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S1 Methodology

S1.1 Computational Details

The excited-state dynamics of 2-nitronaphthalene (2NN) in gas phase were simulated

using a local version of the surface hopping including arbitrary couplings (SHARC)

approach.1–3 Density functional theory (DFT) and time-dependent DFT (TDDFT)

calculations were performed at the PBE04,5/DZP6 level of theory using the ADF2016

program package7 and the recently implemented SHARC/ADF interface.8

Initial Conditions. Before simulating the excited-state dynamics, first a ground-

state geometry optimization was performed and normal modes and vibrational frequen-

cies were calculated at the minimum-energy geometry (Figure S1). Then, 1000 initial

conditions were sampled around the optimized geometry using a harmonic Wigner dis-

tribution9 for a temperature of T = 300 K. For each structure, the 10 lowest excited

singlet and triplet states were calculated in the Tamm-Dancoff approximation (TDA)

using a Becke integration grid and a ZlmFit grid of normal quality. Scalar relativistic

effects were included in the zeroth-order regular approximation (ZORA) and spin-orbit

couplings (SOCs) were calculated perturbatively.
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Atom x [Å] y [Å] z [Å]
C 3.580 0.180 −0.000
C 2.619 1.160 −0.000
C 1.246 0.820 0.000
C 0.878 −0.561 0.000
C 1.895 −1.549 0.000
C 3.217 −1.185 0.000
C 0.223 1.805 −0.000
C −0.489 −0.907 0.000
C −1.437 0.084 −0.000
C −1.098 1.454 −0.000
H 0.504 2.851 −0.000
H 4.629 0.451 0.000
H 2.900 2.206 −0.000
H 1.610 −2.595 0.000
H 3.990 −1.943 0.000
H −0.784 −1.947 0.000
H −1.877 2.201 −0.000
N −2.850 −0.291 −0.000
O −3.686 0.605 −0.001
O −3.143 −1.481 0.001

Figure S1: Ground-state minimum-energy geometry of 2NN in gas phase opti-
mized at the PBE0/DZP level of theory.

S4



Absorption Spectrum. Using the geometries of the initial conditions (see above),

the absorption spectrum and the density of states (Figure S2) were simulated by Gaus-

sian convoluting the oscillator-weighted and unweighted stick spectra, respectively, us-

ing a FWHM of 0.1 eV. Good agreement to experimental reference spectra can be

obtained for 2NN in methanol (MeOH) using PBE0.10 Up to our knowledge, there is

no experimental absorption spectrum of 2NN in gas phase; in lieu, we show in Figure S2

the experimental absorption spectrum of 2NN recorded in n-heptane,11 where the good

agreement between the positions and intensity ratios of the calculated and experimen-

tal absorption bands over a large energy range is apparent. We note that the calculated

spectrum does not show the fine structure of the experimental absorption bands. We

encountered a similar situation in our study of 2NN in MeOH; there, however, we could

explain the appearance of a shoulder in the third experimental absorption band by the

presence of different electronic states, even though the shoulder was not visible in our

calculated spectrum.10 Thus, we believe the absence of experimentally visible features

of the absorption bands in our calculated spectra is not a bad sign, and PBE0 does

provide a good description of the electronic structure of 2NN.
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Figure S2: (a) Experimental absorption spectrum of 2NN in n-heptane(blue
line),11 calculated absortion spectrum in gas phase (black line), as well as indi-
vidual state contributions to the absorption spectrum. (b/c) Calculated density
of singlet/triplet states (filled curves) and absorption spectrum (black line). The
grey area denotes the excitation window in the SHARC simulations. Calculations
were performed using a thermal Wigner distribution at T = 300 K.
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Trajectories Set-Up. 105 trajectories were set-up from the T = 300 K ensem-

ble. For 2NN, ultrafast intersystem crossing has been observed in transient absorption

experiments after excitation close to the maximum of the lowest-energy absorption

band.12 Similarly, we chose initial conditions to setup the trajectories stochastically as

proposed in Ref. 13 in a 0.5 eV window around the maximum of the first absorption

band (3.43-3.93 eV, see gray areas in Figure S2). Accordingly, 51 trajectories were

started in the S1 state and 54 trajectories were started in the S2 state. Based on the

density-of-states at the initial conditions, three singlet states (S0, S1, and S2) and six

triplet states (T1-T6) were included in the SHARC simulations and two additional sin-

glet and triplet states were calculated as inactive states. To illustrate the characters

of the excited-states included in the dynamics simulation, we show their corresponding

states calculated at the FC geometry in Table S1. As mentioned in the main paper,

one should keep in mind that the character of the states in the ensemble can differ from

the FC excited states due to vibrational motion.

