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Abstract
Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology which o�ers
faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy
and complex electrical signal is challenging. Here, we report Chiron, the �rst deep learning model to achieve end-to-end
basecalling: directly translating the raw signal to DNA sequence without the error-prone segmentation step. Trained with
only a small set of 4000 reads, we show that our model provides state-of-the-art basecalling accuracy even on previously
unseen species. Chiron achieves basecalling speeds of over 2000 bases per second using desktop computer graphics
processing units.
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Introduction

DNA sequencing via bioengineered nanopores, recently intro-
duced to the market by Oxford Nanopore Technologies (ONT),
has profoundly changed the landscape of genomics. A key in-
novation of the ONT nanopore sequencing device, MinION, is
that it measures the changes in electrical current across the
pore as a single-stranded molecule of DNA passes through it.
The signal is then used to determine the nucleotide sequence
of the DNA strand [1, 2, 3]. Importantly, this signal can be ob-
tained and analysed by the user while the sequencing is still in
progress. A large number of pores can be packed into a MinION
device in the size of a stapler, making the technology extremely
portable. The small size and real-time nature of the sequenc-
ing opens up new opportunities in time-critical genomics ap-
plications [4, 5, 6, 7] and in remote regions [8, 9, 10, 11, 12].
While nanopore sequencing can be massively scaled up

by designing large arrays of nanopores and allowing faster
translocation of DNA fragments, one of the bottle-necks in the
analysis pipeline is the translation of the raw signal into nu-
cleotide sequence, or basecalling. Prior to the release of Chiron ,

basecalling of nanopore data involved two stages. Raw data se-
ries are �rst divided into segments corresponding to signals ob-
tained from a k-mer (segmentation) before a model is then ap-
plied to translate segment signals into k-mers. DeepNano [13]
introduced the idea of using a bi-directional Recurrent Neu-
ral Network (RNN), that uses the basic statistics of a segment
(mean signal, standard deviation and length) to predict the cor-
responding k-mer. The o�cial basecallers released by ONT,
nanonet and albacore (prior to version 2.0.1), also employ sim-
ilar techniques. As k-mers from successive segments are ex-
pected to overlap by k-1 bases, these methods use a dynamic
programming algorithm to �nd the most probable path, which
results in the basecalled sequence data. BasecRAWller [14] uses
a pair of unidirectional RNNs; the �rst RNN predicts the proba-
bility of segment boundary for segmentation, while the second
one translates the discrete event into base sequence. As such,
basecRAWller is able to process the raw signal data in a stream-
ing fashion.

In this article we present Chiron, which is the �rst deep
neural network model that can translate raw electrical sig-
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Figure 1. A) An unrolled sketch of the neural network architecture. The circles at the bottom represent the time series of raw signal input data. Local pattern
information is then discriminated from this input by a CNN. The output of the CNN is then fed into a RNN to discern the long-range interaction information. A
fully connected layer is used to get the base probability from the output of the RNN. These probabilities are then used by a CTC decoder to create the nucleotide
sequence. The repeated component is omitted. B) Final architecture of the Chiron model. Variants of this architecture were explored by varying the number of
convolutional layers from 3 to 10 and recurrent layers from 3 to 5. We also explored networks with only convolutional layers or recurrent layers, 1×3 conv, 256,
no bias means a convolution operation with a 1×3 �lter and a 256 channels output with no bias added.

nal directly to nucleotide sequence. Chiron has a novel archi-
tecture which couples a convolutional neural network (CNN)
with an RNN and a Connectionist Temporal Classi�cation (CTC)
decoder[15]. This enables it to model the raw signal data di-
rectly, without use of an event segmentation step. Oxford
Nanopore Technologies have also developed a segmentation
free base-caller, Albacore v2.0.1, which was released shortly
after Chiron v0.1.
Chiron has been trained on a small data set sequenced from

a viral and bacterial genome, and yet it is able to generalise to
a range of genomes such as other bacteria and human. Chiron
is as accurate as the ONT designed and trained Albacore v2.0.1
on bacterial and viral base-calling and outperforms all other
existing methods. Moreover, unlike Albacore, Chiron allows
users to train their own neural network, and it is also fully
open-source, enabling development of specialised base-calling
applications, such as detection of base-modi�cations.

