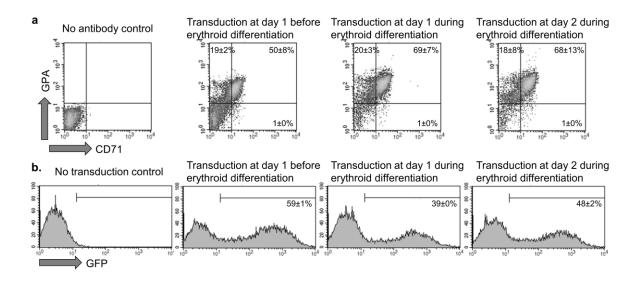
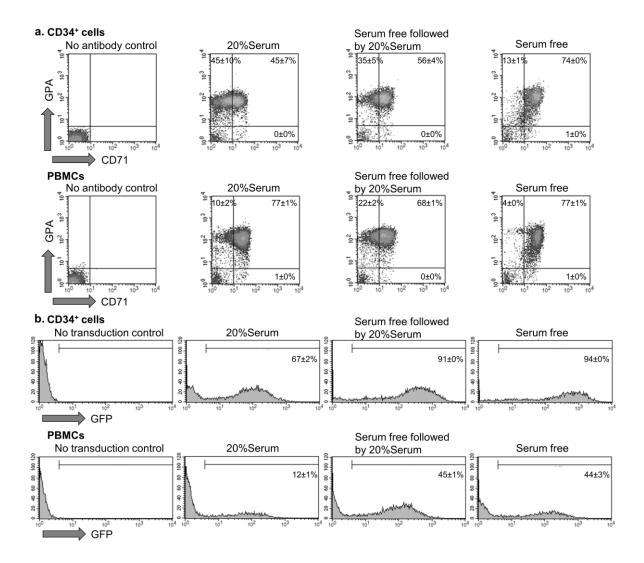
OMTM, Volume 9

Supplemental Information

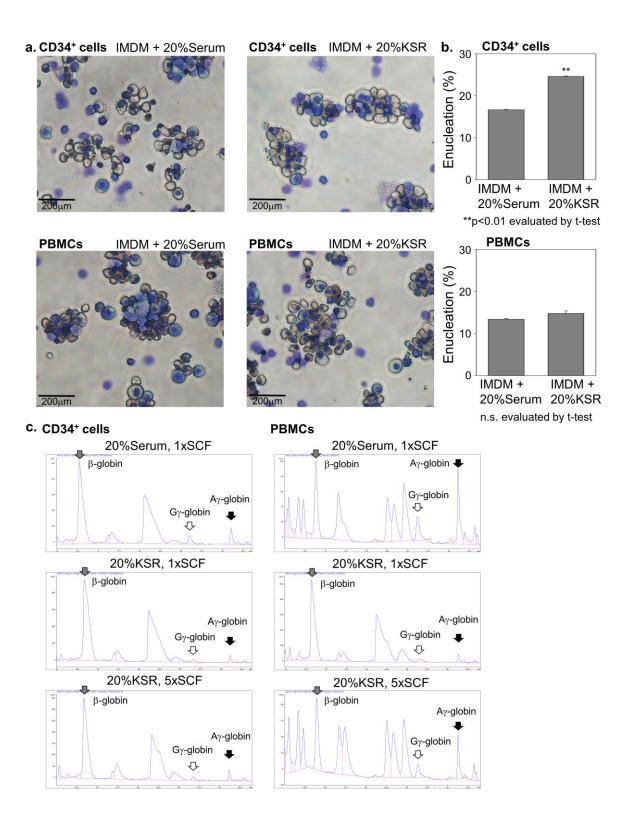
Serum-free Erythroid Differentiation for