SHARC Simulations. Nonadiabatic dynamics simulations were performed for the

105 trajectories for a total simulation time of 500 fs. The nuclear time step was 0.5 fs

and the electronic Schrödinger equation was integrated with a time step of 0.02 fs us-

ing the local diabatization method.14 An energy-based decoherence correction with a

constant of C = 0.1 a.u. was used15,16 for the spin-adiabatic states. To save computa-

tion time, gradients for the non-adiabatic couplings were only calculated for electronic

states with an energy gap less than 0.3 eV. Otherwise, the defaults of the SHARC pro-

gram package and the recently implemented SHARC/ADF interface8 have been used.

From the subsequent analysis, six trajectories had to be excluded from the ensemble, as

either the trajectory crashed prior to reaching the 500 fs simulation time or it showed

intruder state problems that would have required the inclusion of more active electronic

states in the simulations.
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Table S1: Energies in eV, oscillator strengths fOSC , electronic characters, and
natural transition orbitals calculated at PBE0/DZP level of theory in gas phase
describing the low-lying excited states of 2NN at the Franck-Condon geometry.
Subscripts CT and LE denote charge-transfer and local excitation character, re-
spectively.

State Energy (eV) fOSC Character Natural Transition Orbitals

S1 3.80 0.064 SCT (ππ∗)

S2 3.85 0.000 SLE (nπ∗)

T1 2.85 0.000 TCT (ππ∗)

T2 3.32 0.000 TLE (nπ∗)

T3 3.32 0.000 TLE (ππ∗)

T4 3.67 0.000 TLE (ππ∗)

T5 3.77 0.000 TCT (ππ∗)

T6 4.00 0.000 TLE (nπ∗)
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S1.2 Problems Encountered in the Simulations

As mentioned above, a small number of the calculated trajectories had to be excluded

for the analysis. Five trajectories from the T = 300 K ensemble were excluded as

they crashed prematurely (t < 332 fs); all other trajectories could be propagated until

t = 500 fs. An additional trajectory was excluded because it hopped to a (previously)

inactive state∗. The remaining 99 trajectories were considered for the analysis.

Additionally, we comment on two critical cases encountered for a small number of

trajectories. The first is given by trajectories that exhibit a “unusually” large fluctua-

tion of the total energy which occured in some cases where the S0 and S1 were nearly

degenerate. Then the total energy could increase momentarily by up to 0.2-0.5 eV

before it fell back to the previous range after the states separate in energy again. An

example of this situation is shown in Figure S3(a), and one may speculate that it is

due to the single-reference nature of TD-DFT that can only give an incomplete de-

scription of the multi-configurational nature that the ground state S0 ingests when it

is nearly degenerate with the S1.† We note, however, that this is not the general be-

havior when the S0 and the S1 are in close in energy, as can be seen in the exemplary

situation depicted in Figure S3(b) where the total energies remains almost constant

in the near-degeneracy region. In total, we found the large energy fluctuation due

to a S1/S0 near-degeneracy for 8 trajectories. We did not exclude these trajectories

from the analysis for the following reasons. First, the DFT/TDDFT calculations do

converge in this region of the potential energy surface (PES), and as the total energy

goes back to the range outside of this region, we can conclude that the the trajectory

can safely leave this region. And second, one may speculate that a trajectory entering

the region of near-degeneracy should hop to the ground state; however, absence of this

event does not indicate an error as it is in general possible for a trajectory to hop to

∗the SHARC program is able to follow the character of the MCH states by monitoring wave
function overlaps17 of the calculated states
†the trajectory in Figure S3(a) actually represents the case with the largest fluctuation in

total energy of all trajectories (0.46 eV)
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Figure S3: Total energy (black line) and energies of the MCH states (colored
lines) in eV of two trajectories showing a S1/S0 near-degeneracy. The circles
denote the active state in the simulation. Insets show a magnification of the
total energies in the near-degeneracy regions.

the ground state without showing the fluctuation in the total energy, see Figure S3(b).

