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Supplemental Methods

In vitro cell culture

BM-derived MNCs from TKI-resistant patients and non-CML CD34" cells were cultured in
serum-free medium (SFM), supplemented with a physiological growth factor (PGF) cocktail
as previously described (1). KCL22, BaF3"WT (expressing WT p210 BCR-ABL), and ponatinib-
resistant derivative cells (KCL22P°"Re and BaF3"°"Res) were cultured in RPMI 1640 medium,
supplemented with 1% penicillin/streptomycin, 1% L-glutamine, and 10% FCS (all
Invitrogen). KCL22P°"Res and BaF3Po"Res cells were generated by culturing parental cells in

increasing concentrations of ponatinib.

Drug Stock Solutions

Dasatinib (Bristol-Myers Squibb, Princeton, NJ, USA), ponatinib (ARIAD Pharmaceuticals,
Cambridge, MA, USA), NVP-BEZ235 (LC Laboratories, MA, USA), PP242 (Sigma-Aldrich),
gedatolisib, apitolisib, VS5584, AZD8055 (all Selleckchem, TX, USA), PI-103 (Merck KGaA,
Darmstadt, Germany) and omacetaxine mepesuccinate (Chemgenex) were prepared in DMSO
and stored at —20°C. Rapamycin (Sigma-Aldrich) was prepared in EtOH and stored at —20°C.
HCQ (Sigma-Aldrich) was prepared in PBS and stored at —20°C. CQ (Sigma-Aldrich) was

prepared in water and stored at 4°C.

Drug screening

An oncology drug library (NCI DTP Approved Oncology Drugs) was screened in KCL22WT
and KCL22PoRes cells, Internal plate controls were included to allow statistical assessment of
screening performance, namely vehicle control (DMSO), a lethality control (1uM

omacetaxine), and a positive control (100nM ponatinib). Cells were plated at 25000 cpw (+/-



100nM ponatinib) using an XRD automated reagent dispenser (FluidX). Drugs were added to
cell plates at a final concentration of 0.01, 0.1, 1 and 10uM using an automated liquid handling
system (JANUS, Perkin Elmer). Drug effects were quantified using resazurin/resorufin
conversion assay and quantifying fluorescence (535ex, 590em, EnVision multiplate reader,
Perkin Elmer). Relative SoF was calculated for each drug by comparing the effect to lethal

control arm.

RNA-seq and analysis

RNA was extracted using an RNeasy Mini kit (Qiagen, Cat no. 74104) as per the
manufacturer’s instructions followed by RNA enrichment using polyA selection. The sequence
library was created using the TruSeq RNA Library Prep version 2 Kit, to polyA select mRNA.
The library insert size was ~300bp. The libraries were sequences on the Illumina
NextSeq™500 platform with ~50 million paired end reads per sample. The sequences were
trimmed using cutadapt v 1.0 (2) (quality value=25, minimum read length=56). The resulting
reads were aligned to the human genome GRCh37 (p13) using HiSat2 v 2.0.4 (3) and mapped
to Ensembl gene IDs. Genome coverage statistics were calculated by genomecov (bedtools
v2.26.0). The number of reads per gene was quantified using htseq-count v 0.6.0 (4). Exonic
gene lengths for calculation of RPKM values were obtained via the corresponding GTF file;
genes with missing length information or <7 CPM (counts per million) were removed from
further analysis. Count data were normalised by TMM (5) and VOOM (6) (as implemented in
the Bioconductor packages edgeR v3.12.1 and limma v3.26.9 using R v3.2.2). Limma (6) was
used to compare transcript abundance across treatment arms and generate logFC and adjusted
p-values (q) (7). Proportional Venn diagrams were generated using Vennerable (v3.0) in R.

Pearson correlation coefficients were calculated in R.



MSigDB enrichment analysis

Expression data for MSigDB v4.0 C2 (curated gene sets) signatures were summarised using
GSVA (v1.24.1) (MSigDB obtained as XML from the Broad Institute,

http://software.broadinstitute.org/gsea/msigdb). Limma (6) was used to calculate differential

expression of these signatures and generate logFC and adjusted p-values (q) (7).

Western blotting
Western blotting was performed as per standard protocols (8) using antibodies against LC3B,
B-tubulin, p-CRKL, p-STAT5, GAPDH, p-RPS6, p-4E-BP1, SQSTM1 (Cell Signalling) and

ATG7 (Epitomics-Abcam, Burlingame, CA, USA) in 1/1000 dilution.

