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1 Kestrel algorithm de�nition

The input of the algorithm is short-read sequence data and one or more reference sequences. The output is
a set of variant calls.

Kestrel is both a tool and a proof-of-concept. It is a tool that works well in the absence of low-complexity or
repetitive regions. Its application to most genomes should be done with care. It cannot resolve paralogues,
and it is therefore subject to false-positive calls due to paralogue-speci�c variants (PSVs). Kestrel does
variant calling on regions, and if a variant region is too large, it's memory consumption can be prohibitive.
These missed regions lead to false-negatives. It can, however, operate in regions where the reference does
not represent the sample and therefore causes sequence read alignments to fail.

As a proof of concept, Kestrel is a purely k-mer based approach to variant calling. Modern k-mer methods
are limited to SNP calling in limited contexts1,2, but Kestrel can resolve variant regions much larger than
the k-mers themselves. Other methods require mapping sequence reads to the reference, assembling into
contigs, or building de Bruijn graphs. Kestrel performs a k-mer based local assembly guided by a novel
alignment algorithm. While it is not technically alignment-free, it does not require mapping sequence reads
to the reference or assembling all sequence reads or k-mers. It does these steps in a more targeted fashion. In
some contexts, this leads to a very fast variant calling algorithm that can work in regions where alignments
fail without needing a whole genome assembly or de Bruijn graphs. Applied to whole genomes, however,
Kestrel has its limitations. The body of the main publication outlines these advantages and disadvantages
in more detail.

This section de�nes the algorithm used by Kestrel to identify variants. Like many rigorous de�nitions,
implementing it directly as shown would not yield an optimized solution. Supplementary Section 2
discusses how this speci�cation was transformed into a functioning software application.

1.1 Overview

Kestrel has several key parts:

1. Sequence k-merization

2. Active region detection

3. Local assembly over active regions

4. Variant calling

1.1.1 Sequence k-merization

All sequence reads are �rst transformed into k-mers. The �rst k-mer of a read is the �rst k bases. The second
k-mer is the k bases starting with the second base in the read. The remaining k-mers are found by moving
one base at a time until the end of the k-mer reaches the last base of the sequence. Any k-mers containing
an ambiguous base, such as N, are discarded. Each unique k-mer is counted and stored in a �le where the
counts can be rapidly queried using the k-mer as a key. In the Kestrel implementation, this process is carried
out by the KAnalyze3 API.

The reference sequence is also transformed to k-mers, but these are left in order and not counted like the
sequence reads.
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1.1.2 Active region detection

Active region detection starts by taking the reference k-mers, and for each reference k-mer, assigning the
count for that k-mer from the sequence data. Given a complex reference region free of repeats and paralogues,
the distribution of k-mer counts over the reference k-mers will be roughly uniform.

Any variant (SNP, insertion, or deletion) changes k-mers in the reference. Therefore, the k-mer counts
should drop abruptly for some number of k-mers and return to the same uniform distribution some number
of k-mers downstream. For example, a SNP changes k consecutive k-mers to 0. Insertions change k � 1
k-mers at the reference breakpoint, and deletions change k + n � 1 k-mers, where n is the length of the
deletion. Real data is not this clean, but the speci�cation below outlines how this is managed.

The active region is all bases with a low-frequency k-mer plus the bases covering the high frequency k-mers
on either end. These high-frequency k-mers serve as anchors for local assembly.

When a variant region is close to the left or right end of a reference sequence, then an active region may be
de�ned that has no anchor k-mer on that end. In this case, variant recovery starts from the single anchor
k-mer and continues to the end. This document focuses on the case where the anchor k-mer is on the left
and the assembly extends from left to right. However, the same algorithm can be applied in reverse for the
case where there is one anchor k-mer on the right and none on the left.

1.1.3 Local assembly over active regions

An anchor k-mer can be shifted one base upstream by removing the �rst base on the left and appending
a base on the right. The k-mer is moved one base right, but to a computer scientist, this is achieved by
left-shifting the k-mer and masking o� the left-most base. Each of the four bases (A, C, G, and T) are
inserted into the right-most position of this shifted k-mer in turn. The base that recovers a k-mer with a
high count from the sequence k-mers reveals the next base in the sequence. This process is repeated for the
new k-mer until the end of the active region is reached.

This process is guided by a modi�ed Smith-Waterman algorithm that determines when to stop the local
assembly. It is designed so the maximum alignment score is achieved when the assembly reaches the anchor
k-mer on the other end. This algorithm also puts a limit on how much time and memory is used on erroneous
alignment branches. Like any other a�ne-gap model, this algorithm can be tuned to determine how large
variant regions may be before terminating them. Although careful memory-management techniques have
been implemented, memory consumption on large active regions can still be very high.

1.1.4 Variant calling

The start position of the alignment is known from active region detection, and the alignment events are
known from the alignment algorithm. Tracing the alignment back gives each variant. A mismatched base is
a SNP, a gap in the reference in an insertion, and a gap in the assembled sequence is a deletion.

1.2 Preliminaries

Given a known reference sequence, X, identify regions, x, which are suspected to contain variants, and
dynamically �nd one or more haplotypes, y, that align with x using evidence from sequence reads. x is
referred to as an active region, and each y as a haplotype sequence over x. x and y align end-to-end, but
every base may not match. Building y and calling variants from it is the aim of the Kestrel algorithm. The
terms \active region" and \haplotype" are borrowed from the GATK4 HaplotypeCaller.

