Cell Reports, Volume 23

# **Supplemental Information**

# **Multiplexed Quantitation**

## of Intraphagocyte Mycobacterium

## tuberculosis Secreted Protein Effectors

Fadel Sayes, Catherine Blanc, Louis S. Ates, Nathalie Deboosere, Mickael Orgeur, Fabien Le Chevalier, Matthias I. Gröschel, Wafa Frigui, Ok-Ryul Song, Richard Lo-Man, Florence Brossier, Wladimir Sougakoff, Daria Bottai, Priscille Brodin, Pierre Charneau, Roland Brosch, and Laleh Majlessi

## **Supplemental Information**

## **Supplemental Figures**



**Figure S1. Working Model of ESX-1 and ESX-5 T7S machineries. Related to Figure 1. (A)** The *Mtb esx-1* and *esx-5* genomic regions coding for ESX-1 and ESX-5 systems. **(B)** Model of so-far known role of different components of the secretion systems encoded by *esx-1* or *esx-5* genes and involved in the secretion of different members of Esx, Esp and PE/PPE protein families. Ecc = Esx-conserved components, MycP= extracellular membrane-bound proteases mycosins, DUF = Domain of Unknown Function. Adapted from (Majlessi et al., 2015).



**Figure S2. EspC T-cell epitope mapping. Related to Figure 1. (A)** Total splenocytes from C57BL/6 (H-2<sup>b</sup>) mice, unimmunized or immunized (s.c.) with  $1 \times 10^6$  CFU/mouse of *Mtb* WT, were stimulated *in vitro* at 2 weeks p.i. with 10 µg/ml of individual synthetic 15-mers from EspC, offset by 4 AA. IFN- $\gamma$  production in the culture supernatants was used as read out after 72 h incubation. **(B)** The immunogenic EspC:40-54 segment harbors an epitope restricted by I-A<sup>b</sup>, as determined by use of L fibroblasts transfected with I-A<sup>b</sup> or I-A<sup>d</sup> (as a negative control), loaded with EspC:40-54 and co-cultured with the anti-EspC:40-54 "IF1" T-cell hybridoma.

Unexpectedly, no EspA-specific immunogenic region could be identified by epitope mapping of the 392-AA-long EspA protein, when using  $H-2^{b}$ ,  $H-2^{d}$ ,  $H-2^{k}$  or  $H-2^{b/k}$  haplotypes in mice of different genetic backgrounds that were immunized with either *Mtb* H37Rv or Erdmann strains. Thus, it is likely that EspA cannot accede efficiently to the host MHC-II machinery during infection for yet unknown reasons, despite its upregulation in the acidic conditions of the host phagosomes (Ates et al., 2016a; Pang et al., 2013).



Figure S3. Attempt to localize EspC in different sub-mycobacterial fractions. Related to Figure 2. EspC has recently been shown to associate with EspA and to multimerize and self-assemble into long filaments during the secretion process. Electron microscopy studies also detected EspC as filamentous structure spanning the mycobacterial cell wall, possibly as a component of the ESX-1 secretion machinery (Lou et al., 2017). Here, with the T-cell based detection approach, an EspC-specific signal could not be detected neither in the Mtb culture filtrate, nor in different bacterial fractions prepared from the whole cell lysate (A). This was most likely due to the loss of multimerized EspC (Lou et al., 2017) during the sterilization of the whole cell lysate by filtration, required prior to mycobacterial fractionation. Indeed, EspC could be detected in the whole cell lysates of WT and esx-1 mutants prior to the filtration. Various concentrations of culture filtrates, filtered whole cell lysates, or different fractions resulted from ultracentrifugation of the filtered whole cell lysates were added to the co-cultures of BM-DC with anti-EspC T-cell hybridoma. IL-2 was quantified in the coculture supernatants at 24 h. (B) To try to overcome this difficulty, sterilization of the whole cell lysate was attempted by irradiation, which surprisingly also led to the loss of EspC signal. Moreover, heat inactivation of the whole cell lysate resulted in a notable precipitation and obvious EspC exclusion. Various concentrations of culture filtrates, filtered whole cell lysates, or different fractions resulted from ultracentrifugation of the filtered whole cell lysates were added to the cocultures of BM-DC with anti-EspC T-cell hybridoma. IL-2 was quantified in the co-culture supernatants at 24 h. More investigations are thus needed to define particular fractionation/sterilization conditions required to map EspC in the mycobacterial compartments.



**Figure S4. Lentiviral plasmids. Related to Figures 3 and 4.** Map of different lentiviral integrative plasmids harboring individual fluorescence gene under *mil-2* promoter.