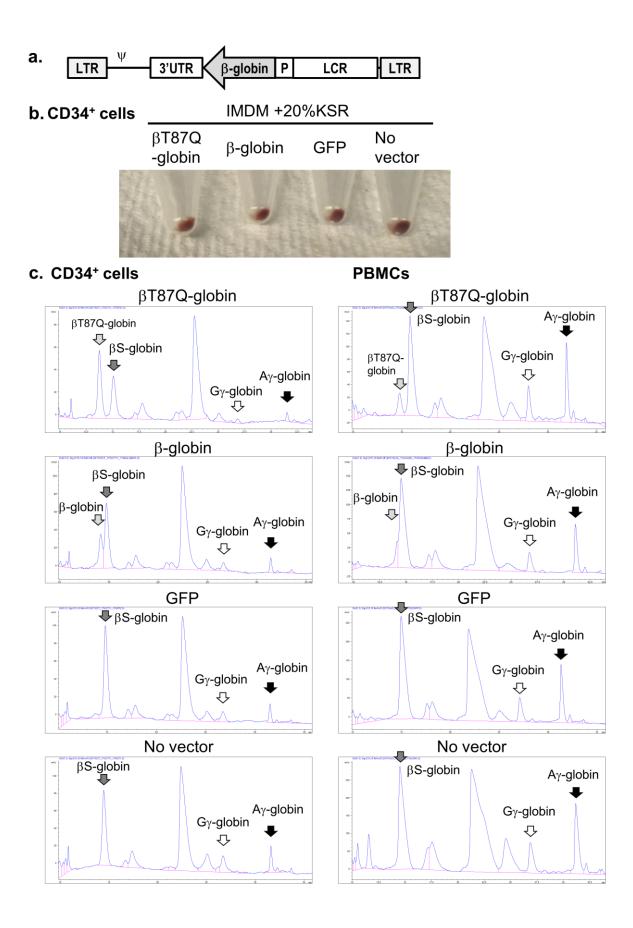

Efficient Genetic Modification and High-Level

Adult Hemoglobin Production


Naoya Uchida, Selami Demirci, Juan J. Haro-Mora, Atsushi Fujita, Lydia N. Raines, Matthew M. Hsieh, and John F. Tisdale

Supplementary figures


Supplementary figure 1. Flow cytometry panels for lentiviral transduction of human CD34⁺ cells before and after initiating erythroid differentiation. (a) Dot plot panels for co-expression of GPA and CD71 in CD34⁺ cell-derived erythroid cells with lentiviral transduction 12 days after differentiation. (b) Histograms of GFP expression in CD34⁺ cell-derived erythroid cells with lentiviral transduction 12 days after differentiation. Values: mean ± SEM. All experiments were performed in triplicate.


Supplementary figure 2. Flow cytometry panels for transduction in serum-free erythroid differentiation for human CD34⁺ cells and PBMCs. (a) Dot plot panels for co-expression of GPA and CD71 in CD34⁺ cell and PBMC-derived erythroid cells with lentiviral transduction 11 days after differentiation. (b) Histograms of GFP expression in CD34⁺ cell and PBMC-derived erythroid cells with lentiviral transduction 11 days after differentiation. Values: mean ± SEM. All experiments were performed in triplicate.

Supplementary figure 3. Cell morphology and RP-HPLC panels for β -globin production with IMDM-based serum-free erythroid differentiation media with KSR supplementation. (a) Two weeks after serum-containing or serum-free erythroid differentiation, cell morphology was evaluated by cytospin with Wright-Giemsa stain in CD34⁺ cell- and PBMC-derived erythroid cells. (b) Enucleation was analyzed by flow cytometry with Hoechst 33342 stain. (c) RP-HPLC peaks of β -globin and γ -globin production from differentiated erythroid cells with 20% serum (1xSCF), 20% KSR (1xSCF), and 20% KSR (5xSCF). Bars: mean ± SEM. Gray arrow: β -globin, white arrow: G γ -globin, black arrow: A γ -globin.

Supplementary figure 4. Vector construct, cell pellets, and RP-HPLC panels for adult Hb production with β -globin lentiviral transduction in CD34⁺ cells and PBMCs from SCD. (a) Schematic construct of β -globin-expressing lentiviral vectors (with or without T87Q). (b) Red cell pellets 2 weeks after erythroid differentiation to asses for hemoglobinization. (c) RP-HPLC peaks of β T87Q-globin, β -globin, β S-globin, and γ -globin production from differentiated erythroid cells with lentiviral transduction encoding β T87Q-globin, β -globin, or GFP. LTR: long terminal repeat, ψ : packaging signal, 3'UTR: 3' untranslated region, P: β -globin promoter, LTR: locus control region, light gray arrow: β T87Q-globin or β -globin, gray arrow: β S-globin, white arrow: $G\gamma$ -globin, black arrow: $A\gamma$ -globin.