Potential problems that TDDFT surface hopping can exhibit in the region of S1/S0

near degeneracies are discussed by Tavernelli and co-workers in Ref. 18.

The second critical case is provided by situations where hops occur between states

with a large energy gap (> 1 eV). An example is shown in Figure S4. There, a

trajectory is in the S1 state until t = 204.5 fs, when it hops to the S2 state which lies

1.63 eV higher in energy. In order to conserve the total energy of the trajectory, this

sudden jump in potential energy is compensated by a rescaling of the momenta of the

system decreasing the kinetic energy, as can also be seen in Figure S4. The rescaling

is performed by changing the momenta of all atoms in the same manner, i.e., via

multiplication by the same factor so that the total energy is conserved. The probability

for the large energy hop is very small amounting only to P ∼ 0.001, however, this hop

still occured.‡ For such an event to be statistically significant, one should propagate

at least N = 1/P trajectories –so that the event occurs stochastically once. Such low-

‡to decide whether or not a hop occurs, a random number ∈ [0, 1] is sampled and compared to
the hopping probability; when the probability is larger than the random number, the trajectory
hops to a different state
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Figure S4: Total energy (black line), kinetic energy (orange line), and energies
of the MCH states (colored lines) in eV of a trajectories showing a hop between
states with a large energy gap. The circles denote the active state in the simula-
tion.

probability hops occurred 12 times. Despite this is a considerably large number for the

comparatively small numbers of trajectories (N = 99), we believe that the occurrence

of the low-probability hops does not have a significant impact on our results. All low-

probabilities hops occurred either from the S1 or the T1 to higher-lying excited singlet

and triplet states, respectively. Before the low-probability hop, most of the trajectories

had been for a considerable simulation time in the S1 or T1 state, and this (initial)

state was quickly retrieved within the remaining simulation time (average retrieval

time τret = 18 fs). Thus, we can safely include these trajectories with low-probability

hops in our analysis.
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S2 Mechanism of Excited-State Dynamics

S2.1 Major Reaction Channels

Figure S5 shows the time evolution of the populations of the MCH states of 2NN in

gas phase. Figure 2 in the main paper is similar, but shows only the sum of the excited

triplet state populations Tn (n = 2-6) and the lowest-energy triplet state T1, allowing

for a general reaction mechanism, where the population is transferred from the S1 to

some higher-lying triplet state Tn before subsequent deactivation to T1. This can be
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Figure S5: Time evolution of the state populations in the first 500 fs of the
excited-state dynamics of 2NN.

seen explicitely when analyzing the hops between the different MCH states that occur

during the dynamics simulation. Thus, we show the total amount of hops of all 99

trajectories during the 500 fs simulation time in Table S2(a), e.g., showing 280 hops

from S2 to S1 and 234 hops from S1 to S2, from which we calculated also the net amount

of hops between the MCH states (Table S2(b)). The net amount of hops directly show

from which MCH state population is transferred to another MCH state, e.g., it shows

that population from the S2 is almost completetly transferred to the S1 state (46 net

hops), while only a minor part is transferred to the triplet states (2 + 2 hops).
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Table S2: Total amount (a) and net amount (b) of hops between the different
MCH states in the SHARC simulations after 500 fs. The most important net
hops have been highlighted by color.