**Figure S5.** Characteristics of the specific reporter signal. Related to Figure 4. (A) Mean Fluoresence Intensity (MFI) of the reporter<sup>+</sup> T cells shown in the Figure 4A, as an index indicative of the level of activation induced by the T7S-substrate-derived epitopes available to the phagocytes. Data are representative of at least two independent experiments. (B) Kinetics of fluorescent reporter expression by T cells in response to Ag presentation in vitro. Cytometric analysis of the ZsGreen signal of the transduced anti-Ag85A (DE10) T-cell hybridoma at different time points after its co-culture with BM-DC loaded with 1  $\mu$ g/ml of homologous peptide. (C) The possibility of a by-stander effect, in which IL-2 produced by a given T cell could cross-activate P*mil-2* of neighboring T cells, was ruled out, as the addition of exogenous IL-2 to the transduced T cells induced no reporter signal.



**Figure S6.** Cytometric analysis of the MASSTT data. Related to Figure 4. BM-DC from C57BL/6 × CBA F1 (H-2<sup>k/b</sup>) were pre-loaded with a mixture of the homologous (A) or negative (C) control peptides, or infected with WT (E) or *Aesx-1 Mtb* (G), and then co-cultured with a pool of the EsxA-, EsxB- and EspC-specific transduced T-cell hybridomas. 3D representation of the cytometric plots for the three reporter signals detected at 24h after T-cell addition were generated by using the scatter3D function from the R package plot3D. (B, D, F, H) Conventional dot plot analyses showing the MASSTT data obtained with BM-DC (H-2<sup>b/k</sup>), loaded with homologous (B) or negative (D) control, or infected with WT (F) or *Aesx-1 Mtb* (H). Note that no reporter signal was recorded in the absence of specific antigen or infection which showed that in the mixed cultures, no Pmil-2 activation linked to H-2<sup>b</sup> - H-2<sup>k</sup> allo-reactivity was observed between various T-cell hybridomas originating from C57BL/6 and C3H genetic backgrounds.

| ESX<br>substrate | Secretion<br>systems | MHC-II<br>epitope | Epitope<br>sequence                                      | T-Cell<br>clone | Restric-<br>ting<br>element <sup>*</sup> | Ag recognized        |
|------------------|----------------------|-------------------|----------------------------------------------------------|-----------------|------------------------------------------|----------------------|
| EsxA             |                      | 1-20              | MTEQQWNFAGIEAAASAIQG                                     | NB11            | I-A <sup>b</sup>                         |                      |
| EsxB             | ESX-1                | 11-25             | LAQEAGNFERISGDL                                          | XE12            | I-A <sup>K</sup>                         |                      |
| EspC             |                      | 40-54             | VAITHGPYCSQFNDT                                          | IF1             | I-A <sup>b</sup>                         |                      |
|                  |                      |                   |                                                          | 5A8             |                                          | both EsxH and EsxR   |
| EsxH             | ESX-3                | 74-88             | STHEANTMAMMARDT <sup>***</sup>                           | 1H2             | I-A <sup>d</sup>                         | EsxH > EsxR          |
| EsxR             |                      | 74-88             | <b>G</b> THE <b>S</b> NTMAMLARD <b>G</b>                 | 1G1             |                                          | EsxH but not EsxR    |
| PE18             | ESX-5                | 1-18              | MSFVTTQPEALAAAAGSL                                       | IF6             | I-A <sup>b</sup>                         | esx5-encoded PE18/19 |
| PE19             |                      | 1-18              | MSFVTTQPEALAAAAANL                                       | IB12            |                                          | but not other PE     |
|                  |                      |                   |                                                          |                 |                                          | homologs             |
| Ag85A            | Tat                  | 284-303           | QDAYNA <b>G</b> GGHN <b>G</b> VF <b>D</b> FP <b>DS</b> G | DE10            | I-A <sup>b</sup>                         | Ag85A and Ag85B      |
| Ag85B            |                      | 281-300           | QDAYNAAGGHNAVFNFPPNG                                     |                 |                                          |                      |
| Ag85A            | Tat                  | 144-163           | LTSELPGWLQANRHVKPTGS                                     | 2A1             | I-E <sup>d</sup>                         | Ag85A and Ag85B      |
| Ag85B            |                      | 141-160           | LTSELPQWLSANRAVKPTGS                                     |                 |                                          |                      |

## Table S1. MHC-II-restricted T-cell hybridomas specific to various mycobacterial antigens\*. Related to Figure 1.

<sup>\*</sup>The panel included the previously described EsxA- and Ag85A/B-specific (Frigui et al., 2008; Majlessi et al., 2006) and the newly generated T-cell hybridomas specific for EsxB, EspC, EsxH/R or PE18/19.