Results

Deep neural network architecture

We have developed a deep neural network (NN) for end-to-end,
segmentation-free basecalling which consists of two sets of
layers: a set of convolutional layers and a set of recurrent lay-
ers (see Figure 1). The convolutional layers discriminate local
patterns in the raw input signal, whereas the recurrent layers
integrate these patterns into basecall probabilities. At the top
of the neural network is a CTC decoder [15] to provide the �nal
DNA sequence according to the base probabilities. More details
pertaining to the NN are provided in Methods.

Chiron presents an end-to-end basecaller, in that it predicts
a complete DNA sequence from raw signal. It translates slid-
ing windows of 300 raw signals to sequences of roughly 10-20
base pairs (which we call slices). These overlapping slices are
stacked together to get a consensus sequence in real-time. The
window is shifted by 30 raw signals, by processing this slices in
parallel, the base-calling accuracy can be improved with little
speed loss.

Performance Comparison

For training and evaluating the performance of Chiron, a phage
Lambda virus sample (Escherichia virus Lambda provided by ONT
and an Escherichia coli (K12 MG1655) sample using 1D protocol
on R9.4 �owcells are sequenced for calibrating the MinION de-
vice (See Methods). 34,383 reads were obtained for Lambda
sample and 15,012 reads for E. coli, but only 2000 reads were
randomly picked from each sample to train Chiron. It took the
model 10 hours to train 3 epoch with 4,000 reads (∼ 4Mbp) on
a Nvidia K80 GPU. Then Chiron is cross-validated on the re-
mainder of the reads from two runs, and the model is further
evaluated by testing its basecalling accuracy on other species.
A Mycobacterium tuberculosis sample is sequenced and a set of
human data is downloaded from chromosome 21 part 3 from
the Nanopore WGS Consortium [16], to be used in testing the
generality of Chiron (see Table 4).
In order to establish the ground-truth of the data,the E. coli

and M. tuberculosis samples are sequenced using Illumina tech-
nology (see Methods) and assembled, which provided a high
per-base accuracy reference. The reference sequence for the
Phage Lambda virus is NCBI Reference Sequence NC_001416.1
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Figure 2. Visualization of the predicted probability of bases and the readout sequence. The upper pane is a normalised raw signal from the Minion Nanopore
sequencer, normalised by subtracting the mean of the whole signal and then dividing by the standard deviation. The bottom pane shows the predicted probability
of each base at each position from Chiron. The �nal output DNA sequence is annotated on the x-axis of the bottom plane.

and for the human data the GRCh38 reference was used. The
raw signals are labeled by identifying the raw signal segment
corresponding to the nucleotide assumed to be in the pore at a
given time-point (see Methods).
Table 1 presents the accuracy of the four basecalling meth-

ods, including the Metrichor basecaller (the ONT cloud service),
Albacore v1.1 (ONT o�cial local basecaller), BasecRAWller [14]
and Chiron,with a greedy decoder (Chiron) and beam search
decoder(Chiron-BS), on the data. Chiron has the highest iden-
tity rate on the Lambda, E. coli and M. tuberculosis sample. Ad-
ditionally, it had the lowest deletion rate, mismatch rate on
Lambda,M. tuberculosis and E. coli, and the lowest insertion rate
on Lambda and E. coli.In Human dataset where Chiron did not
have the highest identity rate, it is was no more than 0.01 from
the best.
In addition we compared the segmentation-free ONT base-

caller Albacore v2.0.1 with Chiron-BS in Table 1. Chiron-BS had
a consistently lower insertion rate across all species tested, as
well as a lower deletion rate on Lambda and E-coli, however it
su�ered a slightly higher mismatch rate on all species except
E-coli. The performance is comparable to Albacore v2.0.1 on all
species except for Human, however this is likely at least par-
tially due to the fact that it has not been trained on any human
DNA.
In order to assess the quality of genomes assembled from

reads generated by each basecaller, we used Miniasm together
with Racon to generate a de-novo genome assembly for each of
the bacterial and viral genomes (see Methods). The results pre-
sented in Table 2 demonstrate that Chiron assemblies for Phage
lambda and E. coli have approximately half as many errors as
those generated from Albacore (v1 or v2) reads. For M. tuber-
culosis, Chiron has fewer errors than Albacore v1, but slightly
more than Albacore v2. The identity rate and relative length
for each round of polishing with Racon are shown in Figure 3.
In terms of speed on a CPU processor, Chiron is slower