(a) S0 S1 S2 T1 T2 T3 T4 T5 T6

S0 1993 4 0 3 0 0 0 0 0
S1 1 66270 280 0 234 108 30 6 0
S2 0 234 6723 0 0 0 16 18 8
T1 3 0 0 13845 118 16 1 0 0
T2 0 259 0 87 5316 70 7 0 0
T3 0 122 0 17 50 1614 13 2 0
T4 0 32 18 2 3 7 743 16 3
T5 0 6 20 0 2 1 11 327 16
T6 0 0 8 0 2 0 3 14 259

S2
kS−→ S1 S1

kISC−−→ Tn Tn
kT−→ T1

(b) S0 S1 S2 T1 T2 T3 T4 T5 T6

S0 − 3 0 0 0 0 0 0 0
S1 −3 − 46 0 −25 −14 −2 0 0
S2 0 −46 − 0 0 0 −2 −2 0
T1 0 0 0 − 31 −2 −1 0 0
T2 0 25 0 −31 − 20 4 −2 −2
T3 0 14 0 2 −20 − 6 1 0
T4 0 2 2 1 −4 −6 − 5 0
T5 0 0 2 0 2 −1 −5 − 2
T6 0 0 0 0 2 0 0 −2 −
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Table S3: Rate constants ki (in fs−1) as well as corresponding mean time constants
τi = 1/ki and errors ∆τi (in fs) calculated using the bootstrap method for the
time evolution of the MCH populations according to the mechanism shown in
eq. (1).

Reaction ka τ a 〈τ 〉b ∆τ b 〈τ 〉c ∆τ c

S2
kS−→ S1 0.0181936 55.0 56.3 ±8.3 55.7 +9.0/− 7.7

S1
kISC−−→ Tn 0.0013640 733.1 710.7 ±100.8 703.8 +105.4/− 91.6

T2
kT−→ T1 0.0071099 140.6 148.9 ±19.4 147.7 +20.4/− 17.9

a obtained from fit of the populations shown in Figure 2 in the main paper
b arithmetic mean and error of 100 bootstrap copies
c geometric mean and error of 100 bootstrap copies

Based on the excited-state populations and the hops between the different MCH

states, we proposed the (simplified) kinetic model

S2
kS−→ S1

kISC−−−→ Tn
kT−→ T1 (1)

Following eq. (1), we have calculated functions for the time evolution of the S2/S1/Tn/T1

populations using a nonlinear least-squares fit, which are shown in Figure 2 in the main

paper. The rate constants kS/kISC/kT and corresponding time constants τi = 1/ki

obtained in these fits are shown in Table S3. For each time constant we have also

calculated error margins using the bootstrap method as suggested by Truhlar et al.19

The time constants obtained by the single fit of the populations as well as the

arithmetic and geometric means in the bootstrap calculation are very similar for each

reaction. Thus, we report only the arithmetic mean and its error margin in the discus-

sion in the main paper. Here, we only mention that the error for each time constant

amounts to ca. 15 % of the corresponding time constant’s value. Thus, we have sam-

pled a sufficient number of trajectories to unambiguously describe our proposed reaction

mechanism [see eq. (1)] as the time constants of consecutive reactions are always of a

different order of magnitude, i.e., τS � τISC and τISC � τT.
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S2.2 Minor Reaction Channels

The mechanistic model of eq. (1) only included the major reaction channels in the

first 500 fs of the excited-state dynamics of 2NN. The model does not include direct

relaxation from the S2 to the triplet states, the relaxation to the ground state S0,

and the individual relaxation processes within the manifold of the higher-lying triplet

states Tn (n = 2-6). The direct S2 → Tn relaxation is a minor channel populating

the triplet states compared to the major route S2 → S1 → Tn (see hops in Table S2).

Based on our simulations, for this minor channel the time constant§ would amount to

τ = 1099±8540 fs, i.e., possessing a huge error due to the small number of trajectories.

Since this time constant is not reliable, we can only conclude that the S2 → Tn process

is much slower that the competing S2 → S1 process. Likewise, the relaxation to the

ground state S0 from the S1 state is also not well represented by a sufficient number of

trajectories and a time constant is meaningless, as it occurs on a slower time scale than

our simulation time (τS1→S0 = 10205 ± 10629 fs.§ ). Also note that due to the small

number of trajectories between the individual Tn states, it is not possible to calculate

individual reaction rates without problems of overfitting. Instead, we resort to describe

intersystem crossing from (mainly) the S1 state to the higher-lying triplet states Tn

(n = 2-6).