<sup>\*\*</sup>As determined by the capacity of L fibroblasts, transfected with I-A<sup>b</sup>, I-A<sup>d</sup>, I-A<sup>k</sup> or I-E<sup>d</sup> and loaded with homologous peptides, to trigger IL-2 production by specific T-cell hybridomas.

\*\*\* Mismatched residues are indicated in bold characters.

## Table S2. Analysis sequence using Columbus system (version 2.3.1, PerkinElmer). Related to Figure 3.

Properties of an in-house multi-parameter script which was developed for the analysis of images obtained for transduced T cells co-cultured with DCs loaded with homologous peptide or infected with different *Mtb* or BCG strains.

| Input Image                           | Stack Processing: Individual                                                                             | Method                                                                                                                                                                   | Output                                            |
|---------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
|                                       | Planes<br>Flat field Correction: None                                                                    |                                                                                                                                                                          |                                                   |
| Find Nuclei                           | Channel: Exp1Cam1<br>ROI: None                                                                           | C<br>Common Threshold: 0.4<br>Area: > 30 µm <sup>2</sup><br>Split Factor: 7<br>Individual Threshold: 0.4<br>Contrast: > 0.1                                              | Nuclei                                            |
| Calculate<br>Morphology<br>Properties | Population: Nuclei<br>Region: Nucle                                                                      | Standard (Area, Roundness)                                                                                                                                               | Nucleus                                           |
| Calculate<br>Intensity<br>Properties  | Channel: Exp2Cam2<br>Population: Nuclei<br>Region: Nucleus                                               | Standard (Mean, Maximum)                                                                                                                                                 | Intensity Nucleus ZsGreen                         |
| Select<br>Population                  | Population: Nuclei                                                                                       | Filter by Property<br>Intensity Nucleus ZsGreen<br>Mean: > <u>150</u><br>Intensity Nucleus ZsGreen<br>Maximum: > <u>300</u><br>Boolean Operations: F1 and F2             | Activated Hybridomas                              |
| Calculate<br>Intensity<br>Properties  | Channel: Exp1Cam2<br>Population: Activated<br>Hybridomas<br>Region: Nucleus                              | Standard (Mean)                                                                                                                                                          | Intensity ZsGreen Exp1Cam2                        |
| Calculate<br>Image                    |                                                                                                          | By Formula<br>Formula: iif(A>100,1,0)<br>Channel A: Exp1Cam1<br>Negative Values: Set to Zero<br>Undefined Values: Set to Local<br>Average                                | Hoechst modified                                  |
| Calculate<br>Image                    |                                                                                                          | By Formula<br>Formula: iif(A>300,B,0)<br>Channel A: Exp2Cam2<br>Channel B: Hoechst modified<br>Negative Values: Set to Zero<br>Undefined Values: Set to Local<br>Average | Activated ZsGreen                                 |
| Find Image<br>Region                  | Channel: Exp1Cam1<br>ROI: None                                                                           | Whole Image Region                                                                                                                                                       | Whole Image<br>Whole Image Region                 |
| Calculate<br>Intensity<br>Properties  | Channel: Hoechst modified<br>Population: Whole Image<br>Region: Whole Image Region                       | Standard (Sum)                                                                                                                                                           | Area Hoechst                                      |
|                                       | Channel: Activated ZsGreen<br>Population: Whole Image<br>Region: Whole Image Region                      | Standard (Sum)                                                                                                                                                           | Area Activated ZsGreen                            |
|                                       | Channel: Activated ZsGreen<br>Population: Whole Image<br>Region: Whole Image Region                      | Standard (Mean)                                                                                                                                                          | Intensity Whole Image Region Activated<br>ZsGreen |
| Define<br>Results                     | Method: List of Outputs<br>Number of Objects<br>Population: Activated<br>Hybridomas<br>Number of Objects |                                                                                                                                                                          |                                                   |

Intensity Nucleus ZsGreen Mean: Mean Population: Whole Image Method: Formula Output Formula: a/b\*100 Population Type: Objects Variable A: Whole Image - Area Activated ZsGreen Sum Variable B: Whole Image - Area Hoechst Sum Output Name: Activated ZsGreen Area/ Hoechst Area (in %) Method: Formula Output Formula: a/b\*100 Population Type: Objects Variable A: Activated hybridomas - Number of Objects Variable B: Nuclei - Number of Objects Output Name: % Activated hybridomas

Table S3. T-cell hybridomas transduced with lentiviral vectors in such a way that to each antigen specificity corresponds a given fluorescence reporter. Related to Figures 3 and 4.