This algorithm de�nition will illustrate the how k-mer frequencies are employed to identify active regions,
x, and to choose bases for building the halpotype, y. For each read in a set of sequence data for a given
sample, all substrings of length k are extracted. Each of these substrings is called a k-mer.
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The k-mer frequency is de�ned as the number of times each k-mer was observed in the sequence data. This k-
mer counting problem has been solved several times, and several software implementations are available3,5,6.
Here, we use KAnalyze3 because we have built features into it that support e�cient k-mer frequency querying
as well as arbitrarily large k-mers.

X := Full reference string.

x := A substring of X, called the active region, where variant detection occurs.

y := A haplotype over x, which is discovered by the Kestrel algorithm.

k := The number of bases in each k-mer.

1.3 Locating active regions

N is an array of frequencies for each k-mer in the reference sequence, X, from the �rst k-mer (with frequency
N1) on the left end to the last k-mer on the right end of X. The frequency of each k-mer in N is the count
of that k-mer in the sample sequence data. Ni = 0 if the k-mer at position i contains ambiguous bases. If
X contains no variants, and therefore no active regions, the distribution of the frequencies in N is roughly
uniform with some 
uctuation due to sequence read errors, non-uniform read coverage, k-mer overlap with
other regions of the genome, and other sequencing anomalies.

N is traversed from left to right searching for a sharp decline or increase of the frequency between neighboring
k-mers Ni and Ni+1, which may indicate the edge of an active region. The threshold, �, is the magnitude of
di�erence between Ni and Ni+1 that must be exceeded to trigger an active region scan.

If Ni > Ni+1 + �, then the active regions spans from Ni to some downstream k-mer, i+ l, where the k-mer
frequency returns to a value near Ni. The active region, x, de�ned by this range includes both Ni and Ni+l,
which have a high frequency compared to the rest of the k-mers between them. These end k-mers are called
the anchor k-mers of the active region as they help seed and terminate the process of building y. If y does
not start and end with these anchor k-mers, then y is rejected.

The shortest active region is the case when one or more bases are inserted and no other variants occur within
k bases of the insertion. In this case, the number of k-mers with a frequency a�ected by this insertion will
be k � 1. Since an active region, x, includes one unaltered k-mer on each end, x must span k + 1 k-mers or
it is rejected.

If a variant occurs less than k bases from the right end of the sequence, X, then there will be no anchor k-mer
on the right side because all k-mers up to the end of X are altered. In this case, x may be left un-anchored
on its right end, and y is not required to match the missing anchor k-mer. y must also be allowed to end
with a deletion from x. Since the evidence for discovered variants is not as strong, Kestrel requires both
anchor k-mers by default.

If Ni < Ni+1 � �, then the k-mer frequencies increased signi�cantly, and an active region may be present
from N1 to Ni+1. Similar to an active region scan that reaches the right end of N , this will occur if variants
are found less than k bases from the left end of X. This region is anchored on the right side by Ni+1, but it
is not anchored on the left side. In this case, y may begin with a deletion on the left side. As with the case
where the right anchor k-mer is missing, this active region will be ignored by default because the evidence
for variants will not be as strong.

This section ignores several details, such as how to choose � or deal with noisy data. These issues will be
addressed in Supplementary Section 1.11.

N := A set of k-mer frequencies ordered by the k-mers in X.

� := K-mer frequency di�erence threshold.

l := The number of k-mers from the �rst low-frequency k-mer to the right anchor k-mer.
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1.4 Alignment parameters

The alignment step is a dynamic programming algorithm based on the well known Smith-Waterman7 algo-
rithm. The key di�erence is that only the active region sequence, x, is known a priori , and each haplotype,
y, is built using a local de novo assembly approach that terminates when an optimal alignment obtained.
All acceptable alignments must match each base of the left anchor k-mer in x and y, but the right end of
y is not known. Since this alignment must guide the process of building y, it must anchor on one side, but
extend arbitrarily as y is reconstructed.

Two key modi�cations were made to Smith-Waterman; (i) any subalignment with a score of 0 cannot be
extended, and (ii) the alignment must begin with a score greater than 0. These modi�cations force all
possible alignments terminate on the left side as if it were a global alignment, but update dynamically as
y is extended. Supplementary Section 1.9 outlines how the scores are used to determine when to stop
building y.

As with other alignment algorithms, a set of scoring criteria is required, and the alignment is optimized over
these parameters. When two bases are aligned, Rmatch is added to the alignment score if the bases match,
and Rmismatch is added when the bases do not match. For each base aligned with a gap, Rgap is added to
the score. Ropen is added to the score for each time a gap is opened, i.e., once for every maximal substring
consisting of gap character, \-". The initial score of the alignment is Rinit, as required by our modi�cation
to Smith-Waterman. Note that Rmatch and Rinit are strictly positive, Rmismatch, and Rgap are strictly
negative, and Ropen is non-positive. The optimal score matrix will be determined by the application, such
as how divergent the sequences may be and the size of allowable insertion or deletion events.

Rmatch := Aligned bases match, Rmatch > 0

Rmismatch := Aligned bases do not match, Rmismatch < 0

Ropen := A gap was opened, Ropen � 0

Rgap := Base aligned with a gap, Rgap < 0

Rinit := Initial alignment score, Rinit > 0

For convenience, we de�ne a function, match(i; j), to return the appropriate score for aligned bases, as shown
by Supplementary Eqn. 1.

match(i; j) =

�
Rmatch : xi = yj
Rmismatch : xi 6= yj

(1)

1.5 Alignment data structures

The optimal alignment has the highest score of all possible alignments of x and y. Trying all possible
alignments is clearly an ine�cient way of solving the problem, however, the score of one particular alignment
can be seen as the score of the same alignment one position shorter plus the score of the last position8.
The dynamic programming solution memoizes� the score of shorter alignments in a score matrix instead of
recomputing it.

