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A. Nonreciprocal crystal

In this section, we derive the effective Hamiltonian in the vicinity of Dirac points for a 2D honeycomb photonic crystal made
of gyromagnetic cylinders by using the plane wave expansion method [5,12,25]. Assuming the harmonic time dependence
∼ exp(iωt), we start with Maxwell’s equations,

∇×E =−ik0µ̂H ,

∇×H = ik0εE
(S1)

where k0 = ω/c is the wavenumber in free space, ω is the angular frequency, and c is the speed of light. Material response is
described by a scalar permittivity ε and the permeability tensor containing off-diagonal imaginary components

µ̂ =

 µ⊥ iκ 0
−iκ µ⊥ 0

0 0 µzz

 (S2)

Assuming the case of in-plane propagation, i.e.
∂

∂ z
= 0, from Eq. (S1) we obtain the governing equation for the Ez(x,y) electric

field component of TM polarization(
k2

0ε +
∂

∂x
m

∂

∂x
+

∂

∂y
m

∂

∂y

)
Ez = i

(
∂

∂x
∆

∂

∂x
− ∂

∂y
∆

∂

∂y

)
Ez (S3)

where we introduced compact notations m =
µ⊥

µ2
⊥−κ2 and ∆ =

κ
µ2
⊥−κ2 . Here, we assume in-plane propagation and the

permittivity perturbed by a weak periodic modulation ε = 1+ ε̃ . Given the crystal periodicity, we apply Bloch theorem and
expand the field Ez and the constitutive parameters in Fourier series as follows,

Ez = ∑
G

EG ei(G+q)·r (S4)

{ε̃,m,∆}= ∑
G
{ε̃G,mG,∆G} eiG·r (S5)

where G and G′ denote reciprocal lattice vectors. The length of all reciprocal lattice vectors Gi is equal to G = 4π/(
√

3a),
where a is a lattice constant of the crystal. Substituting Eqs. (S19), (S20) into Eq. (S3), we get a set of linear equations for the
Fourier components of the field

k2
0EG + k2

0 ∑
G′

ε̃G−G′EG′ −∑
G′

mG−G′(q+G) · (q+G′)EG′ =−i∑
G′

∆G−G′
[
(qx +Gx)(qy +G′y)− (qx +G′x)(qy +Gy)

]
EG′ (S6)

We are now interested in dispersion of the modes near the K (K′) points being the corners of the crystal Brillouin zone,

which correspond to the Bloch wavevectors K± = K(±1,0,0), where K =
4 π

3a
, so that for the K (K′) valleys q+G = K±+

δk+G ≡ k+ δk, where δk is a small detuning. We truncate the basis to the first three plane waves with the wavevectors
k1,2,3 = K±+G0,1,2 each rotated by 2π/3 with respect to one another and corresponding to the reciprocal lattice vectors G0 =

(0,0), G1 = K

(
∓3

2
,−
√

3
2

)
, G2 = K

(
∓3

2
,

√
3

2

)
. Thus, to describe the formation of the bands, we leave only the leading

contributions from three Γ points nearest to K (K′) with k1 = (±K,0), k2 = K

(
∓1

2
,−
√

3
2

)
, k3 = K

(
∓1

2
,

√
3

2

)
. Next, we
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apply k · p approximation, keeping only the first order in δk, (ki +δk) · (k j +δk)≈ ki ·k j +δk · (ki +k j). Neglecting the terms
of higher orders of smallness, we obtain a set of three equations, which can be written in matrix form as[

k2
0

 1+ ε̃0 ε̃01 ε̃02
ε̃∗01 1+ ε̃0 ε̃12
ε̃∗02 ε̃∗12 1+ ε̃0

−
 m0k2

1 m01(k1 ·k2) m02(k1 ·k3)
m∗01(k1 ·k2) m0k2

2 m12(k2 ·k3)
m∗02(k1 ·k3) m∗12(k2 ·k3) m0k2

3


−δk ·

 2k1m0 (k1 +k2)m01 (k1 +k3)m02
(k1 +k2)m∗01 2k2m0 (k2 +k3)m12
(k1 +k3)m∗02 (k2 +k3)m∗12 2k3m0

+ i

 0 [k1×k2]z∆01 [k1×k3]z∆02
[k1×k2]z∆

∗
01 0 [k2×k3]z∆12

[k1×k3]z∆
∗
02 [k2×k3]z∆

∗
12 0

] EG0
EG1
EG2

= 0

The Fourier coefficients comprising the above system are defined as

{ε̃,m,∆}i j =
1
S0

∫
u.c.