| ESX Substrate | T-Cell Clone | Fluorescent Reporter  | $\lambda_{\text{exc}}/\lambda_{\text{em}}(\text{nm})$ |  |
|---------------|--------------|-----------------------|-------------------------------------------------------|--|
| EsxA          | NB11         | ZsGreen <sup>*</sup>  | 493/505                                               |  |
|               |              | AmCyan <sup>**</sup>  | 458/489                                               |  |
| EsxB          | XE12         | AmCyan                | 458/489                                               |  |
| EspC          | IF1          | RFP <sup>***</sup>    | 555/584                                               |  |
| EsxH          | 1G1          | RFP                   | 555/584                                               |  |
| PE18/19       | IF6          | AmCyan                | 458/489                                               |  |
| Ag85A         | DE10         | ZsGreen               | 493/505                                               |  |
|               |              | mPlum <sup>****</sup> | 590/649                                               |  |
| Ag85A         | 2A1          | AmCyan                | 458/489                                               |  |

\*Zoanthus Green Fluorescent Protein \*\* Anemonia majano Cyan fluorescent protein \*\*\* Red Fuorescent Protein from Entacmaea quadricolor \*\*\*\* A far RFP mutant derived from the tetrameric Discosoma sp. RFP, DsRed

| Mycobacteria | Variant                             | locus         |  |  |
|--------------|-------------------------------------|---------------|--|--|
|              | H37Rv WT                            |               |  |  |
|              | H37Rv $\Delta esx-l$                | RD1           |  |  |
|              | H37Rv $\Delta espF$                 | rv3865        |  |  |
|              | H37Rv $\Delta espG_1$               | rv3866        |  |  |
|              | H37Rv $\triangle eccCb_1$           | rv3871        |  |  |
|              | Н37Rv <i>Дре35</i>                  | rv3872        |  |  |
|              | H37Rv Δ <i>ppe</i> 68               | rv3873        |  |  |
|              | H37Rv $\Delta esxB$                 | rv3874        |  |  |
|              |                                     |               |  |  |
|              | H37Rv $\Delta phoP$                 | rv0757        |  |  |
|              | H37Ra::phoP                         | rv0757        |  |  |
| Mtb          | H37Ra::pRpsl                        | rv0682        |  |  |
|              | H37Ra::phoP                         | rv0757        |  |  |
|              | H37Ra::pRpsl                        | rv0682        |  |  |
|              |                                     |               |  |  |
|              | H37Rv <i>∆ppe25-pe19</i>            | rv1787-rv1791 |  |  |
|              | H37Rv ∆ <i>ppe25-pe19∷esx-5</i>     | rv1787-rv1791 |  |  |
|              | H37Rv $\Delta esxM$                 | rv1792        |  |  |
|              | H37Rv ΔesxM::esx-5                  | rv1792        |  |  |
|              | H37Rv $\triangle eccD_5$            | rv1795        |  |  |
|              |                                     |               |  |  |
|              | Erdman WT                           |               |  |  |
|              | Erdman $\Delta espA$                | rv3616c       |  |  |
|              |                                     |               |  |  |
|              | <i>M. bovis</i> WT                  |               |  |  |
|              | BCG::pYUB                           |               |  |  |
|              | BCG::esx-1                          | RD1           |  |  |
| M. bovis     | BCG::esx-1 Δppe68                   | rv3873        |  |  |
|              | BCG:: $esx-1\Delta esxB$            | rv3874        |  |  |
|              | BCG::esx-1 ΔespI                    | rv3876        |  |  |
|              | BCG:: $esx-1 \Delta espJ$ , K, L, B | rv3878-3881   |  |  |
|              |                                     |               |  |  |
|              | OV254:: <i>esx-1</i>                |               |  |  |
|              | $OV254 \Delta espH$                 | rv3867        |  |  |
| M microti    | $OV254 \Delta eccB_1$               | rv3869        |  |  |
|              | $OV254 \Delta eccCb_1$              | rv3871        |  |  |
|              | $OV254 \Delta esxA$                 | rv3875        |  |  |
|              | $OV25\overline{4 \Delta espI}$      | rv3876        |  |  |