S2.3 ISC Pathways

In the main paper, we stated that ISC occurs via two different pathways, a 1nπ∗ →3 ππ∗

route and a 1ππ∗ →3 nπ∗ route. This was established after manual inspection of the

natural transition orbitals of the singlet and triplet excited states mediating the ISC

process for a small fraction of all ISC hops occurring in the dynamics.¶ To subse-

quently analyze all ISC hopping events, we calculated the mean atomic electron/hole

§arithmetic mean of 100 bootstrap copies with error margins
¶the small fraction consisted of ca. 30 ISC hops out of a total of 418 ISC hops occurring in

all trajectories
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difference population of the oxygen atoms of the nitro group for all singlet states us-

ing the TheoDORE program package.20–23 If the difference was negative, i.e., electron

density at the oxygen is lower in the excited state than in the ground state, the state

was characterized as the 1nπ∗ state, whereas if the difference was positive, it was char-

acterized as the 1ππ∗ state (see Figure 3(b) in the main paper). The character of the

receiver triplet state for the ISC follows the El-Sayed’s rules,24 which we verified for

the fraction of ISC hops that we inspected individually.

Having characterized the ISC hops as either 1nπ∗ →3 ππ∗ or 1ππ∗ →3 nπ∗, we have

calulated the mean atomic hole/electron difference populations for both sets of states

which are shown in Figure 4 in the main paper. Alongside we also show the main natural

transition orbitals (NTOs) involved in the excited states at the FC geometry, which

resembled the main NTOs describing the excited states that we inspected individually.

Note that the actual NTOs in the transition differ from those depicted in Figure 4

to a certain degree, e.g., because of the distortion of the structures due to admixture

with other orbitals. As such, the NTOs in Figure 4 in the main paper are shown only

for illustration purposes. As the structures are taken from the dynamics simulations,

naturally they differ from each other and from the optimized FC geometry. Thus it

is not straightforward to define, e.g., average NTOs that describe different (although

similar) excitations at different points of the trajectories. In contrast, the hole/electron

difference populations are atomic properties that can easily be averaged over different

structures and are therefore more convenient to analyze. Note that, unfortunately,

as atomic properties, the hole/electron populations do not contain any “directional”

information, i.e., they do not allow a direct discrimination between nπ∗ and ππ∗ states

if the n and π orbitals are located at the same atoms –see, e.g., the similar populations

for the TLE(π′π∗) and TLE(nπ∗) states in Figure 4 in the main paper. However, having

verified El-Sayed’s rules at a sizeable number of excited states in the ISC hops, we feel

assured to apply the rule generally, allowing us to safely differentiate all 1nπ∗ →3 ππ∗

from 1ππ∗ →3 nπ∗ hops.
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Based on the discrimination of the two ISC pathways, we determined their impor-

tance in the excited-state dynamics. Their relative contribution was shown in Figure 4

in the main paper, which was calculated as the fraction of trajectories that entered

the triplet manifold via the respective pathway and stayed in the a triplet state after

a simulation time of 500 fs. These numbers are collected in Table S4. The actual

number of trajectories ending up in a triplet state via the minor pathway is small, i.e.,

4 trajectories, raising the question on the statistical significance (see above). Since

the ratio for the contributions of the minor and major pathway is similar within the

number of trajectories (ca. 9 %) and the number of hops (ca. 12 %), we believe that

the relative contributions of the minor and major pathways determined by the number

of trajectories ending in a triplet represent an acceptable estimate.

The total numbers of hops from singlet to triplet states are much larger than the

number of trajectories ending up in a triplet state as it occurs quite frequently that

a trajectory hops from a singlet to triplet state in one time step only to hop back

to a singlet state at the next time step. Thus, a trajectory needs in average ca. 10

“attempts” to hop from a singlet to a triplet state in order to remain in a triplet state.

Table S4: Number of trajectories in triplet states and number of hops to triplet
states as well as contributions of the major and minor ISC pathways after a
simulation time of 500 fs.