The alignment data structures are analogous to those typically employed in Smith-Waterman implemen-
tations using an a�ne gap model. One score matrix, Saln, tracks scores through aligned (matched or
mismatched) bases. Two more score matrices, Sgact and Sghap, track alignment scores through gaps in the
active region (x) or a gaps on the haplotype (y), respectively. The bases of x are positioned along the vertical
axis of each matrix, and the bases of y are positioned along the horizontal axis.

�Memoization means that intermediate data is stored instead of being re-computed. The spelling of this term is not a typo.
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The �rst base of x and y are represented in row 1 and column 1, respectively. Each base of the anchor k-mer
is added to y, and one column is created in all matrices for each base of y. The initial alignment score,
Rinit is assigned over the anchor k-mer (Supplementary Eqn. 2), and all other scores in all three matrices
are initialized to 0. A fourth matrix, T , contains traceback information from the end of an alignment to
Saln(0; 0). A row and a column with index 0 exists with no bases aligned to them. T is initialized so that
there is one sub-alignment over the anchor k-mer (Supplementary Eqn. 3). This initialization of Saln
and T matches each base of the active region and haplotype over the anchor k-mer that seeds haplotype
reconstruction, and all acceptable alignments must enter this path at Saln(k; k).

Saln(i; i) = Rinit ; 0 � i � k (2)

T (i; i) ! T (i� 1; i� 1); 1 � i � k (3)

Storing the whole of all four matrices would result in a large memory footprint, and Supplementary
Section 2.1 outlines how the software implements this algorithm more e�ciently.

Saln := Score matrix for alignments through aligned bases.

Sgact := Score matrix for alignments through insertions (active region gaps).

Sghap := Score matrix for alignments through deletions (haplotype gaps).

T := The traceback matrix.

1.6 Alignment score matrices

The score matrices are built using the usual alignment algorithm, but with the Kestrel modi�cations. For
example, transitioning to Saln(i; j) requires adding match(i; j) to each Saln(i� 1; j � 1), Sgact(i� 1; j � 1),
or Sghap(i� 1; j � 1) that are above 0 and choosing the maximum value. T (i; j) is updated to link Saln(i; j)
to the cell or cells that yielded the maximum score. If all scores in Saln(i� 1; j � 1), Sgact(i� 1; j � 1), and
Sghap(i� 1; j � 1) are 0, or if the computed score is 0 or less, then Saln(i; j) = 0 and no link is added to T .
Supplementary Eqn. 4 outlines assignment of Saln(i; j).

Sgact(i; j) is set by �nding all non-zero scores from (i; j�1) in each score matrix. Ropen is added to the scores
from Saln and Sghap, and Rgap is added to all scores. If it is above 0, then the maximum score is recorded
in Sgact(i; j) and T is updated. Supplementary Eqn. 5 describes this calculation, and Supplementary
Eqn. 6 describes a similar calculation for Sghap.

Saln(i; j) = max

8>><
>>:

0
Saln(i� 1; j � 1) +match(i; j) : Saln(i� 1; j � 1) > 0
Sgact(i� 1; j � 1) +match(i; j) : Sgact(i� 1; j � 1) > 0
Sghap(i� 1; j � 1) +match(i; j) : Sghap(i� 1; j � 1) > 0

(4)

Sgact(i; j) = max

8>><
>>:

0
Saln(i; j � 1) +Ropen +Rgap : Saln(i; j � 1) > 0
Sgact(i; j � 1) +Rgap : Sgact(i; j � 1) > 0
Sghap(i; j � 1) +Ropen +Rgap : Sghap(i; j � 1) > 0

(5)

Sghap(i; j) = max

8>><
>>:

0
Saln(i� 1; j) +Ropen +Rgap : Saln(i� 1; j) > 0
Sgact(i� 1; j) +Ropen +Rgap : Sgact(i� 1; j) > 0
Sghap(i� 1; j) +Rgap : Sghap(i� 1; j) > 0

(6)
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1.7 Alignment extension

Recall from Supplementary Section 1.3 that the start of the active region, x, was found by locating
neighboring k-mers where the frequency di�erence exceeded a threshold, Ni > Ni+1 + �. The haplotype,
y, is initialized using the k-mer associated with Ni, the left anchor. As described in Supplementary
Section 1.5, all bases in that anchor initialize the alignment.

The next k-mer after the anchor is altered, and so it has a low frequency. Since the anchor k-mer shares
(k � 1) bases with the next k-mer, it can be permuted to �nd what the next base should be. This starts
with removing the �rst base of the anchor to create a (k � 1)-mer. Then, each possible base is appended
to this (k � 1)-mer, and frequency for each resulting k-mer is retrieved. The base with the maximum
frequency is appended to y, and the alignment is updated. The new k-mer is then used to �nd the next
base, and the process repeats until y is fully constructed. Because active region detection takes place using
the forward and reverse-complement k-mers, a parallel process on the reverse-complement is performed, and
the k-mer frequencies are summed. If no bases produce a k-mer with an acceptable frequency, the alignment
is terminated.

If more than one base produces an acceptable k-mer frequency, then one of the bases is saved along with the
alignment state, and the saved state is resumed after another alignment completes. Therefore, more than
one haplotype, y, may be found for each active region x.