(21bp/s, 17bp/s using a beam-search decoder with a 50 beam
width) than Albacore (2975bp/s) and - to a lesser extent - Base-
cRAWller (81bp/s). However, when run on a Nvidia K80 GPU, a
basecalling rate of 1652bp/s and 1204bp/s using a beam search

decoder is achieved. (Chiron is also tested on a Nvidia GTX
1080 Ti GPU and got a rate of 2657bp/s). The GPU rate for
other two local basecallers are not included, as Albacore and
basecRAWller do not currently o�er GPU support. Metrichor
was not included in the speed benchmarking as it is not possi-
ble to gather information about CPU/GPU speed as it is a cloud
basecaller.

Discussion

Segmenting the raw nanopore electrical signal into piece-wise
constant regions corresponding to the presence of di�erent k-
mers in the pore is an appealing but error-prone approach.
Segmentation algorithms determine a boundary between two
segments based on a sharp change of signal values within a
window. The window size is determined by the expected speed
of the translocation of the DNA fragment in the pore. We no-
ticed that the speed of DNA translocation is variable during a
sequencing run, which coupled with the high level of signal-
to-noise in the raw data, can result in low segmentation ac-
curacy. As a result, the segmentation algorithm often makes
conservative estimates of the window size, resulting in seg-
ments smaller than the actual signal group for k-mers. While
dynamic programming can correct this by joining several seg-
ments together for a k-mer, this e�ects the prediction model.
All existing nanopore base callers prior to Chiron employ

a segmentation step. The �rst nanopore basecalling algo-
rithms [17, 18] employed a Hidden Markov Model, which main-
tains a table of event models for all possible k-mers. These
event models were learned from a large set training data. More
recent methods (DeepNano [13], nanonet) train a deep neural
network for inferring k-mers from segmented raw signal data.
A recent basecaller named BasecRAWller [14] used an ini-

tial neural network (called a raw network) to output probabil-
ities of boundaries between segments. A segmentation algo-
rithm is then applied to segment these probabilities into dis-
crete events. BasecRAWller then uses a second neural network
(called the �ne-tune network) to translate the segmented data
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Table 1. Results from the experimental validation and benchmarking of Chiron against three other segmentation-based Nanopore basecallers
and Albacore V2(which is also segmentation-free basecaller).

Dataset Basecaller Deletion Rate(%) Insertion Rate(%) Mismatch Rate(%) Identity Rate(%) Error Rate(%)

Metrichor 8.93 2.38 4.57 86.50 15.88
Albacore v1.1 6.35 3.82 4.69 88.96 14.86
Albacore-v2 6.19 3.38 3.98 89.82 13.55

Lambda BasecRAWller 7.89 10.01 10.56 81.54 28.46
Chiron 8.20 2.13 4.03 87.76 14.36
Chiron-BS 6.20 2.13 4.20 89.60 12.53
Metrichor 7.52 1.93 3.84 88.64 13.29
Albacore v1.1 5.76 3.27 4.14 90.10 13.17
Albacore-v2 5.21 2.99 3.57 91.22 11.77

E. coli BasecRAWller 7.16 10.40 10.30 82.54 27.86
Chiron 6.36 1.81 3.07 90.57 11.24
Chiron-BS 4.94 2.36 3.16 91.90 10.46
Metrichor 7.63 2.40 4.35 88.02 14.38
Albacore v1.1 6.12 3.57 4.68 89.19 14.37
Albacore-v2 5.05 3.58 4.05 90.90 12.68

M. tuberculosis BasecRAWller 7.17 10.85 10.42 82.41 28.44
Chiron 7.16 2.50 4.33 88.51 13.99
Chiron-BS 5.84 3.05 4.50 89.66 13.39
Metrichor 12.95 4.15 7.65 79.4 24.75
Albacore v1.1 8.62 6.51 7.52 83.86 22.65
Albacore-v2 8.71 6.03 6.05 85.24 20.79