{ε̃,m,∆}(x,y)e−i(Gi−G j)·r d2r⊥ (S7)

where S0 = a2
√

3/2 is the area of the structure unit cell, and the index (Gi−G j) ≡ Gi j is abbreviated as i j. In particular,
coefficients {ε̃,m,∆}00,11,22 ≡ {ε̃,m,∆}0 imply averaged over the unit cell spatial distributions. Additionally, we make use of a
honeycomb symmetry of the lattice. To take into account a slight difference of two rods A and B in the unit cell, we write

{ε̃,m,∆}(r⊥) =
({ ¯̃ε, m̄, ∆̄

}
− 1

2
δ {ε̃,m,∆}

)
Π(r⊥−v1)+

({ ¯̃ε, m̄, ∆̄
}
+

1
2

δ {ε̃,m,∆}
)

Π(r⊥+v1) (S8)

where v1 = −rAB/2, rAB denotes the vector pointing from A to B, and step functions Π(r⊥± v1) are localized on the lattice
sites. Thereby, coefficients (S7) take the form

{ε̃,m,∆}i j =
I1

S0

({ ¯̃ε, m̄, ∆̄
}

2cosϕi j + iδ {ε̃,m,∆}sinϕi j
)
≡ {ε̃,m,∆}1 2cosϕi j + iδ {ε̃,m,∆}AB sinϕi j (S9)

where ϕi j = (Gi j ·v1). Choosing v1 = (0,1)
d
2

, where d =
a√
3

is a distance between cylinders A and B , we calculate the angles

ϕ01 =−ϕ02 = ϕ20 =−ϕ10 = π/3, ϕ12 =−2π/3 =−ϕ21. Finally, in the case of codirectional magnetization, we reach a set of
equations

k2
0(1+ ε̂)E =

(
m̂+ m̂AB + θ̂g

)
E (S10)

where the column-vector E = (EG0 ,EG1 ,EG2)
T, and 3×3 matrices are given by

m̂ = K2


m0 −1

2
m1 −

1
2

m1

−1
2

m1 m0
1
2

m1

−1
2

m1
1
2

m1 m0

±Kδkx


2m0

1
2

m1
1
2

m1

1
2

m1 −m0 m1

1
2

m1 m1 −m0

+Kδky
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√
3

2
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√
3

2
m1

−
√

3
2

m1 −
√

3m0 0
√

3
2

m1 0
√

3m0

 ,

m̂AB = iδmABK2
(
−1

2

)


0

√
3

2
−
√

3
2

−
√

3
2

0 −
√

3
2√

3
2

√
3

2
0

 , θ̂g =∓i∆1K2


0 −

√
3

2

√
3

2√
3

2
0

√
3

2

−
√

3
2
−
√

3
2

0

 , ε̂ =

 ε̃0 ε̃1 ε̃1
ε̃1 ε̃0 −ε̃1
ε̃1 −ε̃1 ε̃0



Thus, we obtain 3×3 eigenvalue problem, k2
0E = (1+ ε̂)−1

(
m̂+ m̂AB + θ̂g

)
E = Ĥ1E .

