Synthesis of Phosphatidylserine and Its Stereoisomers: Their Role in Activation of Blood Coagulation

Suman Mallik, Ramesh Prasad, Anindita Bhattacharya, Prosenjit Sen*

Department of Biological Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India Email: <u>bcps@iacs.res.in;</u> Fax: (+91)3324734971

Supporting information

TABLE OF CONTENTS

1. Experimental Procedure	S1
2. Scheme of PL synthesis	S2
3. ¹ H NMR, ³¹ P NMR and ¹³ C NMR, MALDI-MS Spectra	S15
4. DLS Analysis, Preperation of relipidated Tissue Factor and FXa procoagulant Assay	S41
5. Computational Section	S42
6. References	S46

1. Experimental Procedure:

All moisture sensitive reactions were performed in oven dried glassware with Teflon coated magnetic stirring bar under nitrogen atmosphere using dry, freshly distilled solvents, unless otherwise noted. Air- and moisture-sensitive liquids were transferred via syringe and a stainless-steel needle. Reactions were monitored by thin layer chromatography (TLC, Silica gel 60 F254 Merck Made in Germany) plates by UV light, Cupric Acetate(5:1 Cupric Acetate-water) Bromocresol Green, Ninhydrin (0.2g ninhydrin in 100ml ethanol and heat to 110°C), Potassium permanganate as developing agents. All workup and purification procedures were carried out with reagent-grade solvents under room temperature atmosphere unless otherwise stated. Column chromatography was performed using silica gel 60-120 mesh, 100-200 mesh and 230-400 mesh. Yields mentioned as chromatographically and spectroscopically homogeneous materials unless otherwise stated. Optical rotations were measured using sodium (589, D line)

lamp and are reported as follows: $[\alpha]_D^{25}$ (c = mg/100 ml, solvent). HRMS were taken using QuadrupleTOF (Q-TOF) micro MS system using electron spray ionization (ESI) technique and MULDI-MS were measure MULDI-TOP matrix was taken saturated solution of 2,5-Dihydroxybenzoic acid (DHB). ¹H NMR spectra were recorded on 400 and 500 MHz spectrometers in CDCl₃ solvents and calibrated using residual undeuterated solvent as an internal reference, and the chemical shifts are shown in ppm scales. Multiplicities of NMR signals are designated as s (singlet), d (doublet), t(triplet), q(quartet), br (broad), m (multiplet, for unresolved lines) etc. ¹³C NMR spectra were recorded on 100 and 125 MHz and ³¹P NMR spectra were recorded on 202 and 162 MHz. All the spectra was reported in CDCl₃ and relative to δ **7.26** ppm for ¹H NMR, δ **77.0** ppm for ¹³C NMR and ³¹P NMR spectra were taken ¹H decoupling.

2. Scheme of PL synthesis

(S)-methyl 2,3-dihydroxypropanoate (9)¹:

To make a solution of L-Serine (5.0 g 47.578 mmol), it was dissolved in 18M H₂SO₄ (5.28mL, 95.0 mmol), and a solution of sodium nitrite (65.9 g, 95.156 mmol, dissolved in 10mL H₂O) was added slowly (for over 30 min) to it at 0^{0} C. The resulting solution was warmed to room temperature and stirred for 48h. The reaction mixture was concentrated under reduced pressure to get yellowish oil and diluted with 50ml EtOH. After that, insoluble inorganic salt is removed by Celite pad and concentrated under reduced pressure. The process was repeated 3 times to remove the residual H₂O and inorganic salt, resulting in the formation of crude S-2,3-dihydroxypropanoic acid as a colorless liquid. The crude material was dissolved in anhydrous MeOH (25mL) at 0^{0} C with addition of thionly chloride (6.79 mL, 57.09 mmol) in a drop wise manner. The solution was stirred at 0^{0} C for 30 min and at room temperature for 24 h. The solvent was removed under reduced pressure. This procedure was repeated three times. After that crude mixture was purified using flash column chromatography (SiO₂, 60-

120mesh, 50% EtOAc in Hexane as elutant). The appearance of the purified compound **9** (4.45 g, 78 %) is like colorless oil. $R_f = 0.5$ (50% EtOAc in hexane). ¹H NMR(500 MHz, CDCl₃): δ 4.28-4.24(m, 1H), 3.89-3.86(m, 2H), 3.83-3.79(m, 1H), 3.78(s, 3H), 3.43(br,1H); ¹³C NMR(100 MHz, CDCl₃) δ :173.5, 71.9, 64.1, 52.8; HRMS (ESI) m/z calculated for C₄H₈O₄ [2*M* + *Na*]⁺ 263.074 found 263.074

(S)-methyl 2-hydroxy-3-(trityloxy)propanoate(10)²:

The purified product **9**, (4.2 g, 34.97 mmol) was dissolved in CH₂Cl₂ at 0°C in ice water bath after that TBAI (3.8g, 10.49 mmol) and Triethylamine(14.63ml, 104.9 mmol) were added to this solution. To this solution triphenylmethyl chloride (10.72 g, 38.47 mmol) was added at and whole solution was stirred for 18 h. After quenching the reaction with 0.5 M aqueous HCl, the resultant organic layer was washed with saturated NaHCO₃ and brine and the whole solution was dried over Na₂SO₄. The solvent was evaporated and the resultant residue was purified by chromatography (20% EtOAc in Hexane). The appearance of the purified compound *10* (10.89 g, 86%) is like a colorless oil. $R_f = 0.5$ (20% EtOAc in hexane). ¹H NMR (500 MHz, CDCl₃) : δ 7.41-7.40 (m, 6H), 7.31-7.28 (m, 6H) 7.25-7.21 (m, 3H), 4.26 (m, 1H), 3.76 (s, 3H) ,3.48-3.46 (dd, *J* = 4.5Hz, 3.5 Hz 1H), 3.37-3.34 (3.15 (br, 1H), 3.15(br, 1H) ; ¹³C NMR (100 MHz) 173.64, 143.73, 128.76, 128.00, 127.28, 86.62, 70.92, 65.44, 52.58. Elemental Analysis calculated for (C₂₃H₂₂O₄): C, 76.22; H, 6.12; found: C,76.21; H, 6.11.

(R)-3-(trityloxy)propane-1,2-diol(11):

To the solution of (S)-2-hydroxy-3-(trityloxy) propanoic acid **10** (1.20 g, 3.31 mmol) in 50 ml of dry diethyl ether LiAlH₄ (0.314 g, 8.277 mmol) was added portion wisely at 0° C. The reaction mixture was stirred at room temperature for another 1 hours. After that reaction was quenched carefully with 2ml of H₂O until no gas was released. 10ml 0.5 N HCl was added into the

reaction mixture. The product was filtrated by celite pad. The product was extracted with ethyl acetate (20mL x 3). The organic phase was washed with brine and dried over Na₂SO₄. After removal of the drying agent by filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (50% EtOAc in Hexane) to yield the desired product **11**(1.040 g, 94% yield) as a colorless gummy substance, $R_f = 0.4$ (50% EtOAc in hexane). [α]_D²⁵ = -3.1 (c = 7, CHCl₃), ¹H NMR(400 MHz, CDCl₃): δ 7.45-7.43(m, 6H), 7.34-7.31(m, 6H), 7.28-7.24(m, 3H), 3.88(dd, J = 5.5Hz, 4.4Hz, 1H), 3.60-3.72(m, 2H), 3.22-3.31(m, 2H), 2.50(br, 1H), 2.06 (br, 1H); ¹³C NMR(100 MHz): δ 143.8, 128.8, 128.7, 128.1, 127.3, 87.1, 71.2, 65.2, 64.4; HRMS (ESI) m/z calculated for C₂₂H₂₂O₃ [M + Na]⁺ 357.146 found 357.146

(Z)-(S)-3-(trityloxy)propane-1,2-diyl dioleate (12):

To a solution of **11**(5.5 g, 16.44 mmol), in 100mL CH₂Cl₂, then oleic acid(12.0, 37.82 mmol) was added at 0° C ice water bath in drop wise manner over 40 min. A solution of DCC(10.18 g, 49.34 mmol) in dry CH₂Cl₂(50 mL) was added to it followed with addition of DMAP(1 g, 8.22 mmol) and the resulting suspension was stirred for 18 h. The solid was removed by filtration through Celite, the filtrate was concentrated under reduced pressure, compound was purified by column chromatography (5 % EtOAc in Hexane) to yield the desired product **12** (13.63g, 96% yield) as a colorless oily substance, $R_f = 0.5$ (5% EtOAc in hexane). ¹H NMR(500 MHz, CDCl₃) : δ 7.42-7.21 (m, 6H) 7.30-7.21 (m, 9H), 5.37-5.32 (m, 4H), 5.28-5.23 (m, 1H), 4.35-4.32 (dd, J = 10Hz, 3.5Hz, 1H) 4.24-4.21 (dd, J = 6.5Hz, 5.5Hz, 1H), 3.25-3.20 (m, 2H), 2.34-2.31 (m, 2H), 2.29-2.20 (m, 2H), 2.06-1.98 (m, 8H), 1.64-1.60 (m, 2H), 1.56-1.53 (m, 2H), 1.26-1.25 (m, 40H), 0.92-0.83 (m, 6H); ¹³C NMR (100 MHz): δ 173.5, 173.4, 143.7, 130.3, 130.1, 129.8, 129.0, 128.7, 128.5, 128.2, 128.0, 127.9, 127.4, 127.2, 125.9, 86.8, 70.5, 63.0, 62.3, 34.6, 34.6, 34.2, 32.7, 32.0, 31.6, 31.5, 30.3, 30.3, 29.9, 29.8, 29.8, 29.8, 29.7, 29.6, 29.4, 29.4, 29.4, 29.3, 29.3, 29.2, 29.2, 29.1, 27.3, 27.3, 27.3, 25.7, 25.1, 24.9, 22.8, 22.7, 14.2, 14.2;