If the active region has no left anchor, and if variant calling without both anchors is enabled, then its right
anchor seeds the alignment. In this case, whole alignment process takes place in reverse. Each y is then
inverted back to its original con�guration to match x.

1.8 Maximum score and optimal alignments

After each base of y is added to the alignment, the overall score can be examined. Since the alignment must
cover all of x, only the last row of the alignment score matrix, Saln, needs to be queried. Supplementary
Eqn. 7 de�nes Rmax, the maximum alignment score.

Rmax = max (fSaln(jxj; j); 0 � j � jyjg) (7)

If x extends to the end of the reference, X, then it is possible that the alignment ends in a deletion because
there is no anchor k-mer on that end. In this case, the maximum score can be computed as the maximum
of the �nal row in both Saln and Sghap. The maximum score is never calculated from the Sgact because
inserting bases on the end of x can only lower the maximum score. The full alignment is found by traversing
the traceback matrix, T , from the cell with the maximum score to Saln(0; 0).

If any cell of T has more than one path out, then there is more than one optimal alignment, and the �rst
alignment as de�ned by the alignment sort order is used. When comparing two alignments, the one with
the �rst non-matching base comes �rst. If the non-matching bases agree (same variant), then the next
non-matching base is queried. If the non-matching bases do not agree, then alignments are prioritized by
mismatch, insertion, and deletion, in that order. This gives the algorithm predictable output for cases such
as a deletion in a homopolymer repeat; Kestrel will always report that the �rst base was deleted even though
the alignment score would be the same for a deletion at any locus of the repeat. This e�ectively left-aligns
the variants within the active region.

1.9 Alignment termination

The extension of y must be terminated when the best possible score is reached. Each time a base is added
to the alignment, the maximum alignment score is known. However, the maximum possible alignment score
that could be obtained by adding more bases to y must also be known. When this maximum potential
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score is less than the maximum alignment score, then the alignment cannot be improved by extending y

further.

The maximum potential score is determined by examining the last column of Saln. The best possible score
that can be obtained from any cell is the case where all subsequent bases of x are aligned with matching
bases in y. Supplementary Eqn. 8 de�nes maxpot(i; j), the maximum potential score from cell Saln(i; j).
Supplementary Eqn. 9 de�nes Rmaxpot as the maximum maxpot(i; j) of the last column of Saln. If
Rmax > Rmaxpot (See Supplementary Eqn. 7), a greater or equal score cannot be obtained by adding
more bases to y.

maxpot(i; j) =

(
Saln(i; j) + (jxj � i) �Rmatch : Saln(i; j) > 0

0 : Saln(i; j) = 0
(8)

Rmaxpot = max (fmaxpot(i; jyj); 0 � i � jxjg) (9)

When the alignment extends to an end of the reference sequence, then the maximum potential score from
the deletion score matrix, Sghap, must also be considered.

The modi�cations to Smith-Waterman outlined in Supplementary Section 1.4 are important to make
the termination condition deterministic when y does not align well with x because the algorithm gives up
on alignments that pass through a cell with a zero score. This is also the reason Rgap may not be 0; if it
were 0, then the alignment could attach to another region of the genome and extend without bound. These
modi�cations allow degenerate cases to be limited before spending many CPU cycles trying to solve it.

An active region may have more than one haplotype, and a haplotype may have more than one align-
ment.

1.10 Haplotypes

Each alignment is a haplotype over the active region, and variants are called by tracing the alignment
back through matches, mismatches, insertions, and deletions. Supplementary Section 1.8 outlines how
multiple optimal alignments are handled.

Variants called from all haplotypes over the active region are merged so that the same variant is not rep-
resented more than once. The depth of the sequence data over the variant is estimated by summing the
minimum k-mer count from each haplotype the variant was found in. This allows for a mixing of homozy-
gous and heterozygous events in a diploid organism. In this case, multiple haplotypes would be identi�ed,
and although some k-mers are shared among them, the heterozygous k-mers would represent the lowest-
count k-mers in each haplotype. Since a homozygous event would be found in all haplotypes, summing the
minimum-count k-mer in each haplotype would add to the correct depth. Supplementary Fig. 6 shows
that this method e�ectively recovers the depth in a monoploid organism even when alignments cannot.

1.11 Parameter selection

The most visible parameter is the k-mer size, k, which should be selected to balance genome complexity
with expected error rates. The majority of k-mers must match one region of the genome. When a k-mer
maps to multiple regions, the frequencies from both will be mixed together. This will hinder both active
region detection and assembly. If the k-mer size approaches the read size, few k-mers will be extracted from
each read and the observed coverage will decline. A high error rate in the sequencing data will also cause
an observed loss of coverage.

Active regions are detected when the absolute di�erence between neighboring k-mers exceeds some threshold,
�. This parameter is selected by choosing a quantile, Q�, over the absolute di�erences of all neighboring
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k-mer frequencies. Choosing this parameter depends on how many active regions can be expected, although,
choosing a value as high as .95 to .99 works in many cases.

Q� := A quantile of the frequencies of N for choosing �.

2 Kestrel implementation

This section outlines some of the implementation details in the Kestrel software that make the above algo-
rithm work on real data.

2.1 Alignment matrices

Storing the whole of all four alignment matrices de�ned in Supplementary Section 1.5 would require a
great deal of memory. This problem would be compounded when multiple haplotypes are searched because
all matrices would need to be duplicated. Fortunately, only a small fraction of this data needs to be
stored.