Human BasecRAWller 8.41 10.28 10.10 81.49 28.79
Chiron 9.13 5.14 9.33 81.54 23.60
Chiron-BS 9.30 5.62 7.87 82.83 22.79

Deletion/Insertion/Mismatch rate(%) are de�ned as the number of deleted/inserted/mismatched bases divided by the number of bases in the reference genome (the
lower the better),Identity rate(%) is de�ned as the number of matched bases divided by the number of bases in the reference genome for that sample (the higher
the better, Identity Rate = 1 - Deletion Rate - Mismatch Rate), Error rate(%) is de�ned as the sum of deletion,insertion and mismatch rate, (the lower the better,
Error Rate = Deletion Rate + Insertion Rate + Mismatch Rate). This statistic e�ectively summarises the basecalling accuracy of the associated model.

Table 2. Assembly identity rate and relative length benchmark, draft genome generated by Miniasm and is polished 10 rounds by Racon,
assembly identity rates are presented in the left 4 columns while relative lengths are presented in the right 4 columns.

Sample(coverage) Albacore Albacore_2 Chiron-BS Metrichor Albacore Albacore_2 Chiron-BS Metrichor

E. coli-S18(27X) 99.004 99.162 99.533 87.678 100.055 99.715 99.720 94.253
E. coli-S10(40X) 99.106 99.316 99.646 88.745 100.144 99.739 99.811 94.829
M. tuberculosis(130X) 99.541 99.628 99.554 84.736 100.126 100.029 99.900 90.875
Lambda Phage( 790X) 97.926 99.207 99.507 99.164 101.104 100.123 99.800 99.335

Identity rate(%) is calculated by �rst shredding the assembly contigs into 10K reads pieces, and then get the mean of the identity rate of the aligned reads, relative
length(%) is de�ned as the sum of the length of all the aligned pieces divided by the length of reference genome. E. coli-S10 and E. coli-S18 are reads from two
independent sequencing.

Table 3. Base-calling rate (bp per second) .

Basecaller CPU rate (1 core) CPU rate (8 cores) GPU rate

Albacorev1.1.2 2975 23800 NA
BasecRAWller 81 648 NA
Chiron 21 168 1652
Chiron-BS 17 136 1204

Single core CPU rate is calculated by dividing the number of nucleotides base-
called by the total CPU time for the basecalling analysis. 8 core CPU rate is
estimated by multiplying single core cpu rate by 8, based on observed 100%
utility of CPU processors in multi-threaded mode on 8 cores. GPU rate calcu-
lated on a Nvidia K80 GPU. The reported rate is the average across all samples
analysed. GPU rate not reported for Albacore or BasecRAWller as they have not
been developed for use on GPU. Chiron is also capable of running on a GPU
and its rate in this mode is included in parentheses. Albacore is not capable of
running in GPU mode. Albacore V2 was found to have similar performance as
albacore v1.1.2.

into the base sequence.

Our proposed model is a departure from the above ap-
proaches in that it performs base prediction directly from raw
data without segmentation. Moreover the core model is an

end-to-end basecaller in the sense that it predicts the com-
plete base sequence from raw signal. This is made possible by
combining a multi-layer convolutional neural network to ex-
tract the local features of the signal, with a recurrent neural
network to predict the probability of nucleotides in the current
position. Finally, the complete sequence is called by a simple
greedy algorithm, based on a typical CTC-style decoder [15],
reading out the nucleotide in each position with the highest
probability. Thus, the model need not make any assumption
of the speed of DNA fragment translocation and can avoid the
errors introduced during segmentation.

To improve the basecalling speed and to minimize its mem-
ory requirements, the neural network is run on a 300-signal
sliding window (equivalent to approximately 20bp), overlap-
ping the sequences on these windows and generating a con-
sensus sequence. Chiron has the potential to stream these in-
put raw signal ’slices’ into output sequence data, which will
become increasingly important aspect of basecalling very long
reads (100kb+), particularly if used in conjunction with the
read-until capabilities of the MinION.