(MALDI-MS (ESI) m/z calculated for $C_{58}H_{86}O_5 [M + Na]^+$ 885.637 found 885.637. Elemental Analysis calculated for ($C_{58}H_{86}O_5$): C, 80.69; H, 10.04; found: C,80.65; H,10.06.

(Z)-(S)-3-hydroxypropane-1,2-diyl dioleate (13):

To a solution of **12**(13.00 g, 15.05 mmol) in 50 mL CH₂Cl₂, TFA (0.6mL, 8.09 mmol) was added drop wise at 0° C ice water bath over 5min and resulting solution was stirred for 4h. Solvent was removed under reduced pressure, compound was purified by column chromatography (5% EtOAc in Hexane) to yield the desired product **13** (9.16 g, 98% yield) as a colorless oily substance $R_f = 0.5$ (15% EtOAc in hexane). ¹H NMR(500 MHz, CDCl₃) : δ 5.39-5.32(m, 4H), 5.09-5.07(m, 1H), 4.33-4.30(m, 2H), 4.25-4.21(m, 1H), 3.73-3.72(m, 2H), 2.36-2.30(m, 4H), 2.07-1.99(m, 8H), 1.44-1.1.41(m, 4H), 1.37-1.25(m, 40), 0.89-0.83(m, 6H), ¹³C NMR(100 MHz,CDCl₃) : δ 173.8, 173.5, 130.3, 130.1, 129.8, 72.3, 62.2, 61.7, 34.6, 34.4, 34.2, 33.9, 33.8, 32.0, 32.0, 31.7, 31.6, 31.5, 30.3, 29.9, 29.8, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 29.2, 27.3, 27.3. (MALDI-MS (ESI) m/z calculated for C₃₉H₇₂O₅ [M + Na]⁺ 643.527. found 643.527. Elemental Analysis calculated for (C₃₉H₇₂O₅): C, 75.43; H, 11.69; found: C, 75.42; H, 11.68.

Triethylammonium (R)-2,3-bis (oleoyloxy)propyl phosphonate (6):

To a solution of 13(3 g, 4.83 mmol) in dry pyridine Diphenyl phosphite(5.5mL, 28.98 mmol) was added drop wise over 2 min at 0° C ice water bath and resulting solution was stirred for 1h. After that 10mL of 1:1 triethyl amine–water mixture was added. The reaction mixture was stirred at room temperature for another 1hour, following removal of pyridine under reduced pressure. The crude product was dissolved in CH₂Cl₂; organic phase was washed with saturated solution of

NaHCO₃ (3 times), and next with brine finally dried over Na₂SO₄. After removal of the drying agent by filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (95:5:0.5 CHCl₃-MeOH-NEt₃) to yield the desired product **6**(3.4 g, 90 % yield) as a colorless substance $R_f = 0.4$ (5% MeOH in CHCl₃). ¹H NMR (400 MHz, CDCl₃) : δ 7.59(br, 1H), 6.04(d, *J*=1.2Hz, 1H), 5.31(m, 4H), 5.30(m, 1H), 4.4-4.3(m, 1H), 4.2-4.1(m, 1H), 3.96-3.93(m, 2H), 3.03–2.98(m, 6H), 2.28-2.23(m, 4H), 2.02-2.00(m, 8H), 1.56(m, 4H), 1.30-1.23(m, 49H), 0.85-0.82(m, 6H); ¹³C NMR(100 MHz, CDCl₃): δ 173.4, 173.0, 130.0, 129.8, 70.6, 62.7, 61.9, 45.6, 34.4,34.2,31.9,31.6, 29.8, 29.8, 29.7, 29.6, 29.4, 29.2, 27.3, 27.2, 25.7, 24.9, 22.7, 22.6, 14.1, 8.7; ³¹P NMR(162 MHz, CDCl₃): 4.60; (MALDI-MS (ESI) m/z calculated for C₄₅H₈₈NO₇P [$M + Na - NEt_3$]⁺ 707.498 found 707.498 (In MALDI-MS counter ion triethyl amine is replaced by sodium ion) ; Elemental Analysis calculated for (C₄₅H₈₈NO₇P): C, 68.75; H, 11.28; N, 1.78; found: C, 68.78; H,11.26; N, 1.75.