Because of the nature of the dynamic programming algorithm, only the last column of the score matrices
(Saln, Sgact, and Sghap) needs to be stored while the next column is built. Therefore, each of these matrices
can be reduced to two arrays where one contains the last column, and one contains the new column as it is
added.

Since the active region must be aligned from end to end, the only acceptable alignments contain a non-zero
score in the bottom row of the matrix. Since the whole score matrix is not saved, the optimal alignment
score must be tracked for each new column, and it is saved separately from the score matrix arrays. When a
column is added that has a greater score than the current maximum, it becomes the new maximum.

The traceback matrix, T , is more complex because it is not stored as a matrix. Instead, it is a linked-list of
alignment states. Following the links always leads back to Saln(0; 0), which is where all alignments begin.
When a non-zero score is added to a score matrix, a link is added from that position in the score matrix
to T ; the data structure for each element of the score matrix array contains both the numeric score and a
link to a node in T . The score matrix arrays can be thought of like a knitting needle that leaves a fabric of
linked trace-back nodes as is progresses through the alignment.

The nodes in T must also contain more than one link in the case that there is more than one optimal
alignment path. Where the �rst link traverses back toward Saln(0; 0), the second link points to other nodes
at the same level. When this second link is not NULL, the alignment splits into multiple paths at that
location.

In the case that multiple haplotypes are found, the whole alignment must split. This occurs when multiple
possible sequences are explored over an active region (not just alternate alignments of the same sequence).
As already noted, only the last column of each score matrix must be stored, and this column contains links
into T . Since T is a linked list that is only traversed toward Saln(0; 0), one node of the alignment may have
several links into it. Therefore, di�erent haplotypes may link to the same node in T where a split occurred,
and no part of T needs to be duplicated or saved other than the nodes already stored in the score matrix
array. Both haplotypes will converge at the point where they split, and they continue toward Saln(0; 0) along
the same path.

The linked list structure has another more subtle property that Java uses to keep memory usage low. When
an alignment path reaches a dead end, the node at the end of the path has no reference to it. This allows
the Java Virtual Machine (JVM) garbage collector to detect and remove these nodes. In other words, dead
branches of T are automatically pruned. This improves scalabilty by reducing the memory requirements for
large active regions where many haplotypes are investigated.
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2.2 Active region heuristics

In an ideal scenario, sequence data would cover the sample uniformly at all loci, contain no errors, and k-mers
would be long enough so that no k-mer would map to any other region of the genome. This is never observed
in practice. Sequence reads contain errors, and they are almost never distributed uniformly. Furthermore,
it may be impossible to choose a k-mer size that eliminates all clashes with other loci. For an algorithm
that relies on k-mer frequencies, this presents a challenge. These situations must be carefully handled by
additional heuristics to avoid errors in the results.

2.2.1 Exponential decay

While scanning for the end of an active region, the active region detector searches for a k-mer frequency that
is close to the frequency of the anchor k-mer. When the read depth is not uniform over the active region, this
recovery threshold may never be found, and the scan may reach the end of the reference sequence.

To address this problem, an exponential decay function, f(x), is employed to reduce the recovery threshold
as the active region extends. f(0) is the anchor k-mer frequency, and it approaches a lower bound, fmin,
asymptotically. By default, fmin = 0:55�f(0) to avoid ending an active region prematurely on a heterozygous
variant. f(x) is de�ned by scaling and shifting the standard exponential decay function, h(x), as highlighted
by Supplementary Eqn. 10 and Supplementary Eqn. 11.

h(x) = e�x� (10)

f(x) = (f(0)� fmin) � h(x) + fmin (11)

h(x) is parameterized by �, which must be also be set, but Kestrel does not con�gure this parameter directly
because it is di�cult to know how to choose a reasonable value. Instead, � is chosen by a con�gurable
parameter, �, that is de�ned as the proportion of the decay range, f(0)�fmin, after k k-mers. This provides
a more intuitive way to de�ne how rapidly the recovery threshold is allowed to decline. Choosing � given
� is shown in Supplementary Eqn. 12. Supplementary Fig. 1 illustrates exponential decay with two
values of �.

h(k) = �

e�k� = �

�k� = log(�)

� =
� log (�)

k
(12)

At k k-mers, the recovery threshold f(k) = � � (f(0)� fmin)+ fmin. In other words, f(k) has declined in its
range from f(0) to fmin by a factor of �. This is true for all nk such that f(nk) = �n � (f(0)� fmin)+ fmin.
Supplementary Eqn. 13 gives a proof for this claim.

h(x) = e�x�

= e�x
� log (�)

k

=
�
elog (�)

� x
k

= �
x

k

(13)

10



0

30

60

90

120

0 250 500 750 1000

K-mer (in reference order)

K
-m

e
r 

fr
e
q

u
e

n
c
y

Legend

Actual count

Exp Decay (alpha = .80)

Exp Decay (alpha = .95)

Exponential Decay Over Declining Read Depth

Supplementary Figure 1: To end an active region, the Kestrel algorithm searches for a k-mer frequency that is
close to the frequency anchor k-mer. An exponential decay function is applied to the recovery value so that the value
declines asymptotically as the scan moves to the right.

f(x) := Exponential decay function for the active region recovery value; h(x) shifted and scaled.

h(x) := The standard exponential decay function, e�x�

fmin := Lower bound of f(x).