# Table S4. Mycobacterial variants used in this study. Related to Figures 5 and 6.

| Clinical Isolate:      |          |           |          |                                                 |                        |
|------------------------|----------|-----------|----------|-------------------------------------------------|------------------------|
| strain No.,            |          |           |          |                                                 |                        |
| lineage (MLVA-Mtbc     |          |           |          |                                                 |                        |
| 15-9), R*              | Position | Reference | Sample   | Region                                          | AA Exchange            |
|                        | 2135154  | G         | <u>т</u> | Rv1886c (Ag85B)                                 | silent (Pro238)        |
| No 78                  | 342146   | Δ         | Ċ        | Rv(10000 (rrg00D))<br>$Rv(1282 (ecc \Delta 3))$ | Glu6Ala                |
| No.78                  | 246275   | A<br>C    | C        | Rv0282 (cccA3)<br>Rv0284 (cccA3)                | Dro214 Arg             |
| (204, 22)              | 252200   | C         | 0        | $R_{V0264}$ (eccc3)                             | FI0214Alg              |
| (204-32)               | 353309   | G         | A        | RV0290 (eccD3)                                  | Ser/6Asn               |
| R isoniazid,           | 353365   | G         | A        | Rv0290 (eccD3)                                  | Ala95Thr               |
| sreptomycin,           | 356528   | А         | G        | Rv0292 (eccE3)                                  | Asn217Asp              |
| ethambutol             | 2022868  | Т         | С        | Rv1783 (eccC5)                                  | silent (Ser1204)       |
|                        | 2023628  | С         | G        | Rv1785c (cyp143)                                | Gly334Ala              |
|                        | 2030848  | А         | G        | Rv1793 (esxN)                                   | Glu52Gly               |
|                        | 2037015  | С         | Т        | Rv1798 (eccA5)                                  | Leu106Leu              |
|                        | 1367484  | Т         | G        | Rv1224 (tatB)                                   | Trp8Gly                |
|                        | 2135154  | G         | Т        | Rv1886c (Ag85B)                                 | silent (Pro238)        |
| No 25343               | 342146   | A         | Ċ        | Rv0282 (ecc A3)                                 | Glu6Ala                |
| Rejijng                | 346275   | C C       | G        | $P_{v}(0202 (cccr3))$                           | Dro214Arg              |
| (10762.22)             | 252200   | C         | •        | $R_{V0204} (CCC3)$                              | Sor76 A an             |
| (10/62-32)             | 353509   | G         | A        | RV0290 (eccD3)                                  |                        |
| R isoniazid,           | 353365   | G         | A        | Rv0290 (eccD3)                                  | Ala951hr               |
| ethionamide            | 356528   | A         | G        | Rv0292 (eccE3)                                  | Asn217Asp              |
|                        | 2022868  | Т         | С        | Rv1783 (eccC5)                                  | silent (Ser1204)       |
|                        | 2023628  | С         | G        | Rv1785c (cyp143)                                | Gly334Ala              |
|                        | 1367484  | Т         | G        | Rv1224 (tatB)                                   | Trp8Gly                |
|                        | 2135154  | G         | Т        | Rv1886c (Ag85B)                                 | silent (Pro238)        |
| No.68243               | 342146   | А         | С        | Rv0282 (eccA3)                                  | Glu6Ala                |
| Beijing                | 346275   | С         | G        | Rv0284 (eccC3)                                  | Pro214Arg              |
| (100-32)               | 352334   | Ğ         | Č        | Rv0289 (espG3)                                  | silent (Pro62)         |
| Suscentible to all     | 353300   | G         | <u>د</u> | Rv0207 (csp03)<br>Rv0200 (eccD3)                | Ser $76 \Lambda sn$    |
| antitub aroulous drugs | 252265   | C         | A        | Rv0290 (cccD3)<br>Rv0200 (cccD3)                | Algo5Thr               |
| antituderculous drugs  | 256520   | 0         | A        | $R_{V0290} (eccD3)$                             |                        |
|                        | 356528   | A         | G        | RV0292 (eccE3)                                  | Asn21/Asp              |
|                        | 2020255  | A         | C        | Rv1783 (eccC5)                                  | GIn333His              |
|                        | 2020420  | С         | Т        | Rv1783 (eccC5)                                  | silent (Asp388)        |
|                        | 2022868  | Т         | С        | Rv1783 (eccC5)                                  | silent (Ser1204)       |
|                        | 2023628  | С         | G        | Rv1785c (cyp143)                                | Gly334Ala              |
|                        | 2030848  | А         | G        | Rv1793 (esxN)                                   | Glu52Gly               |
|                        | 1367484  | Т         | G        | Rv1224 (tatB)                                   | Trp8Gly                |
|                        | 342146   | А         | С        | Rv0282 (eccA3)                                  | Glu6Ala                |
|                        | 343281   | G         | С        | Rv0282 (eccA3)                                  | silent (Ala384)        |
|                        | 344288   | Č         | Ğ        | Rv0283 (eccB3)                                  | silent (Ser89)         |
| No 47927               | 346275   | C         | G        | Rv0205 (eccC3)<br>Rv0284 (eccC3)                | $Pro214\Delta rg$      |
|                        | 340273   | C         | C        | $R_{V0204}(CCC3)$                               | rilont(Ala195)         |
| EAI                    | 251976   | U<br>C    | C<br>T   | $R_{V0260}(FFE4)$                               | Al-10X-1               |
| (?-47)                 | 351870   | C         | I<br>T   | RV0288 (esxH)                                   | Alaloval               |
| monoR-offoxacin        | 352572   | C         | l        | Rv0289 (espG3)                                  | Arg1421rp              |
|                        | 356528   | А         | G        | Rv0292 (eccE3)                                  | Asn217Asp              |
|                        | 2019236  | Т         | G        | Rv1782 (eccB5)                                  | silent (Pro499)        |
|                        | 2022868  | Т         | С        | Rv1783 (eccC5)                                  | silent (Ser1204)       |
|                        | 2023211  | G         | Т        | Rv1783 (eccC5)                                  | Val1319Phe             |
|                        | 2026025  | А         | G        | Rv1787 (PPE25)                                  | Gln242Arg              |
|                        | 2026029  | С         | Т        | Rv1787 (PPE25)                                  | silent (Phe243)        |
|                        | 2026030  | Т         | С        | Rv1787 (PPE25)                                  | Phe244Leu              |
|                        | 2026032  | Ċ         | Ť        | Rv1787 (PPF25)                                  | silent (Phe244)        |
|                        | 2020032  | Ğ         | Δ        | $R_{v1787}$ (DDE25)                             | $\Delta l_{a} 245 Thr$ |
|                        | 2020033  | G         | л<br>л   | intergenia                                      | 11102731111            |
|                        | 2028209  | U<br>A    | A<br>C   | D-1700 (DDE27)                                  | ailant (Als 191)       |
|                        | 202896/  | A         | C        | KV1/90 (PPE2/)                                  | silent (Ala181)        |
|                        | 2029087  | G         | C        | Kv1790 (PPE27)                                  | Leu221Phe              |
|                        | 2030487  | С         | Т        | intergenic                                      |                        |
|                        | 2030488  | А         | С        | Intergenic                                      |                        |
|                        | 2030489  | Т         | А        | Intergenic                                      |                        |
|                        | 2030521  | Т         | С        | Intergenic                                      |                        |
|                        |          |           |          |                                                 |                        |

