model coefficients of the oldest 

(27 months) calorie restriction samples versus control samples and the regression slope of age-

related changes in the calorie restriction samples. 
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Supplementary Figure 13. Analysis of calorie restriction in a different mouse strain. (A) 

Correlation between the linear model coefficients of CR-related changes based on the significant 

sites in the C57BL/6 mice and the same sites in the B6D2F1 strain. (B) Correlation between the 

linear model coefficients of CR-related changes based on sites that are significant in both C57BL/6 

and B6D2F1 strains. 
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Supplementary Figure 14. Age-related increases in entropy of the DNA methylome. (A) 

Shannon entropy of 141 C57BL/6 mouse samples, calculated for every site. (B) Shannon entropy 

of the same samples, calculated only for the sites that significantly change with age. 
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Supplementary Figure 15. Age-related increases in entropy of the DNA methylome in human 

samples. Shannon entropy of 561 human samples, calculated for the sites that significantly change 

with age. 
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Supplementary Figure 16. Age-related changes in entropy of the human DNA methylome. 

(A) Shannon entropy of the sites that significantly change (or do not change) with age in 651 

human samples from the age of 19 to 101 years. Permutation test was performed to assess the 

difference in entropy between changing and non-changing groups. (B) Shannon entropy of the sites 

that significantly increase and decrease with age in 651 human samples from the age of 19 to 101 

years. Permutation test was performed to assess the difference in entropy for increasing and 

decreasing groups. 
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Supplementary Figure 17. Normalization for average entropy in 651 human samples. (A) 

Intercept of the linear regression versus the regression slope for every site that significantly 

changed with age in humans. The red curve represents generalized additive model fit. (B) Venn 

diagram of significantly changed sites, based on the original age-related changes (Original) and 

entropy-normalized residuals (Residuals) in human samples. Slower, faster and opposite represent 

the percentage of sites that change slower or faster than the average entropy or opposite to the one 

expected by entropy. Non-changing sites did not change in either of the analysis.  
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Supplementary Tables 

 

Supplementary Table 1. Data transformation and multiple models.  

 

Table shows the data transformations used and descriptive statistics for best fitting models based 

on Akaike information criterion for the significantly changing sites during aging. 

 

 

Data transformations used 
Number of 
significant 

sites 

Percent of 
significant 
sites (%) 

Sites gaining 
methylation 

(%) 

Sites losing 
methylation 

(%) 

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟑 146067 85,9 41,6 44,3 

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟑 24059 14,1 6,5  7,6  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒍𝒏(𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏) 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒍𝒏(𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏) 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐

+ 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐

+ 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟐 0  0   0   0  
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Supplementary Table 2. Data transformation and multiple models in human samples.  

 

Table shows the data transformations used and descriptive statistics for best fitting models based 

on Akaike information criterion for the significantly changing sites during aging in 651 human 

samples from the age of 19 to 101 years. 

 

Data transformations used 
Number of 
significant 

sites 

Percent of 
significant 
sites (%) 

Sites gaining 
methylation 

(%) 

Sites losing 
methylation 

(%) 

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟑 57218 81 32,3 48,7 

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟑 13389 19 9  9,9  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 
𝟏
𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒍𝒏(𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏) 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒍𝒏(𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏) 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐

+ 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏𝟐

+ 𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟏 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟏 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟐 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟑 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏−𝟑 0  0   0   0  

𝒂𝒈𝒆~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟐 0  0   0   0  

𝒍𝒏(𝒂𝒈𝒆)~𝒎𝒆𝒕𝒉𝒚𝒍𝒂𝒕𝒊𝒐𝒏− 
𝟏
𝟐 0  0   0   0  