2.2.2 Peak detection

Due to chance or homology, peaks may be observed in the k-mer frequencies of a reference, N . If k is not
large enough so that all k-mers map to exactly one locus, then the frequency of some k-mers will be higher
because it was found in multiple loci. This causes a peak in the data, and if not properly handled, can lead
to an arbitrary active region scan or the premature end of an active region. Supplementary Fig. 2 shows a
peak in an active region where some reference k-mers happened to match another locus. If the active region
scan ended on that peak, variants would be missed.

To deal with this problem, Kestrel does not stop immediately when it �nds a peak. Instead, it scans ahead
to see if the frequency declines again after some number of k-mers (7 k-mers by default). If it does decline
within that threshold, then Kestrel passes the peak and continues as if it were not present.

Occasionally, a scan through an active region will encounter many peaks because the scan recovery threshold
is at the level of the k-mer frequencies in that region. These peaks are normal 
uctuations in the frequencies.
When Kestrel �nds many peaks, it goes back to the last sharp increase of k-mer counts within the active
region scan. If there was no sharp incline, the scan is abandoned and no active region is declared.
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Supplementary Figure 2: Peaks must be detected and bypassed to prevent prematurely ending an active region
scan.

3 S. pneumoniae test case

3.1 Sequence data

Kestrel was tested using 181 Streptococcus pneumoniae (S. pneumoniae) whole genome sequencing (WGS)
samples released by the Centers for Disease Control and Prevention in NCBI SRA under BioProject PR-
JNA284954. These data are whole-genome 250 bp paired-end Illumina sequence reads ranging from 14 Mbp
to 1,176 Mbp (median = 308 Mbp) and representing 29 distinct serotypes. Four penicillin binding pro-
tein (PBP) genes were analyzed (PBP2X, PBP1A, PBP2B, and PBP2A) from a singe reference, TIGR4
(NC 003028.3). The MD5 checksum of this reference sequence, without the FASTA header, whitespace, or
newlines, is \50086819690b19b94ce37f1d75a7e539".

3.2 Variant calling

Variants were called using three approaches. The �rst is a standard alignment pipeline using BWA9,10,
Picard tools11, and GATK4 HaplotypeCaller. The second is Kestrel. The third is a de novo assembly
pipeline using SPAdes12, BWA, and SAMtools13. All variants identi�ed by the assembly approach were
used as the set of true variants to expect from other approaches.

3.2.1 Assembly approach and variant veri�cation

The assembly is used as the standard for measuring the accuracy of GATK and Kestrel. Supplementary
Table 1 shows the steps taken by this approach to �nd these true variants.

From the assembled sca�olds, only loci that map to the reference with a depth of 1 may be used for verifying
variant calls. For any sample, variants called within a region where this is not true cannot be veri�ed and
must be ignored for further analysis.
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Supplementary Figure 3: Phylogenetic tree showing known serotypes for each sample. Related serotypes are
grouped into the same color. The reference sequence, NC 003028.3, is shown in white.

3.2.2 Alignment approach

The alignment approach represents a standard variant-calling pipeline. To remove bias from ampli�cation
during sample preparation, duplicates are marked before variant calling. Since mis-alignments often occur
around true insertion/deletion (indel) variants, indel realignment is also performed before calling variants.
These are the steps recommended by GATK. Supplementary Table 2 depicts this process.

3.2.3 Kestrel approach

The Kestrel approach represents our novel algorithm and software implementation. Kestrel reads from an
indexed k-mer count (IKC) �le, and when it is given FASTQ �les, it �rst converts them to an IKC �le. We
separated these two steps to independently record the time required for each one. Supplementary Table 3
shows the two steps.
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Step Description Tool
1 De novo assembly of all sequence reads to consensus sca�olds SPAdes
2 Align all sca�olds to the TIGR4 (NC 003028.3) reference sequence BWA mem
3 Sort aligned sca�olds Picard SortSam
4 Generate a pileup of the aligned sca�olds SAMtools mpileup
5 Call variants from pileup kescases

Supplementary Table 1: All steps in the assembly approach. The tool \kescases" denotes custom code found in
\kescases" repository.

Step Description Tool
1 Align all reads to the TIGR4 (NC 003028.3) reference sequence BWA mem
2 Sort aligned reads Picard SortSam
3 Mark duplicates Picard MarkDuplicatesWithMateCigar
4 Indel realignment: Create targets GATK RealignerTargetCreator
5 Indel realignment: Realign GATK IndelRealigner
6 Call variants GATK HaplotypeCaller

Supplementary Table 2: All steps in the alignment approach.

Kestrel uses the KAnalyze application programming interface (API) to interface with IKC �les, including
when Kestrel converts FASTQ �les to IKC �les. Although KAnalyze and Kestrel can use k-mers of arbitrary
size, we use 31-mers because it appears to work well for most bacterial sequence data. We set a minimum
k-mer frequency of 5 to remove sequence-read errors. All variants with a relative coverage (depth of variant
/ depth of locus) of less than 0.5 were also �ltered out by Kestrel.

3.3 Comparing variants

Variants from Kestrel and GATK were evaluated using RTGTools vcfeval14 with the variants from the
assembly as a set of trusted calls. In each sample, only regions with a sca�old alignment depth of 1 were
analyzed; variants called by all approaches outside of this region were not used for evaluation and summary
statistics.

All true and false calls by Kestrel and GATK are identi�ed as follows:

� True positive (TP) A variant that was also called by the assembly approach.

� False positive (FP) A variant that was not called by the assembly approach.

� False negative (FN) A variant that was not called, but was called by the assembly approach.

From these calls, the sensitivity (true positive rate, or TPR) (Supplementary Eqn. 14) and false discovery
rate (FDR) (Supplementary Eqn. 15) may be calculated. Note that speci�city and other statistics that
require counting true negatives cannot be calculated because there is no logical way to de�ne true negatives
with variant calls.