Table S5. Mutations in the *esx-3* and *esx-5* regions, or in genes coding for Ag85A/B or TatABC recovered in *Mtb* clinical isolates. Related to Figure 6.

|                         | 2030848 | А | G | Rv1793 (esxN)  | Glu52Gly         |
|-------------------------|---------|---|---|----------------|------------------|
|                         | 2035937 | G | А | Rv1797 (eccE5) | Arg152His        |
|                         | 2035986 | G | Т | Rv1797 (eccE5) | Val168Val        |
|                         | 1367484 | Т | G | Rv1224 (tatB)  | Trp8Gly          |
|                         | 346275  | С | G | Rv0284 (eccC3) | Pro214Arg        |
| No.99205                | 348210  | G | С | Rv0284 (eccC3) | Cys859Ser        |
| Ural                    | 350738  | С | Т | Rv0286 (PPE4)  | silent (Thr268)  |
| (12364-15)              | 353766  | Т | С | Rv0290 (eccD3) | silent (Ile228)  |
| R isoniazid,            | 353767  | С | Т | Rv0290 (eccD3) | Pro229Ser        |
| streptomycin,           | 355803  | G | Т | Rv0291 (mycP3) | Ala436Ser        |
| ethambutol              | 356528  | А | G | Rv0292 (eccE3) | Asn217Asp        |
|                         | 2022868 | Т | С | Rv1783 (eccC5) | silent (Ser1204) |
|                         | 2025848 | Т | С | Rv1787 (PPE25) | Val183Ala        |
|                         | 2025913 | Т | С | Rv1787 (PPE25) | Ser205Pro        |
|                         | 346275  | С | G | Rv0284 (eccC3) | Pro214Arg        |
| No.103788               | 349200  | G | А | Rv0284 (eccC3) | Arg1189His       |
| NEW1                    | 356528  | А | G | Rv0292 (eccE3) | Asn217Asp        |
| (?-223)                 | 2022868 | Т | С | Rv1783 (eccC5) | silent (Ser1204) |
| R rifampicin,           | 2030521 | Т | С | intergenic     |                  |
| isoniazid, ethionamide, | 2030634 | G | С | intergenic     |                  |
| streptomycin            | 2035893 | G | Т | Rv1797 (eccE5) | silent (Ser137)  |
|                         |         |   |   |                | · · · · ·        |

\*R = antibiotic resistance profile.