As the next step we perform a unitary transformation Ĥ =UĤ1U−1 with the matrix

U =
1√
3

e2iπ/3 e−iπ/3 −1
1 e−iπ/3 eiπ/3

eiπ/3 e−2iπ/3 e−2iπ/3

 (S11)

We note that the third row of the transformed effective Hamiltonian describes a nondegenerate singlet TM state which is separated
from the doublet state by the energy gap ≈ 3×m1, and therefore, in accord with the perturbation theory, its mixing with the



doublet states is strongly suppressed. As the result, this state can be eliminated from the effective Hamiltonian. We note that
numerical simulations confirm that such singlet state is always separated from the doublet by a complete photonic band gap.
Thus, we recover the following effective massive Dirac Hamiltonian in the subspace of the doublet states after anticlockwise
rotating the vector (δkx,δky) by 4π

3 ,

ĤK(K′) = Ω0±V δkxσ̂x +V δkyσ̂y +(±mT−mI)σ̂z (S12)

where the unperturbed frequency Ω0 =

K2
(

m0−
1
2

m1

)
1+ ε̃0 + ε̃1

, velocity V =
K(m0 +m1)

1+ ε̃0 + ε̃1
, and mass terms due to parity breaking

mI =−
3K2δmAB

4(1+ ε̃0 + ε̃1)
, and time-reversal symmetry breaking mT =

3K2∆1

2(1+ ε̃0 + ε̃1)
.

For the case of oppositely magnetized cylinders, in place of imaginary matrices m̂AB and θ̂ , we have a real matrix

M =
3
4

K2
δ∆AB

 0 ±1 ±1
±1 0 ∓1
±1 ∓1 0

 (S13)

leading to the Dirac Hamiltonians

ĤK(K′) = Ω0±δΩ0±V δkxσ̂x +V δkyσ̂y (S14)

with opposite frequency detunings δΩ0 =
3
4

K2
δ∆AB in different valleys.

B. Bianisotropic crystal

In this section we derive the effective Hamiltonian near the Dirac points for a triangular lattice of deformed (triangulated) rods
made of a bianisotropic material. Similar to Sec. A, we start with Maxwell’s equations

∇×E =−ik0(µ̂H+ χ̂E) ,

∇×H = ik0(ε̂E+ χ̂†H)
(S15)

with the constitutive tensors defined as follows

ε̂ =

 ε⊥ 0 0
0 ε⊥ 0
0 0 εzz

 , µ̂ =

 µ⊥ 0 0
0 µ⊥ 0
0 0 µzz

 , χ̂ =

 0 iχ 0
−iχ 0 0

0 0 0

 (S16)

where we assume ε̂ = µ̂ and χ are purely real. From Eq. (S15), one can recover a reduced set of equations for TM-like and
TE-like modes coupled to each other by bianisotropy(

k2
0εzz +∂xe∂x +∂ye∂y

)
Ez =−i(∂x∆∂y +∂y∆∂x)Hz , (S17a)(

k2
0µzz +∂xm∂x +∂ym∂y

)
Hz =−i(∂x∆∂y +∂y∆∂x)Ez (S17b)

where we use the following denotations m =
µ⊥

µ⊥ε⊥−χ2 , e =
ε⊥

µ⊥ε⊥−χ2 , and ∆ =
χ

µ⊥ε⊥−χ2 . Combining equations (S17)

and taking into account equality e = m, we find that two polarizations (spins), defined as ψ↑,↓ = Ez±Hz, satisfy uncoupled
equations, analogous to Eq. (S3), (

k2
0εzz +∂xm∂x +∂ym∂y

)
ψ
↑,↓ =∓i(∂x∆∂y +∂y∆∂x)ψ

↑,↓ (S18)

For simplicity, we set εzz = ε = const in Eq. (S18) and apply the plane-wave expansion method, following the procedure
described in Sec. I. Considering the spin up, we apply Bloch theorem and expand the field ψ↑ and the constitutive parameters in
Fourier series,

ψ
↑ = ∑

G
ψ
↑
G ei(G+q)·r (S19)

{m,∆}= ∑
G
{mG,∆G} eiG·r (S20)



where the Fourier coefficients are given by

{m,∆}i j =
1
S0

∫
u.c.