Step Description Tool
1 Generate IKC KAnalyze
2 Call variants Kestrel

Supplementary Table 3: All steps in the Kestrel approach.
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TPR :=

P
TPP

TP +
P

FN
(14)

FDR :=

P
FPP

TP +
P

FP
(15)

3.4 Removed samples

During analysis, eight samples and one region of a sample were removed. Supplementary Table 4 outlines
the reasons for removal. Since NC 003028 contains 2,160,842 bp, removing a range from 1 to 2,200,000
e�ectively removes the sample from analysis. Any samples that were fully removed are not included in �gure
generation and �nal results.

chr accession start end reason
NC 003028 SRR2072251 1,917,888 1,917,912 Declining read coverage likely led to a misassembly
NC 003028 SRR2072306 1 2,200,000 Evidence of contamination in all PBP genes
NC 003028 SRR2072379 1 2,200,000 Evidence of contamination in all PBP genes
NC 003028 SRR2072342 1 2,200,000 Evidence of contamination in all PBP genes
NC 003028 SRR2072298 1 2,200,000 Evidence of contamination in 2X, 1A, and 2B
NC 003028 SRR2072339 1 2,200,000 Evidence of contamination in 2X, 1A, and 2B
NC 003028 SRR2072351 1 2,200,000 Evidence of contamination in all PBP genes
NC 003028 SRR2072219 1 2,200,000 Incomplete sequence coverage
NC 003028 SRR2072360 1 2,200,000 Incomplete sequence coverage

Supplementary Table 4: Regions removed from analysis.

While analyzing the Kestrel variant calls, we noticed particular regions or samples where there was a high
concentration of false-negative (FN) calls, and so we evaluated each one to �nd a cause.

SRR2072251 only showed one 25 bp region with many FNs. After examining the read depth, it appears that
coverage dropped signi�cantly to almost 0. The coverage was too small to meet the minimum k-mer count,
and we believe this a�ected the assembly as well. Without a truth-set for comparing variants against and
incomplete sequence data for Kestrel, the variants were masked from this region.

In samples SRR2072306, SRR2072379, SRR2072342, SRR2072298, SRR2072339, and SRR2072351, we no-
ticed that there were many false variant calls with a relative depth of 0.70 or less. The IKC �les for these
samples was also larger than others suggesting that there was more unique sequence in these samples than
others. We believe there is some other source of genetic material other than the host genome confounding
analysis. This may be contamination or some other genetic material, such as plasmids. Genome assemblies
are going to represent a single haplotype, and it may be a mosaic of the alleles present in the sample. With-
out a way to address these issues using the genome assembly truth-set, we had to remove these samples from
our results.

Samples SRR2072219 and SRR2072360 also su�ered from a loss of coverage over the PBP genes, which
a�ected the genome assembly and Kestrel calls. The IKC �les are also much smaller for these two samples
supporting the conclusion that they contain less unique sequence than the whole genome. Because of a
systemic loss of coverage a�ecting the assemblies and variant calling in all pipelines, we removed them from
our results.

3.5 Results

The results are reported in the publication text. Supplementary Fig. 4 is a larger version of the Pub-
lication Fig.2(a). The phylogenetic tree shown in Supplementary Fig. 3 and Supplementary Fig. 4
were generated using average nucleotide identity (ANI)15.
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Supplementary Figure 4: Inner track: The phylogeny of all samples by ANI. Middle track: A blue-yellow-red
heatmap depicting the distance of each sample from the reference by ANI. Outer track: The relative number of
variants identi�ed per sample.
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those that were removed because there was evidence of contamination or incomplete sequence.

3.6 Data storage

One advantage of IKC �les is that they do not grow considerably with read depth. The number of unique
k-mers in a sample is �xed, and once the sequencing depth reaches 100% coverage, no new k-mers can come
from the original DNA in the sample. Sequencing errors do accumulate, but IKC �les for this experiment
are �ltered with a minimum frequency of 5, and so the majority of these k-mers are removed. BAM �les,
however, store each read, and so they grow as the read depth accumulates.

Supplementary Fig. 5 compares the size of IKC and BAM �les for each sample. The size of IKC �les is rel-
atively constant, but the BAM �le size is more variable. The 6 removed samples (SRR2072298, SRR2072306,
SRR2072339, SRR2072342, SRR2072351, and SRR2072379) are colored red, and these appear to contain
more unique k-mers because the IKC �le size is larger. Based on this analysis, two more samples (SRR2072345
and SRR2072352) may also include more sequence than the typical sample, but we saw no evidence for this
in the variant calls over the PBP genes. Two samples (SRR2072219 and SRR2072360) dropped below the
distribution of sizes for IKC �les indicating that the whole genome was not captured. Note that the only
Kestrel false negative calls were in these two samples.

The size of IKC �les was smaller compared to BAM �les with averages of 52 Megabytes (MB) and 195 MB
respectively. However, since the size of intermediate �les needed to generate the IKC is signi�cantly larger
with an average of 639 MB, disk savings is only realized when the IKC or BAM �le is stored for further
analysis.