Our model was either the best or second-best in terms of
accuracy on all of the datasets we tested in terms of read-level
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accuracy. This includes the human dataset, despite the fact
that the model has not seen human DNA during training. Our
model has only been trained on a mixture of 2,000 bacterial
and 2,000 viral reads. The most accurate basecaller is the pro-
prietary ONT Albacore basecaller. Chiron is within 1% accuracy
on bacterial DNA, but only within 2% accuracy on human DNA.
More extensive training on a broader spectrum of species, in-
cluding human can be expected to improve the performance
of our model. There are also improvements in accuracy to be
gained from a better alignment of overlapping reads and con-
sensus calling. Increasing the size of the sliding window will
also improve accuracy but at the cost of increased memory and
running time.
Bacterial and viral genome assemblies generated from Chi-

ron basecalled reads all had less than 0.5% error, whereas those
generated by Albacore had up to 0.8% accuracy Figure 3. This
marked reduction in error rate is essential for generating accu-
rate SNP genotypes, a pre-requisite for many applications such
as outbreak tracking. These results are consistent with those
reported in recent study into read and assembly level accuracy
for K. pneumoniae [19].
Our model is substantially more computationally expensive

than Albacore and somewhat more computationally expensive
than BasecRAWller. This is to be expected given the extra depth
in the neural network. Our model can be run in a GPU mode,
which makes computation feasible on small to medium sized
datasets on a modern desktop computer. Our method can be
further sped up by increasing the step size of the sliding win-
dow, although this may impact accuracy. Also there are several
existing methods which can be used to accelerate NN-based
basecallers such as Chiron. One such example is Quantization,
which reformats 32-bit �oat weights as 8-bit integers by bin-
ning the weight into a 256 linear set. As neural networks are
robust to noise this will likely have negligible impact of the per-
formance. Weight Pruning is another method used to compress
and accelerate NN, which prunes the weights whose absolute
value is under a certain threshold and then retrains the NN[20].

Conclusion

We have presented a novel deep neural network approach for
segmentation-free basecalling of raw nanopore signal. Our ap-
proach is the �rst method that can map the raw signal data di-
rectly to base sequence without segmentation. We trained our
method on only 4000 reads sequenced from the simple genome
lambda virus and E. coli, but the method is su�ciently gener-
alised to be able to base call data from other species including
human. Our method has state-of-art accuracy - outperform-
ing the ONT cloud basecaller Metrichor as well as another 3rd-
party basecaller, BasecRAWller.

Methods

Deep neural network architecture

Our model combines a 5-layer CNN [21] with a 3-layer RNN
and a fully connected network (FNN) in the last layer that cal-
culates the probability for a CTC decoder to get the �nal output.
This structure is similar to that used in speech recognition [22].
Both the CNN and RNN layers are found to be essential to the
base calling as removing either will cause a dramatic drop in
prediction accuracy, which is described more in the Training
section.

Preliminaries. Let a raw signal input with T time-points s =
[s1, s2, ..., sT] and the corresponding DNA sequence label (with

K bases) y = [y1, y2, ..., yK] with yi ∈ {A,G, C, T} be sampled from
a training dataset χ = {(s(1), y(1)), (s(2), y(2)), ...}. Our network
directly translates the input signal time series s to the sequence
y without any segmentation steps.
The input signal is normalized by subtracting the mean of

the whole read and dividing by the standard deviation. s’ =
(s – s)/std(s).
Then the normalised signal is fed into a residual block [23]

combined with global batch normalisation [24] in the 5 convo-
lution layers to extract the local pattern from the signal. The
stride is set as 1 to ensure the output of the CNN has the same
length of the input raw signal. The residual block is illustrated
in Figure 1, a convolution operation with a l×m �lter, n×p
stride and s output channels on a k channels input is de�ned
as:

Output(i, j, s) =
∑

di<l,dj<m,q<k
Input(i·n+di, j·p+dj, q)·Filter(di, dj, q, s)

.
An activation operation is performed after the convolution

operation. Various kinds of activation functions can be chosen,
however, in this model a Recti�ed Linear Unit (ReLU) function
is used as the activation operation which has been reported to
have a good performance in CNN, de�ned as :

ReLU(x) = max(x, 0)

Following the convolution layers are multiple bi-directional
RNN layers [25], a LSTM cell[26] is used as the RNN cell, with a
separate batch normalisation on the inside cell state and input
term [27].
A typical batch normalisation procedure[24] is