{ε̃,m,∆}(x,y)e−i(Gi−G j)·r d2r⊥ (S21)

where we keep to the notations of Sec. A. Substituting Eqs. (S19), (S20) into Eq. (S18), we get a set of linear equations for the
Fourier components of the field

k2
0εψ

↑
G−∑

G′
mG−G′(q+G) · (q+G′)ψ↑G′ = i∑

G′
∆G−G′

[
(qx +Gx)(qy +G′y)− (qx +G′x)(qy +Gy)

]
ψ
↑
G′ (S22)

Adopting k · p approximation, we restrict to the linear order near K point. Due to C3v rotational symmetry, ∆01 = ∆02 = ∆12 = ∆1.
To account for triangulation, we introduce three small circular perturbations of radius r2 attached to the unperturbed circular rod

of radius r1, whose centers locations are determined by the vectors d1 = d0

(
−
√

3
2

,−1
2

)
||G10, d2 = d0(0,1)||G21 , d3 =

d0

(√
3

2
,−1

2

)
||G02, where d0 = r1 + r2. Accordingly, we write the spatial distribution as

m(r⊥) = menv +(mrod−menv)

(
Π(r⊥,r1)+

3

∑
n=1

Π(r⊥−dn,r2)

)
(S23)

where function Π(r⊥,r1,2) are rectangular functions of the widths 2r1,2, values menv and mrod correspond to the environment and
interior of cylinders. Thereby, the Fourier coefficients mi j can be written as

mi j =

 m0 +3∆m0(r2), i = j

m1 +∆m1(r2)
3

∑
n=1

e−i(Gi−G j)dn , i 6= j
(S24)

We obtain 3×3 eigenvalue problem,

k2
0ε~ψ↑ =

(
m̂+ m̂tri + θ̂b

)
~ψ↑ (S25)

where the column-vector ~ψ↑ = (ψ↑G0
,ψ↑G1

,ψ↑G2
)T, and 3×3 matrices are given by

m̂ = K2


m0 −1

2
m1 −

1
2

m1

−1
2

m1 m0 −1
2

m1

−1
2

m1 −
1
2

m1 m0

+Kδkx


2m0

1
2

m1
1
2

m1

1
2

m1 −m0 −m1

1
2

m1 −m1 −m0

+Kδky


0 −

√
3

2
m1

√
3

2
m1

−
√

3
2

m1 −
√

3m0 0
√

3
2

m1 0
√

3m0

 ,

m̂tri = iK2


3∆m0 −1

2
∆m1

(
eiϕ +2e−iϕ/2

)
−1

2
∆m1

(
e−iϕ +2eiϕ/2

)
−1

2
∆m1

(
e−iϕ +2eiϕ/2

)
3∆m0 −1

2
∆m1

(
eiϕ +2e−iϕ/2

)
−1

2
∆m1

(
eiϕ +2e−iϕ/2

)
−1

2
∆m1

(
e−iϕ +2eiϕ/2

)
3∆m0

 ,

θ̂b = i∆1K2
√

3
2

 0 −1 1
1 0 −1
−1 1 0


where ϕ =

√
3Kd0.

To change the basis, we perform the unitary transformation Ĥ =UĤ1U−1 with the matrix

U =
1√
3

1 1 1
1 e−2iπ/3 e2iπ/3

1 e2iπ/3 e−2iπ/3

 (S26)



After excluding the first row describing a singlet state, we get the effective 2× 2 Hamiltonian in the subspace of the doublet
states. The same procedure can be repeated for the opposite valley and spin. Finally, we arrive at the Hamiltonian for two spin
configurations

H↑,↓ =
(

(Ω0 +∆Ω0)σ̂0 +V (δkxσ̂x +δkyσ̂y)+ [mI±mB]σ̂z 0
0 (Ω0 +∆Ω0)σ̂0 +V (−δkxσ̂x +δkyσ̂y)+ [mI∓mB]σ̂z,