Number of Trajectories
Ntraj in triplet states 46
. . . via major pathway 42 (91.3 %)
. . . via minor pathway 4 (8.7 %)

Total number of trajectories 99
Nhops to triplet states 418
. . . via major pathway 369 (88.2 %)
. . . via minor pathway 49 (11.8 %)
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S2.4 Spin-Orbit Couplings in the ISC Pathways

In this section we include a brief discussion of the SOCs during the dynamics. For this,

we first show the time evolution of two trajectories undergoing ISC via the major and

minor pathway (Figure S6) along with the size of the SOCs between the S1 and the

lowest-lying triplet states Tn. The SOCs were calculated as the vector sum of the SOC

matrix element between the S1 singlet state and all three components of the respective

triplet state, i.e.,

SOC(S1, Tn) =

√∣∣∣〈S1|HSOC |TMS=1
n 〉

∣∣∣2 +
∣∣∣〈S1|HSOC |TMS=0

n 〉
∣∣∣2 +

∣∣∣〈S1|HSOC |TMS=−1
n 〉

∣∣∣2
(2)

The trajectories in Figure S6 were selected as they show a S1-Tn hop very early in

the simulation time and afterwards stay for the remaining simulation in the triplet

manifold; we only show an interval of 20 fs around the hopping event.
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Before the ISC hop, the trajectory undergoing ISC via the major pathway [Fig-

ure S6(a)] is in the S1 state which can be characterized as the SLE(nπ∗) state. For

this trajectory, two (T1, T2) or three (T1-T3) triplet states are close in energy. For

one of the triplet states, the SOC with this singlet state is considerably large ranging

from 40-50 cm−1. In the MCH electronic state representation, this triplet state is the

T2 until ca. 43 fs before it changes place in the energetic ordering and becomes the

T3 state; later this state briefly becomes the T2 again and finally becomes the T1 at

ca. 53 fs. In terms of character, this triplet state is the locally excited TLE(ππ∗) state

to which the trajectory hops at 44.4 fs. At this point, the SOC is of the same size

as the average value of SOCs reported for the major pathway in the main paper, i.e.,

SOC ∼ 40 cm−1 (see Figure 4).

The trajectory undergoing ISC via the minor pathway [Figure S6(b)] initially is in

the S1 which is the SCT (ππ∗) state. Although there are several triplet states close in

energy to this singlet state, the SOCs are considerably smaller (< 10 cm−1) than for

the trajectory undergoing ISC via the major pathway. Still, eventually at 30.5 fs, the

trajectory hops from the S1 state to the T4 state, which is the TLE(nπ∗) state. The

SOC during this hop is 9 cm−1 which is again of similar size as the average value of

SOCs reported for the minor pathway in the main paper, i.e., SOC ∼ 8 cm−1 (see

Figure 4). Shortly, after the trajectory has hopped into the triplet manifold, the MCH

singlet states change in character and the SLE(nπ∗) becomes the S1 at 33 fs. This

state possesses larger SOCs with the low-lying triplet states and explains the sudden

increase in S1-Tn-SOCs shown in Figure S7.

The size of the SOCs is related to the probability of singlet-to-triplet ISC occuring

via the minor or major pathway, but it is also related to the probability for the tra-

jectory to hop back from the triplet to the singlet state. This usually occurs within

a few time steps after the singlet-triplet hop, where the trajectory is still in the same

region of the potential energy surface, meaning that the energy gaps and SOC between

the states are approximately the same and, thus, so is the hopping probability. To
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demonstrate this, we show in Figure S7 the time evolution of a trajectory that hops

back and forth six times between singlet and triplet states during the last 200 fs of the

500 fs simulation time.
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Figure S7: Time evolution of spin-orbit couplings between the S1 and Tn (n = 1-
4) for a trajectory hopping back and forth between the S1 and T2 in the major
pathway. The gray areas denote the time steps between which ISC hops occur.

The trajectory initially is in the SLE(nπ∗) state and possesses a large SOCs of

ca. 50 cm−1 with the T2 or TLE(ππ∗) state. Although the trajectory hops several

times, it returns within 1 or 2 time steps back to the singlet state where it finishes at

the end our simulation. This example demonstrates that a large SOC is not sufficient for

ISC, but the trajectory must also be able to quickly escape the singlet-triplet hopping

region while being in the triplet state.