Autophagy monitoring by fluorescence
KCL22PoMRes cells expressing mRFP-GFP-LC3 were fixed and washed twice with PBS before
air drying and counter staining with DAPI (Vectashield) and visualised using a Zeiss Imager

M1 AX10 fluorescence microscope with AxioVision 3D deconvolution software.

Apoptosis and CFC assay

Cells were resuspended in a solution made up of; 2.5uL annexin-V-APC (BD, Cat no. 550475)
and 2.5uL 7-AAD (BD, Cat no. 559925) in 45uL. 1x HBSS binding buffer (Thermo Fisher
Scientific, Gibco Cat no. 14025100), incubated for 20 minutes in the dark and analysed by flow
cytometry (Becton Dickinson FACSVerse). Data was analysed using FlowJo software. CFC

assay was performed as previously described (1).

Virus production and cell transduction


http://software.broadinstitute.org/gsea/msigdb

For virus production, HEK293FT (Invitrogen) were transiently transfected with indicated
plasmids by calcium phosphate method as previously described (1). Lentiviruses were
produced with the addition of pPCMV-VSV-G (envelope plasmid) and psPAX2 packaging
constructs. mRFP-GFP-LC3 was cloned into the pWzl Hygro retroviral vector. KCL22P°n-Res
cells were transduced with lentivirus expressing firefly luciferase (pLenti CMV Puro LUC;
Addgene #17477), mRFP-GFP-LC3 or vector expressing Cas9 and stable cell lines generated
by antibiotic selection. sgRNA sequences for CRISPR/Cas9-mediated deletion of ATG7

were designed using the MIT CRISPR design tool (http://crispr.mit.edu/). The following

guide sequences was selected: 5'-GAAGCTGAACGAGTATCGGC-3’ and cloned into the
LentiCRISPRv2 vector (Addgene #52961) according to the Zhang lab protocol. Knockdown
was performed with pLKO.1 transfer vector containing verified sShRNA specific for human

ATG7 (TRCNO0000007584; Sigma-Aldrich) or non-targeting scrambled hairpin as control.

Synergism measurement

The synergistic effect of NVP-BEZ235 and CQ was predicted by the Chou-Talalay medium-
effect method using CompuSyn software (ComboSyn, Inc. Paramus, NJ, 2005). A constant
molar ratio of 1:100 of NVP-BEZ235: CQ was used based on the relative activities of both
agents determined in previous experiments. The effect of the drugs was assessed by counting
the viable cells after 72h of treatment using Casy TT Cell Counter and Analyser (Innovatis,
Roche Applied Science). The concentrations used were from 25 to 200nM of NVP-BEZ235
and from 2.5 to 20uM for CQ. A combination index of less than 1 indicates synergism; more

than 1, antagonism; and 1, additive effect.

Bioluminescent in vivo imaging


http://crispr.mit.edu/

Human KCL22°"Res cells, labeled with lentiviral firefly luciferase, were injected via tail vein

into 8-12 week old female NOD/SCID/IL-2Ry-/- (NSG) recipient mice (1x10° cells per mouse)

(9). 30 minutes later the mice were injected intraperitoneally with D-luciferin (3mg per mouse,
Perkin Elmer, Cat no. 122799) and analysed by luciferase bio-imaging via an IVIS Spectrum
In Vivo Imaging System (PerkinElmer, Cat no. 124262), to measure the efficiency of

transplantation. The engraftment of these cells was subsequently measured weekly.

In vivo drug treatment

Mice were treated with vehicle control (citrate buffer or NMP/PEG300 (1:10)), HCQ

(60ma/kq, intraperitoneally once daily, Sigma, Cat no. 1327000), NVP-BEZ235, (40ma/kaq,

oral gavage once daily, LC Labs, Cat no. N-4288), or the combination of NVP-BEZ235/HCQ.
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Supplementary Tables

Supplementary Table 1. List of FDA-approved oncology drugs in drug library

Abiraterone
Afatinib
Allopurinol
Altretamine
Amifostine

Aminolevulinic acid
hydrochloride
Anastrozole

Arsenic trioxide
Axitinib
Azacitidine

Belinostat

Bendamustine hydrochloride

Bleomycin sulfate
Bortezomib
Bosutinib

Busulfan

Cabazitaxel
Cabozantinib
Capecitabine
Carboplatin
Carfilzomib
Carmustine
Celecoxib