)
(S27)

where the unperturbed frequency Ω0 = K2
(

m0 +
1
2

m1

)
, ∆Ω0 = K2

(
3∆m0 +∆m1 cos

ϕ

2
+∆m1

1
2

cosϕ

)
, velocity V =

K(m0−m1), and mass terms due to inversion symmetry breaking mI = K2
√

3∆m1 sin
ϕ

2

(
cos

ϕ

2
−1
)

, and bianisotropy mB =

3
2

K2
∆1.

section S  . Nonreciprocal tunneling in photonic graphene with a single potential barrier

In this section, we provide a derivation of Eq. (3) of the main text. Geometry sequence of the structure we consider is 1/2/1,
where domains 1 and 2 are characterized by total masses m1,2 and potentials u1,2, and these masses arise from the symmetry
breaking of the lattice and can be expressed in terms of material parameters such as permittivity ε and permeability µ . u1,2
are the effective photonic potentials for domain 1 and domain 2, respectively. The wave excited with the angular frequency
Ω((Ω−Ω0−u1)

2 > m2
1) is propagating from the region 1 along the x axis onto the potential obstacle of the amplitude (u2−u1)

in the domain 2, which is infinitely long in y direction and has a finite width L in x direction.
First, we solve for the wave functions in each of the regions with the effective Hamiltonian in domains 1 at valley K adopted
from Eq. (S14) and in domain 2 from Eq. (S12). For definiteness, we consider the case of a nonreciprocal crystal here, the same
method can be applied in the case of a bianisotropic crystal. The inter-valley scattering can be ignored, if the potential barrier is
relatively small and smooth. Thereby, the two-component wave function in the dipolar basis has the form Ψ(x) = ψ(x)eiKx with
the slowly varying amplitude ψ(x) expressed as

ψ1(x) = eiδk1xx
(

1
s1

)
+ re−iδk1xx

(
1
−s1

)
, if x < 0 ,

ψ2(x) = aeiδk2xx
(

1
s2

)
+be−iδk2xx

(
1
−s2

)
, if 0 < x < L ,

ψ3(x) = teiδk1xx
(

1
s1

)
, if x > L

(S28)

where s1,2 = V δk1,2x/(Ω−Ω0−u1,2−m1,2), and dispersion relation (Ω−Ω0−u1,2)
2 = m2

1,2 +(V δk1,2x)
2. We then apply the

continuity boundary conditions at the interfaces x = 0 and x = L,

ψ1(x = 0) = ψ2(x = 0) ,
ψ2(x = L) = ψ3(x = L)

(S29)

and obtain the amplitude coefficients of the reflected and transmitted waves

r =
i(s2

2− s2
1)sin(δk2xL)

2s1s2 cos(δk2xL)− i(s2
1 + s2

2)sin(δk2xL)
,

t =
2s1s2e−iδk2xL

2s1s2 cos(δk2xL)− i(s2
1 + s2

2)sin(δk2xL)

(S30)

The reflection and transmission coefficients are found from Eqs. (S30) by using definitions R = |r|2, T = 1−R, which yields
Eq. (3) discussed in the main text. Note, conditions (S29) stem from the continuity of the electric field Ez tangential to
the interfaces. According to Eq. (S4), this implies the continuity of the Fourier components EG0,1,2 . In the framework of
the perturbation theory in small parameter κ/µ⊥, the tangential Fourier components of the magnetic field, approximated as

Hy G0,1,2 ≈
kx1,2,3

µ⊥k0
EG0,1,2 +O(κ/µ⊥), are also continuous. Hence, the expression (3) adequately describes transmission of the

electromagnetic waves through smoothly perturbed regions in such structured media.