MLVA Mtbc 15-9 codes were assigned using the MIRU-VNTRplus database (http://www.miru-vntrplus.org/).

### **Supplemental Experimental Procedure**

### DNA constructs, lentiviral vector production and titration

Plasmids containing genes coding Mus musculus IL-2 promoter (Pmil-2), AmCyan1-N1 or mPlum-N1, were purchased from Addgene (Teddington, UK). The plasmid containing gene coding for the constitutive human Elongation Factor-1 $\alpha$  promoter (EFI $\alpha$  P) was derived from vectors described in (Sirven et al., 2001). The Pmil-2 gene was amplified from the plasmid by PCR using Pfu polymerase (Stratagene) and Forward: 5'-ACGCGTTCTATCACCCTGTGTGCAATTAGC-3' and Reverse: 5'-GGATCCCTTAGCAAGGGTGATAGGCAGC-3' primers. Underlined sequences are MluI and BamHI restriction sites, added respectively for the further cloning of the Pmil-2 PCR fragment into the unique MluI/BamHI site of a non-replicative lentiviral pFLAPAU3 plasmid which contains the cis-acting sequences required for formation of the central DNA Flap (Zennou et al., 2000) and a WPRE (Woodchuck Posttranscriptional Regulatory Element) sequence to increase gene transcription (S4 Fig). The genes coding for different fluorochromes were amplified by use of Forward: 5'-GGATCCACCGGTCGCCACCATGG-3' and Reverse: 5'-GCTGATTATGATCTCGAGTCGCGGCCG-3' primers. Underlined sequences are BamHI and XhoI restriction sites added respectively for cloning of the fluorochrome PCR fragments into the unique BamHI/XhoI site of the pFLAPAU3 plasmid, downstream of the *Pmil-2* or  $EF1\alpha$  promoter to monitor gene transduction (S4 Fig).

Non-replicative lentiviral vector particles were produced in Human Embryonic Kidney (HEK)-293T cells, grown in DMEM medium supplemented with 10% FBS, by transient tripartite co-transfection by: (i) 10 µg of vector plasmids, (ii) 10 µg of an encapsidation plasmid (p8.74) containing the HIV-1 genes gag, pol, tat, and rev, and (iii) 10 µg of an envelope expression plasmid encoding the glycoprotein G from vesicular stomatitis virus (VSV) in presence of calcium phosphate, as previously described (Zennou et al., 2000). At 24 h post-transfection, the culture medium was replaced by fresh DMEM containing 10% FBS. Supernatants of the transfected cells were harvested at 48 h post-transfection, clarified by centrifugation at 2500 rpm, aliquoted and stored at -80°C. The average titers of the lentiviral vector stocks was 1 x 10<sup>8</sup> Transducing Unit (TU)/ml as determined by real-time PCR on total lysates from transduced HEK-293T cells, as described elsewhere (Iglesias et al., 2006). 60-70% of each T-cell hybridoma were practically transduced with lentiviral vectors, as judged by the quantitation of fluorescent cells subsequent to their co-culture with peptide-loaded BM-DC. The fluorescence positive cell populations were sorted on a MoFlo Astrios Cell Sorter (Beckman Coulter) in order to reach up to 99% of positively transduced cells. T-cell hybridomas were then cultured and amplified until they came back to the steady state and until clearance of the fluorescence signal for stock preparation. T-cell hybridomas were also transduced with lentiviral vectors, harboring each of the fluorescent reporter genes under the constitutive  $EFI\alpha$ promoter and used as mono-stained cells for cytometer settings. The transduced T-cell hybridomas have been deposited at the "Collection Nationale de Cultures de Microorganismes" CNCM (https://www.pasteur.fr/en/cncm) at the Institut Pasteur Collection.

### **Bacterial fractionation**

*Mtb* strains were cultured in ADC-supplemented Dubos broth without agitation until exponential phase (OD<sub>600</sub> 0.6-1.2) was reached. Bacteria were collected from 200 ml of culture by centrifugation at 4000 rpm. The bacterial material was washed in 20 ml of Dubos completed with protease inhibitor cocktail ("cOmplete-EDTA-free", Roche), resuspended in 1 ml of this medium and bead-beated at 30 Htz for 8 minutes in a Mill Mixer (Qiagen) to disrupt cells. The lysate was then filtered through a 0.2  $\mu$ m PVDF (Millipore) filter to eliminate remaining bacteria. Fractionation was performed at 45,000 rpm 30 min in order to pellet the cell wall, which is likely a combination of outer membrane, periplasmic and insoluble protein complexes. The cell wall fraction was washed once in PBS containing protease inhibitor cocktail. The supernatant was further centrifuged at 100,000 rpm 105 min to collect the bacterial cytosol and to pellet plasma membrane, washed once in PBS containing protease inhibitor cocktail.