BN(x;γ,β) = β + γ�
x – Ê[x]√
V̂ar[x] + ε

, (1)

where x be a inactivation term.
Let hlt be the output of lth RNN layer at time t, the batch

normalisation for a LSTM cell is

(ft, it, ot,gt) = BN(Whh
l
t–1;γh,βh) + BN(Wxh

l–1
t ;γx,βx) + b (2)

ct = σ(ft)� ct–1 + σ(it)� tanh(gt) (3)

ht = σ(ot)� tanh(BN(ct;γc,βc)) (4)

The batch normalisation is calculated separately in the re-
current term Whh

l
t–1 as well as the input term Wxhl–1t . The

parameters βh and βx are set to zero to avoid the redundancy
with b. The last forward layer ~hLif and the backward layer

~hLib
are concatenated together as an input to a fully connected layer

Hi = [h
L
iw,h

L
ib]. (5)

The �nal output is transferred through a fully connected net-
work followed by a softmax operation

p(oi = j) =
expWjHi∑
j expWjHi

(6)

The output oi, i = 1, 2, ..., T predict the symbol given the in-
put vector x, P(oi = j|x). If the read is a DNA sequence then
j ∈ {A,G, C, T, b}, where b represents a blank symbol( Figure
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1). During training, the CTC loss is calculated between the out-
put sequence o and label y [15] and back-propogation is used
update the parameters. An Adam optimizer[28] with an initial
learning rate of 0.001 is used to minimize the CTC loss.
During inference, the �nal sequence constructed using ei-

ther a greedy decoder [15], or a beam-search decoder[29]. The
greedy decoder works by �rst getting the argument of max-
imum probability in each position of o, and then producing
the sequence call by �rst removing the consecutive repeat, and
then removing the blank symbols. For example, the greedy
path of an output o is A A - - - A - - G - , here - represent
the blank symbol, the consecutive repeat is removed �rst and
lead to A - A - G -, and the blank is removed to get the �nal
sequence AAG. The beam search decoder with beam width W,
maintains a list of the W most probable sequences (after col-
lapsing repeats and removing blanks) up to position i of o. To
obtain this list at position i+1, it constructs the probability of all
possible extensions of the W most probable at position i based
on adding each symbol according to p(oi = j), and collapsing
and summing up over repeated bases, or repeated blanks which
are terminated by a non-blank. The greedy decoder is a spe-
cial case of the beam-search decoder when the beam width is
1. It should be noted that the model can still call homopolymer
repeats provided each repeated base is separated by a blank,
which is typically the case.

Convolutional network to extract local patterns:. 256 channel �lters
are used for all �ve convolutional layers. In each layer, there
is a residual block[23] (Figure 1) composing with two branches.
A 1x1 �lter is used for reshaping in the �rst branch. In the
second branch, a 1x1 convolution �lter is followed by a recti�ed
linear unit (RELU) [30] activation function and a 1x3 �lter with
a RELU activation function as well as a 1x1 �lter. All �lters have
the same channel number of 256. An element-wise addition is
performed on the two branches followed by a RELU activation
function. A global batch normalisation operation is added after
every convolution operation. A large kernel size (5,7,11) and
di�erent channel numbers (128,1024) is also tested, and the
above combination is found to yielded the best performance.

Recurrent layers for unsegmented labelling:. The local pattern ex-
tracted from the CNN described above is then fed to a 3-layer
RNN (Figure 1). Under the current ONT sequencing settings,
the DNA fragments translocate through the pore with a speed
of roughly 250 or 450 bases per second, depending on the se-
quencing chemistry used, while the sampling rate is 4000 sam-
ples per second. Because the sampling rate is higher than the
translocation rate, each nucleotide usually stays in the current
position for about 5 to 15 samplings, on average. Furthermore,
as a number of nearby nucleotides also in�uence the current,
40 to 100 samples (based on a 4- or 5-mer assumption) could
contain information about a particular nucleotide. A 3-layer
bidirectional RNN is used for extracting this long range infor-
mation. LSTM (Long Short Term Memory) cells [31, 32] with
200 hidden units are used in every layer and a fully connected
neural network (FNN) is used to translate the output from the
last RNN layer into a prediction. The output of the FNN is then
fed into a CTC decoder to obtain the predicted nucleotide se-
quence for the given raw signals.