2



Depending on relative values of Ω, u2 and m2, formula (3) of the main text can be split into two cases that we write out now
explicitly:

T (Ω) =
1(

1+
1
4

sinh2 (δκ2xL)
[

s1

c2
+

c2

s1

]2
) , if m2

2 > (Ω−u2)
2 (S31a)

T (Ω) =
1(

1+
1
4

sin2 (δk2xL)
[

s1

s2
− s2

s1

]2
) , if m2

2 < (Ω−u2)
2

(S31b)

where s1 =
√

Ω2−m2
1/(Ω−m1), c2 =

√
m2

2− (Ω−u2)2/(Ω−u2−m2), s2 =
√

(Ω−u2)2−m2
2/(Ω−u2−m2) , δκ2x =√

m2
2− (Ω−u2)2/V , δk2x =

√
(Ω−u2)2−m2

2/V . Here, we set Ω0 = u1 = 0 and assume Ω2 > m2
1. In particular, (i) the

trivial case u2 = 0 (no barrier), and (ii) setting m2 = m1 = 0 (Klein paradox) return unity transmission.
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Transmission

/2/1 supercell made
of the gapped nonreciprocal crystals with m 1 = m2 = m. Panels (a,b) and (c,d) correspond to the backward and forward wave propagation,
respectively. Transmission calculated numerically is plotted with a blue line. Green dashed curve is the analytically retrieved dependence.
Parameters used are the same as in the main text Fig. 2.

Figure S1 presents additional calculated results for nonreciprocal tunneling in the case where the side domains 1 and the
middle domain 2 are all made of PT-violating gapped crystals.

We propose a realistic design based on the meta-waveguide, which is amenable to physical implementation at microwave

3

frequencies [24,26]. The meta-waveguide consists of two parallel metal plates, with the triangular array of compound metal
rods embedded between the plates, as shown in fig. S2 (a). The parameters of the structure are adjusted in a way to resume the
degeneracy between TE and TM modes. A small air gap is present between lower and upper rods to avoid the penetration of
the spurious modes into the bandgap region near the Γ point. The rods attached to the bottom plate are triangulated to break the
in-plane inversion symmetry, while the attached to the upper plate are shorter and are kept of the circular shape in order to break
the out-of-plane inversion symmetry, thus mixing TE and TM modes. These two symmetry breaking mechanisms give rise to
two distinct mass terms in the effective Hamiltonian near K (K′) points. Importantly, the mass terms behave in a dissimilar way
for different valleys and pseudo-spin states. We tune the parameters of the structure in such a way that the mass terms cancel
each other out at K′ (K), while they double at K (K′) for the pseudo-spin up (down) state.

First-principle finite element method numerical calculations are carried out to obtain the band structure, the eigenmodes, and
the phase difference of their fields for the triangular array, see fig. S2 (b). The (pseudo) spin-up (spin-down) bands depicted by
red (blue) lines have a bandgap at K (K′), while they are degenerate at K′ (K), and two states are mixed when they approach
the Γ point, as indicated by the blurred color of the bands. One way to characterize pseudo-spin states is to evaluate the phase
difference ∆Φ between Ez and Hz field components of the modes. As shown in the left (at K′) and right (at K) panels of

fig. S1. Photonic bands and transmission spectra. Photonic bands (a,c) and transmission coefficients (b,d) for 1

section S  . Specific designs of spin-valle--coupled metacrystals with one-way Dirac cones



the side view of the unit cell, respectively. (b) Band structure
for the triangular array of the rodes in the meta-waveguide (middle panel),and the phase differences between Ez and Hz for different bands
(from top to bottom) at K′ (left panel) and K (right panel) points, respectively. Parameters: the lattice constant a0 = 16 mm, diameter of the
rod d = 5.52 mm, distance from the center to the side of the equilateral triangle rw = 2.32 mm, with the fillet radius at each corner rf = 0.86
mm, the distance between the parallel plates h0 = 16 mm, and heights of the triangulated and circular rods are ht = 11.52 mm and hc = 4
mm, respectively.

Fig (b), Ez and Hz are in phase for the spin-up states, with ∆Φ = 0, while Ez and Hz appear out-of-phase for the spin-down
states, with ∆Φ = π .

fig. S2. Schematics of the meta-waveguide design and band structures. (a) Schematics of the meta-waveguide design. From left
to right: the top (circular), bottom (triangulated) parts of the structure and

ure S2
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