S2.5 Initial Dynamics in the Singlet States

In the main paper, we analyze the SCT (ππ∗) → SLE(nπ∗) dynamics. To do so, we

discriminate the states as either SCT or SLE by their dipole moment µ using µ > 8 D
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for SCT and µ < 8 D for SLE , respectively. The arbitrary value of 8 D is chosen

because it lies in between the initial range of dipole moments (ca. 10-12 D) and the

value towards which the ensembles converges (µ = 4 D, see Figure 5(a) in the main

paper). Using µ = 8 D as a criterion to distinguish the states SCT and SLE , we obtained

the time constant of τ = 81 fs for the population transfer of SCT → SLE . Despite the

arbitrariness of µ = 8 D, we note that slightly different reasonable choices of µ give

similar values for τ , e.g., ranging from 90 fs (µ = 6 D) to 78 fs (µ = 9 D). We consider

these values reasonable as they also lie between the dipole moments the SCT (ππ∗) and

SLE(nπ∗) states at their optimized geometries (Table S5).

Table S5: Coordinates in Å of the optimized geometries of the SCT (ππ∗) and
SLE(nπ∗) states as well as their energies and dipole moments.

SCT (ππ∗) SLE(nπ∗)

X Y Z X Y Z
C 3.608 0.185 0.000 3.582 0.192 0.011
C 2.624 1.156 −0.000 2.611 1.159 0.006
C 1.248 0.809 −0.000 1.252 0.812 0.002
C 0.863 −0.562 −0.000 0.885 −0.564 0.003
C 1.878 −1.519 0.000 1.909 −1.539 0.008
C 3.230 −1.151 0.000 3.224 −1.166 0.013
C 0.243 1.777 −0.000 0.227 1.795 −0.002
C −0.503 −0.919 −0.000 −0.467 −0.921 0.000
C −1.480 0.058 0.000 −1.434 0.075 −0.004
C −1.103 1.404 −0.000 −1.083 1.452 −0.005
H 0.505 2.828 −0.000 0.507 2.841 −0.003
H 4.654 0.460 0.000 4.627 0.471 0.014
H 2.896 2.205 −0.000 2.884 2.208 0.004
H 1.613 −2.570 0.000 1.637 −2.587 0.009
H 3.987 −1.926 0.000 3.999 −1.923 0.016
H −0.818 −1.954 0.000 −0.757 −1.962 0.001
H −1.896 2.141 −0.001 −1.863 2.201 −0.009
N −2.849 −0.276 0.001 −2.739 −0.256 −0.007
O −3.688 0.670 −0.001 −3.746 0.535 −0.014
O −3.121 −1.509 0.000 −3.237 −1.439 −0.005
E 3.30 eV 1.93 eV
µ 12.9 D 3.7 D
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In the above analysis, we assume that the initial dynamics takes place within the

singlet states and thus all the population is in the singlet states. Figure S8 shows the

average dipole moment for the singlet, triplet and all the states juxtaposed. As it can

be seen, the average dipole moment of all trajectories 〈µall(t)〉 (green line) resembles

very closely to that of the singlet states 〈µS(t)〉 (blue line), even at longer times when

the triplet states already have gained substantial amount of population.

Figure S8: Time evolution of the average dipole moment 〈µ〉 for all states/only
singlet states/only triplet states as well as the singlet and triplet quantum pop-
ulation of all trajectories, respectively.
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S2.6 Normal Mode Analysis

Figure S9 shows the normal mode analysis (NMA)25,26 for different sets of geometries:

all geometries in the initial conditions (labelled as “Init”), the hopping geometries

corresponding to the major/minor ISC pathway (labelled as “Major”/“Minor”), and

the geometries where the active state is a singlet state with a dipole moment µ <

8 D/µ > 8 D (labelled as “SLE(nπ∗)”/“SCT (ππ∗)”). The corresponding vibrational

frequencies are listed in Table S6.
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Figure S9: Normal mode analysis of the initial conditions, all hopping geometries
in the major and minor pathway, and all geometries in the 1nπ∗ and 1ππ∗ states.
Normal modes 1-6 refer to translation and rotation and are not depicted here.
See Table S6 for the vibrational frequencies of all normal modes.
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Table S6: Vibrational frequencies ω of normal modes in cm−1.