Improving basecalling performance:. To achieve a better accuracy
and less memory allocation, a sliding window is applied (de-
fault of 300 raw signals), with a pre-set sliding step size (de-
fault of 10% of window size), to the long raw signal. This gives
a group of short reads with uniform length (window length)
that overlap the original long read. Then basecalling is run in
parallel on these short reads, and reassemble the whole DNA
sequence by �nding the maximum overlap between two adja-

cent short reads, and read out the consensus sequence. Note
here the reassembly is very easy because the order of the short
reads is known. This procedure improves the accuracy of the
basecalling and also enables parallel processing on one read.

Data preparation

Sequencing:. The library preparations of the E. coli and M. tu-
berculosis samples were done using the 1D gDNA selecting for
long reads using SQK-LSK108 (March 2017 version) protocol with
the following modi�cations. Increase the incubation time to
20 minutes in each end-repair and ligation step; use 0.7x
AgencourtR AMPureR XP beads (Beckman Coulter) immediately
after the end-repair step and incubation of the eluted beads for
10 minutes; and use elution bu�er (ELB) warmed up at 50oC
with the incubation of the eluted bead at the same temperature.
For the Lambda sample, the 1D Lambda Control Experiment for
MinIONTM device using SQK-LSK108 (January 2017 version) pro-
tocol was followed with some changes: sheared the sample at
4000rpm (2x1 minutes); 30 minutes of incubation in each end-
repair step and 20 minutes for adaptor ligation and elution of
the library with 17µL of ELB. All samples were sequenced on
new FLO-MIN106, version R9.4, �ow cells with over 1100 ac-
tive single pores and the phage was sequenced in aMinIONMk1
(232ng in 6h run) while the bacteria samples were sequenced
in a MinION Mk1B (1µg E. coli and 595ng M. tuberculosis in 22h
and 44h runs, respectively). The E. coli sample was run on the
MinKNOW version 1.4.3 and the other samples in earlier ver-
sions of the software. The E. coli sample was also sequenced on
Illumina MiSeq using paired-end 300x2 to 100-fold coverage.
An assembly of the E. coli genome was constructed by running
Spades [33] on the MiSeq sequencing data of the sample. The
genome sequence of the Phage Lambda is NCBI Reference Se-
quence: NC_001416.1.

Labelling of raw signal:. Metrichor, the basecaller provided by
ONT which runs as a cloud service, is used to basecall the Min-
ION sequencing data �rst. Then Nanoraw [34] is used for la-
belling the data. Brie�y, the basecalled sequence data is aligned
back to the genome of the sample, and from the alignment the
errors introduced by Metrichor are corrected to avoid the bias
from Metrichor being learned into Chiron, and the corrected
data is mapped back to the raw data. The resulting labelling
consists of the raw signal data, as well as the boundaries of
raw signals when the DNA fragment translocates to a new base.
We use the base-level segmentation of the raw data to obtain
matched pairs of signal segment (of lengths 200, 400 and 1000)
together with the corresponding DNA base sequence. From this
point onwards, the exact matching of the signal to each base
within a segment is disregarded.

Training dataset. A data set using 2,000 reads from E. coli and
2,000 reads from Phage Lambda is created for training Chiron.
In every start of the training epoch, the dataset is shu�ed �rst
and then fed into the model by batch. Training on this mixture
dataset gave the model better performance both on generality
and accuracy on not only the E. coli and Phage Lambda but also
on M. tuberculosis and Human data.

Training

The labelling from Metrichor described previously in para-
graph is used to train Chiron, although the neural network
architecture is translation invariant and not restricted by the
sequence length, a uniform length of sequences is suited for
batch feeding, thus can accelerate the training process. From
this view, the original reads were cut into short segments with
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Figure 3. A) Assembly Error Rate(%) for each polishing round using Racon. Two individually sequenced E. coli samples are included(S10, S18). All basecallers have
a similar performance on the M. tuberculosis dataset due to its high sequencing depth(130X). B) Relative assembly Length(%) after each round of polishing. Relative
length is de�ned as the length of the assembly divided by the length of reference genome.