Ceritinib
Chlorambucil
Cisplatin

Cladribine
Clofarabine
Crizotinib
Cyclophosphamide
Cytarabine hydrochloride
Dabrafenib mesylate
Dacarbazine
Dactinomycin
Dasatinib
Daunorubicin hydrochloride
Decitabine
Dexrazoxane
Docetaxel

Doxorubicin hydrochloride

Enzalutamide
Epirubicin hydrochloride
Erlotinib hydrochloride

Estramustine phosphate
sodium
Etoposide

Everolimus

Exemestane

Floxuridine

Fludarabine phosphate
Fluorouracil

Fulvestrant

Gefitinib

Gemcitabine hydrochloride
Hydroxyurea

Ibrutinib

Idarubicin hydrochloride
Idelalisib

Ifosfamide

Imatinib

Imiquimod

Irinotecan hydrochloride
Ixabepilone

Lapatinib

Lenalidomide

Letrozole

Lomustine

Mechlorethamine
hydrochloride
Megestrol acetate

Melphalan hydrochloride
Mercaptopurine
Methotrexate
Methoxsalen

Mitomycin

Mitotane

Mitoxantrone

Nelarabine

Nilotinib

Olaparib

Omacetaxine mepesuccinate

Oxaliplatin

Paclitaxel

Pazopanib hydrochloride
Pemetrexed disodium salt
Pentostatin

Pipobroman

Plerixafor

Plicamycin
Pomalidomide

Ponatinib

Pralatrexate
Procarbazine hydrochloride
Raloxifene

Regorafenib

Romidepsin

Sirolimus

Sorafenib

Streptozocin

Sunitinib

Tamoxifen citrate
Temozolomide
Temsirolimus
Teniposide

Thalidomide
Thioguanine

Thiotepa

Topotecan hydrochloride
Trametinib

Tretinoin
Triethylenemelamine
Uracil mustard
Valrubicin

Vandetanib
Vemurafenib
Vinblastine sulfate
Vincristine sulfate
Vinorelbine tartrate
Vismodegib

Vorinostat

Zoledronic acid



Supplementary Table 2. Information about clinical mTOR inhibitors.*

Compound CAS No. Structure  Description mTORC1 mTORC2 Phase |  Phase Il CML trials References
X, NCT00780104
Sirolimus (Rapamycin) Pfizer 53123-88-9 e Allosteric v 12 41 NCT02790515 22
iass NCT02722668
) ) ' ) NCT00093639
Everolimus (RADO0O01) Novartis 159351-69-6 &% Allosteric v 15 11 NCT00081874 22
S Wyeth o i .
Temsirolimus Pharmaceutical  162635-04-3 o Allosteric v 4 6 22
@]
PI-103 Novartis 371935-74-9 % Catalytic v y V \/ y Nonet 24
NVP-BEZ235 Novartis 915019-65-7 Catalytic v x/ y V \ \ 13 1% NCT01756118 25
Gedatolisib Pfizer 1197160-78-3 .. ... Catalytic v v v v 3 26,27
Apitolisib Genetech 1032754-93-0 i Catalytic v v v v v v 8 48 28,29
V/S5584 Verastem 1246560-33-7 . Catalytic v v v v v v 2 30
AZD8055 AstraZeneca  1009298-09-2 & Catalytic v \/ y V \ \ 4 31

*Information about ongoing or completed clinical trials were obtained from https://clinicaltrials.gov/.
TPI1-103 did not enter clinical trials because of its rapid in vivo metabolism (Raynoud et al, Cancer Research 2007).
11: NCT01658436.

84: NCT01455493, NCT01442090, NCT01485861, NCT01437566. CAS No; Chemical Abstracts Service (CAS) Number (a unique numerical

identifier assigned by CAS).



https://clinicaltrials.gov/

Supplementary Table 3. Information about clinical samples used in this study.

Patient no. Additional information

No response to imatinib or dasatinib. On ponatinib since 2011 (PACE trial). No CCyR or
MMR on ponatinib.

Pts#2 Complete hematologic response (CHR) but not CyR on imatinib. Dasatinib started 2007. BCR-
ABL 16% in July 2013.

Pts#3 Dasatinib ,nilotinib and ponatinib failure. Achieved CHR but no CyR on Bosutinib.

Pts#4 TKI failure. Entered accelerated phase with basophilia, thrombocytopenia and Y253H mutation

in 2016.