3.7 Variant Call Depth

Kestrel uses k-mer counts to estimate variant call depth (Supplementary Fig. 6). Although k-mers are
easily lost to sequencing errors, the reconstructed haplotypes are able to recover a depth estimate even in
regions where the alignment depth declines due to poor alignments.
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a b

Supplementary Figure 6: Variant depth by the caller (horizontal axis) vs alignment variant depth (vertical axis)
for Kestrel (a) and GATK (a). Kestrel does not show a pattern for underestimating variant depth despite using only
k-mers to compute it. Points below the distribution are likely from haplotypes with many variants near a region
where alignment depth was lost, but the k-mer counts were able to recover it.
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4 E. coli test case

309 Escherichia coli (E. coli) assemblies were obtained16 and aligned to an E. coli K-12 reference (NC 000913.3).
Concordant regions where obtained by �nding all regions where the alignment depth is exactly 1. Variants
were called from the concordant regions of the alignment and used as a set of true variants for benchmarking
Kestrel performance.

150 bp paired-end Illumina reads were simulated with ART17 over all contigs regardless of their alignment.
All reads were subjected to k-mer counting, and an IKC �le was generated. Variant calling by Kestrel and
GATK was performed over the whole genome, and variants in regions where the contig alignment depth
was 1 (concordant regions) was used for benchmarking. A second set of variants was analyzed by �nding
all regions where Kestrel made a local assembly (haplotype regions). All variants were benchmarked by
applying vcfeval14 to variant calls in concordant and haplotype regions and using the contig variant calls
from the same regions as a set of true calls.

Although Kestrel had a lower overall sensitivity than the alignment method, there were regions where it
performed much better. We found all regions where Kestrel exhibited TP calls that were missed by the
alignment method. We took all TP variant calls from both methods and removed all variant calls from
Kestrel that were not within 50 bp of a GATK call. Regions within 50 bp were merged into a contiguous
region. We found 780 regions ranging from 1 bp (306 regions) to more than 50 bp (35 regions) with a max
of size of 114 bp. 86 genes (2% of 4,452 annotated genes) had Kestrel-only calls in at least 20 samples
(Supplementary Fig. 7, Supplementary Table 5).

rrlE
rrsEpurH

gltV rrfE
yjaA

yjaB metA

Supplementary Figure 7: An example region of RNA genes where Kestrel made TP calls the alignment method
missed. E. coli tracks (Genes, Mobile Elements, Misc Annotations, Repetitive Elements, and RNA loci) were ex-
tracted from the NCBI genbank �le for NC 000913.3. Kestrel-only variant regions were extracted by �nding TP
Kestrel variants not within 50 bp of TP GATK variants and merging regions within 50 bp of each other. The bottom
two tracks show the depth of calls for each approach. Over rrsE and rrlE, Kestrel reports variant calls which are
absent in GATK and are TP by RTG vcfeval.

5 Automated test cases

All analysis was automated, and the code is distributed via the kescases package (https://github.com/paudano/kescases).

The software that the analysis pipeline depends on can be built with make with rules found in Makefile.
Two dependencies, lib/GenomeAnalysisTK.jar (GATK) and picard.jar (Picard Tools), cannot be auto-
matically downloaded and installed, and so they must be obtained separately and copied or linked to the
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alx bglA crl cspH cvrA

dapD dhaR fadA 
iC gadB

gatR gdhA ggt gntP insB1

insC1 insD1 insE1 insF1 insH1

insI1 insN insO ldrC lomR

mnmH mqo mscS nhaR nohD

pinQ putP qorA renD rhsA

rhsB rrfA rrfB rrfG rrfH

rrlA rrlB rrlC rrlD rrlE

rrlG rrlH rrsA rrsB rrsC

rrsD rrsE rrsH rsxC rzoR

rzpR tfaQ tfaR tfaX topB

treA trmJ ttcA tufA tufB

yaiT yaiX ybeF ybfL ybiU

ydbA ydfB ydfJ yegI yegK

yghQ yhhI yigG yjdF yjeM

yjeN yneK yoeA yqiG yrhA

gadB

Supplementary Table 5: Table of E. coligenes where at least 1 TP variant was called by Kestrel without a GATK
TP call within 50 bp in more than 20 samples.

lib directory (see lib/NOTES). To build all dependencies once the GATK and Picard Tools libraries are
in lib, run make. To build all freely available dependencies (all except for GATK and Picard), run make

allfree.

Directory structure overview:

� Make�le Master �le for building the software packages needed by the analysis process.

� Snake�le Master Snakemake �le for the test process.

� bin Location of executable �les generated by Makefile.

� build Build directories for the software dependencies built by Makefile.

� con�g Contains a con�guration �le used by Snakemake to locate resources.

� data Data �les used by the build process. Contains mostl references and accessions.

� kescaseslib A Python library used by Snakemake.

� lib Built libraries are stored in this directory.

� local All results, plots, and intermediate data generated by Snakemake. This directory does not appear
until the analysis pipeline is executed.

� rules Snakemake rules imported by Snakefile.

� scripts Scripts executed by the Snakemake process. These are mostly R scripts to generate plots.

5.1 S. pneumoniae

Directory structure of local/strep:

� ani ANI input and output. This is used for the phylogeny plots.

� reference Reference sequence and indices.

� results Raw results and logs.
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� samples Sample input data.

� summary Summary tables and �gures.

� temp Temporary �les that are automatically deleted by the Snakemake process when they are no longer
needed.

5.2 N. meningitidis

Directory structure of local/mlst:

� results Raw results and logs.

� samples Sample input data.

� summary Summary tables and �gures.

5.3 E. coli

Directory structure of local/ecoli:

� reference Reference sequence and indices.

� results Raw results and logs.

� summary Summary tables and �gures.

� temp Temporary �les that are automatically deleted by the Snakemake process when they are no longer
needed.
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