Mode ω Mode ω Mode ω Mode ω Mode ω Mode ω
7 87 16 500 25 794 34 982 43 1369 52 1641
8 103 17 526 26 823 35 1038 44 1378 53 1668
9 189 18 544 27 825 36 1096 45 1389 54 3198
10 199 19 611 28 878 37 1156 46 1406 55 3203
11 261 20 626 29 912 38 1166 47 1471 56 3209
12 339 21 650 30 918 39 1176 48 1485 57 3214
13 379 22 735 31 959 40 1225 49 1538 58 3224
14 399 23 773 32 972 41 1258 50 1584 59 3245
15 479 24 778 33 973 42 1288 51 1623 60 3261

Comparing the normal mode displacement (NMD) of the initial conditions (gray

bars) with those of the ISC geometries of the major pathway (dark blue) and minor

pathway (dark red) allows us to identify the decisive motion leading to ISC. With the

exception of normal mode 7 –that describes mainly the nitro group torsion –all NMDs

are very small for the initial geometries. As it can be seen, the normal modes with

large displacement at the ISC geometries are the 19, 27, 29, 36, and 43 –summarized

in Figure 6 of the main paper. For these normal modes, we show the displacement

vectors in Figure S10.

S2.7 Nuclear Motion

In the main paper we discuss the nuclear motion in terms of three internal coordinates

that are responsible to drive the system towards intersystem crossing (recall Figure 6).

Trajectories in the singlet or triplet state are discriminated with the spin expectation

value of 〈S2〉; those in either the SLE(nπ∗) or SCT (ππ∗) state are discriminated with

the dipole moment criterion as explained above.

Figure S11 shows the averages and standard deviations of the internal coordinates

calculated for the hopping geometries and the tim evolultion of these values of the

trajectories in the singlet and the triplet states. The standard deviations become quite

large in the case where only a few trajectories are available at a given simulation
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Mode 19
ω = 611 cm−1

Mode 27
ω = 825 cm−1

Mode 29
ω = 912 cm−1

Mode 36
ω = 1096 cm−1

Mode 43
ω = 1369 cm−1

Figure S10: Displacement vectors of the important normal modes in the excited-
state dynamics of 2NN.
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time; this is e.g., the case at early times for the triplet states and at later times for

the SCT (ππ∗) state. Accordingly, caution is required to interpret the behavior of the

average internal coordinates at these points. For completeness, the evolution of the

torsional angle τCCNO and its standard deviations are also shown in Figure S11, as the

torsion of the nitro group has been discussed in Refs. 12, 27, 28. As it can be seen,

the average of τCCNO is never zero, but it is small, in agreement with the fact that no

dissociation is observed for 2NN.

Note that the curves shown in both Figures 6(b-d) in the main paper and S11

are not pure averages but Bezier fits calculated with GNUPLOT. We have excluded

10 data points in the beginning of the simulation from the Bezier fit of the average

internal coordinates of the triplet trajectories as there were no trajectories in a triplet

state yet. In both Figures 6 and S11 we use the average of both bond distances rNO

and the four torsional angles τCCNO that can be derived from the molecular structure.
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Maksić, M.; Lischka, H. J. Photochem. Photobiol. A 2007, 190, 228–240.

(14) Granucci, G.; Persico, M.; Toniolo, A. J. Chem. Phys. 2001, 114, 10608–10615.

(15) Granucci, G.; Persico, M. J. Chem. Phys, 2007, 126, 134114.

(16) Granucci, G.; Persico, M.; Zoccante, A. J. Chem. Phys. 2010, 133, 134111.

(17) Plasser, F.; Ruckenbauer, M.; Mai, S.; Oppel, M.; Marquetand, P.; González, L.
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