An alternative method (Lou et al., 2017; Sani et al., 2010) was applied to recover total membrane fraction. *Mtb* strains were pre-cultured in 7H9 medium supplemented with ADC and 0.05% Tween-80 until exponential phase was reached. Bacteria were washed and inoculated in 100 ml Sauton's medium with 0.002% Tween-80 at 0.1  $OD_{600}$ /ml and incubated without agitation. Six days later, bacteria were collected by centrifugation and aliquots of the culture supernatant were filtered through a 0.2 µm PVDF filter to eradicate remaining bacteria. The culture filtrate was concentrated 70-fold by centrifugation in centrifugal filter units (Amicon Ultra – 15<sup>®</sup>, Ultracel 3K<sup>®</sup>, Merck, Germany). Cellular material was treated with 0.25% Genapol X-080 detergent in PBS for 20 minutes at 37°C under mild agitation to extract capsular proteins. Remaining cellular material was washed gently with PBS and bead-beated to disrupt cells. Further fractionation was performed by ultracentrifugation at 100,000 rpm for 60 min. Insoluble proteins, considered as "membrane fractions" were resuspended in PBS. Fractionation of *M. marinum* was performed as described above with the exception of culture conditions which were adapted from Ates et al. 2016 (Ates et al., 2016b). Briefly, after pre-culture bacteria were inoculated at 0.3 OD<sub>600</sub>/ml in 100 ml 7H9 medium without Tween-80 or ADC supplement, but with 2 mg/ml dextrose. Strains were grown 40 h at 30°C without agitation.

#### **Protein detection by Western blot**

Proteins were separated by SDS-PAGE and blotted on nitrocellulose membranes. Proteins were visualized by primary anti-EsxA (hyb76-8) (Harboe et al., 1998) or anti-EsxN (Alderson et al., 2000) mAbs and polyclonal anti-EsxB or anti-SigA antibodies, followed by electro-chemiluminesence detection of appropriate secondary antibodies.

### **Supplemental References**

- Alderson, M.R., Bement, T., Day, C.H., Zhu, L., Molesh, D., Skeiky, Y.A., Coler, R., Lewinsohn, D.M., Reed, S.G., and Dillon, D.C. (2000). Expression cloning of an immunodominant family of Mycobacterium tuberculosis antigens using human CD4(+) T cells. The Journal of experimental medicine. 191(3), 551-560.
- Ates, L.S., van der Woude, A.D., Bestebroer, J., van Stempvoort, G., Musters, R.J., Garcia-Vallejo, J.J., Picavet, D.I., Weerd, R., Maletta, M., Kuijl, C.P., et al. (2016b). The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10. PLoS Pathog. 12(6), e1005696.
- Harboe, M., Malin, A.S., Dockrell, H.S., Wiker, H.G., Ulvund, G., Holm, A., Jorgensen, M.C., and Andersen, P. (1998). B-cell epitopes and quantification of the ESAT-6 protein of Mycobacterium tuberculosis. Infection and immunity. 66(2), 717-723.
- Iglesias, M.C., Frenkiel, M.P., Mollier, K., Souque, P., Despres, P., and Charneau, P. (2006). A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J Gene Med. 8(3), 265-274.
- Lou, Y., Rybniker, J., Sala, C., and Cole, S.T. (2017). EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Molecular microbiology. 103(1), 26-38.
- Majlessi, L., Prados-Rosales, R., Casadevall, A., and Brosch, R. (2015). Release of mycobacterial antigens. Immunol Rev. 264(1), 25-45.
- Pang, X., Samten, B., Cao, G., Wang, X., Tvinnereim, A.R., Chen, X.L., and Howard, S.T. (2013). MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. Journal of bacteriology. 195(1), 66-75.
- Sani, M., Houben, E.N., Geurtsen, J., Pierson, J., de Punder, K., van Zon, M., Wever, B., Piersma, S.R., Jimenez, C.R., Daffe, M., et al. (2010). Direct visualization by cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog. 6(3), e1000794.
- Sirven, A., Ravet, E., Charneau, P., Zennou, V., Coulombel, L., Guetard, D., Pflumio, F., and Dubart-Kupperschmitt, A. (2001). Enhanced transgene expression in cord blood CD34(+)-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified trip lentiviral vectors. Mol Ther. 3(4), 438-448.
- Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P. (2000). HIV-1 genome nuclear import is mediated by a central DNA flap. Cell. 101(2), 173-185.