Table 4. Details about the number of reads and their median read
length for data that was used in evaluation of the various base-
callers.

Sample No. reads Median read length (bp)

Phage Lambda 34,383 5720
E. coli 15,012 5,836
M. tuberculosis 147,594 3,423
Human 10,000 6,154

a uniform length of 200, 400 and 1000, and trained on these
batches in alternation. Several di�erent architectures of the
neural network were tested, (see Table 5) with the CNN-RNN
network architecture having the best accuracy compared to a
CNN- or RNN-only network. Also using more layers seems to
increase the performance of the model, however, the time con-
sumed for training and basecalling is also increased. In the
�nal structure, a NN with 5 convolution layers and 3 recurrent
layers is adopted, as adding layers above this structure gave
negligible performance improvement but required more calcu-
lation and also increased the risk of over�tting.

Parameters for basecalling

All basecallers were invoked on the same set of reads for each
sample. When using Chiron to basecall, the raw signal was
�rstly sliced by a 300 length window, the window is slided
by 30, and then these sliced segments are fed into the base-
caller with a batch size equal to 1100, and then the output
short reads are simply assembled by a pair-wise alignment be-
tween neighbouring reads, and the consensus sequence is out-
put from this alignment. All basecalling with Albacore (version
1.1.1 and version 2.0.1) and BasecRAWller[14] (version 0.1) was
done with default parameters. For the con�guration setting in
Albacore, r94_450bps_linear.cfg was used for all samples, as
this matches the �owcell and kit used for each sample. The
data is basecalled on Metrichor on Jun 3rd 2017(Lambda), May
18th 2017(E. coli), Jun 4th 2017(M. tuberculosis), and June 20th
2017(NA12878-Human).

Quality score

The quality score is calculated by the following algorithm: qs =
10 ∗ log10( P1P2 ) where P1 is the probability of most probable base
in current position, and P2 is the probability of the second prob-
able base in current position.

Comparison of raw read accuracy

To assess the performance of each program, the resulting
FASTA/FASTQ �le from basecalling was aligned to the ref-
erence genome using graphmap[35] with the default parame-
ters. The resulting BAM �le is then assessed by the japsa er-
ror analysis tool (jsa.hts.errorAnalysis) which looks at the
deletion, insertion, and mismatch rates, the number of un-
aligned and aligned reads, and the identi�cation rate com-
pared to the reference genome. The identity rate is calculated
as number of matched bases
number of bases in reference and is the marker used here for

basecalling accuracy.

Assembly Identity Rate Comparison

We assessed the quality of assemblies generated from reads
produced by di�erent base-callers. For each base-caller, a
de-novo assembly is generated by the use of only Nanopore
reads for the M. tuberculosis E. coli and Lambda Phage genomes.
We use Minimap2[36] and Miniasm[37] to generate a draft
genome, then Racon[38] is used to polish on the draft genome
for 10 rounds.

Data availability

The M. tuberculosis sequencing data have been deposited Gen-
bank under project number PRJNA386696. The Human
nanopore data were downloaded from https://github.com/
nanopore-wgs-consortium/NA12878. Supporting data, including
training and testing datasets are available via GigaDB[39].
Program and code are available at https://github.com/
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Table 5. Comparison of normalised edit distance with di�erent neural network architectures. The normalised edit distance is the edit
distance between predicted reads and labelled reads and normalised by segments length.

Architecture normalised edit distance

3 Convolutional Layers 0.4007 ± 0.0277
5 Convolutional Layers 0.3903 ± 0.0230
10 Convolutional Layers 0.3874 ± 0.0186
3 Bidirectional Recurrent Layers 0.2987 ± 0.0221
5 Bidirectional Recurrent Layers 0.2930 ± 0.0215
3 Convolutional Layers + 3 Bidirectional Recurrent Layers 0.2011 ± 0.0252
5 Convolutional Layers + 5 Bidirectional Recurrent Layers 0.2001 ± 0.0177

haotianteng/chiron pypi package index 0.3 at https://pypi.
python.org/pypi/chiron. Chiron is registered in SciCrunch with
RRID:SCR_015950.
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