Supplementary Figures
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Supplementary Figure 1. Imatinib-resistant CML cells are sensitive to ponatinib.
Previously described imatinib-resistant CML cell lines (10, 11) were cultured + 2uM imatinib,
2UM nilotinib, 150nM dasatinib and 100nM ponatinib. Apoptosis was measured following 72h
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Supplementary Figure 2. Transcriptomic analysis of KCL22P°"Res cells, KCL22 and
KCL22PoRes cells were left untreated (B-C) or cultured + 100nM ponatinib (A).
Phosphorylation of CRKL and RPS6 was measured after 24h drug treatment (A, left).
Schematic diagram demonstrating the BCR-ABL downstream signalling (A, right). The
transcriptional difference are represented by Volcano plot (B). Up- and down-regulation
transcripts in KCL22P°"Res cells are indicated by magenta and green respectively; light and
dark colours correspond to g-value thresholds of 0.05 and 0.01 respectively; non-significant
changes are coloured grey. Pathways found to be significantly deregulated (q<0.5) at the
transcriptional level in the KCL227"Res cells when compared with KCL22 cells, ordered by
descending q value (C); enrichment is expressed as —logz(q).
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Supplementary Figure 3. Approved oncology drug screen in KCL22PoRes cells, Approved
oncology drug library was screened against KCL22 and KCL22P"Res cells (A-C). Drugs were
diluted in media and added to cell plates at a final concentration of 0.01, 0.1, 1 and 10uM.
Following 72h drug treatment metabolic activity/proliferation was assessed using resazurin



assay and IC50 calculated for each drug used and a comparison made between KCL22P°n-Res
cells cultured in the absence or presence of 100nM ponatinib. Red asterisks mark allosteric
mTOR inhibitors (A). Drug-target association analysis of drugs active against KCL22"onRes
cells (B). 1C50 for allosteric mTORCL inhibitors is shown (C).
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Supplementary Figure 4. Sensitivity of BaF3FonRes cells to NVP-BEZ235. BaF3WT (WT
BCR-ABL) and BaF3™"Re cells were cultured + increasing concentrations of ponatinib and
150nM dasatinib (A). Proliferation was measured following 24, 48 and 72h drug treatment (top
panel) and ICso values calculated using GraphPad Prism Software (bottom panel). BaF3Pon-Res
cells were cultured £ 150nM dasatinib, 100nM ponatinib and 100nM NVP-BEZ235 and
apoptosis measured following 48h drug treatment (bottom pane, right). KCL227°"Re cells were
cultured in 100nM ponatinib alone or in combination with 100nM NVP-BEZ235 (B-C).
Apoptosis (B) and colony forming potential (C) were measured following 72h drug treatment.
Error bars=SD.
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Supplementary Figure 5. Sensitivity of primary MNCs to mTOR inhibitors. BM-derived
MNCs from TKI-resistant patient (Pts#1) were cultured in SFM supplemented with PGF and
treated with 100nM ponatinib and a panel of catalytic mTOR inhibitors at 100nM concentration
(left). Apoptosis was measured following 72h drug treatment (right).
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Supplementary Figure 6. Transcriptomic analysis of KCL22P"Res cells, KCL22 and
KCL22"Res calls were cultured + 100nM ponatinib or 100nM NVP-BEZ235 for 24h and
RNA harvested for RNA-seq. The transcriptional response of (i) KCL22 to ponatinib (red); (ii)
KCL22 to NVP-BEZ235 (yellow); (iii) KCL22™"Res to NVP-BEZ235 (green) are compared
in a proportional Venn diagram (A). Biological Process GO terms found to be significantly
overrepresented (q<0.25) in the transcriptional response of (i) ponatinib in the KCL22 and (ii)
NVP-BEZ235 in the KCL22P°"Res cells; enrichment is expressed as —10ga(q) (B).



NVP-BEZ235 (h\M) CQ (uM) Combined (uM) Fa  ClI

25 2.5 2.525 0.46 | 1.43124
50 5 5.05 0.57 | 0.18497
100 10 10.1 0.54 | 0.59937
150 15 15.15 0.58 | 0.49557
200 20 20.2 0.61 0.5213
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Supplementary Figure 7. Synergism analysis in KCL22Po-Res cells, KCL22Po"Res cells were
cultured with indicated concentration of NVP-BEZ235 and CQ, alone and in combination, for
72h. The fraction affected (Fa) and the combination index (CI) are represented for each drug
combination (A). Fa-Cl combination index plot for all combination is presented in (B). A
combination index of less than 1 indicates synergism; more than 1, antagonism; and 1, additive
effect.
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