(R)-2,3-bis(oleoyloxy)popyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3oxopropyl) phosphite (20)³:

To a solution of compound **6**(150 mg, 0.187 mmol) and **(S)-tert-butyl 2-((tert-butoxycarbonyl)amino)-3-hydroxypropanoate** (58 mg, 0.224 mmol) in dry pyridine, Pivaloyl chloride(0.150 mL, 1.12mmol) was added in drop wise manner at 0° C ice-water bath and resulting solution was stirred for 1h. Solvent was removed under reduced pressure. The crude product was dissolved in CH₂Cl₂, organic phase was washed with saturated solution of NaHCO₃ (3 times), and brine and dried over Na₂SO₄. The resultant compound was purified by column chromatography (20% EtOAc in Hexane) to yield the desired product **20**(165mg, 95% yield) as a colorless oil, $R_f = 0.5$ (25% EtOAc in hexane). $[\alpha]_D^{25} = 7.56$ (c = 0.8, CHCl₃); ¹H NMR(500 MHz, CDCl₃): δ 6.19(d, J = 10Hz, 1H), 5.60-5.40(m, 1H), 5.36(m, 4H), 4.31-4.13(m, 8H), 2.33(m, 4H), 2.04-1.98(m, 8H), 1.61(m, 4H), 1.47-1.44(m, 18H), 1.29-1.18(m, 40), 1.87-1.85(m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 184.0, 174.0, 173.2, 130.3, 130.1, 129.8, 128.2, 83.2, 80.3, 73.0, 68.5, 65.1, 63.2, 63.0, 38.6, 34.2, 34.1, 34.0, 32.0, 31.6, 29.9, 29.8, 29.7, 29.6, 29.4, 29.3, 29.2,

28.4, 28.1, 28.0, 27.3, 27.2, 27.1, 25.7, 25.0, 24.9, 22.8, 22.7, 18.7, 14.2, 14.2 ³¹P NMR (202 MHz, CDCl₃) : δ 8.79. (MALDI-MS (ESI) m/z calculated for C₅₁H₉₄NO₁₁P [M + Na]⁺ 950.645 found 950.645; Elemental Analysis calculated for (C₅₁H₉₄NO₁₁P): C, 65.99; H, 10.21; N, 1.51; found: C, 65.65; H, 10.15; N, 1.50.

(S)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (1):

To a solution of 20(150 mg, 0.161 mmol) in 95% pyridine-water (1.5 mL), iodine (10 mol%) was added at 0[°]C in ice-water bath.⁴ Resulting solution was stirred for 3h. Solvent was removed under reduced pressure. The crude product was dissolved in CH₂Cl₂; organic phase was washed with saturated solution of Sodium thiosulfate (3 times). The solvent was removed under reduced pressure. Resultant compound was dissolved in 5mL CH₂Cl₂ at 0⁰ C, 0.5mL TFA was added drop wise. The resulting solution was stirred at 0^{0} C for 30min and subsequently at room temperature for 30 min. The solvent was removed under reduced pressure, washed with brine and dried over Na₂SO₄. After removal of the drying agent by filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (9.5:0.5:0.5 = CHCl₃:MeOH:NEt₃) to yield the desired product 1(122mg, 98%)yield) as a colorless semisolid, $R_f = 0.23$ (5% MeOH in CHCl₃). $[\alpha]_D^{25} = 19.53$ (c = 1.1, CHCl₃) which is similar to the natural PS + 20.04. (Optically purity of the compound 1 is 97.45%); ¹H NMR(500 MHz, CDCl₃): δ 8.28(br, 3H), 5.36-5.33(m, 4H), 4.9(m, 1H), 4.33-4.11(m, 7H), 2.35-2.30(m, 4H), 2.06-2.03(m, 8H), 1.60(m, 4H), 1.29-1.25(m, 40H), 0.88-0.85(m, 6H); ¹³C NMR(125 MHz, CDCl₃): δ 173.5, 173.4, 173.1, 130.3, 130.1, 130.0, 129.8, 70.6, 69.6, 64.0, 62.7, 62.0, 45.6, 34.4, 34.2, 32.0, 31.6, 29.8, 29.7, 29.6, 29.4, 29.3, 29.2, 27.3, 25.7, 25.0, 24.9, 22.7, 22.6, 14.1; ³¹P NMR(162 MHz, CDCl₃): δ 0.50; (MALDI-MS (ESI) m/z calculated for $C_{42}H_{77}NO_{10}P[M + Na]^+$ 809.518 found 809.518; HRMS (ESI) m/z calculated for $C_{42}H_{77}NO_{10}P$ $[M + K]^+$ 825.4920 found 825.4920; Elemental Analysis calculated for (C₄₂H₇₇NO₁₀P): C, 64.10; H, 9.86; N, 1.78; found: C, 64.08; H, 9.85; N, 1.77.

(R)-2,3-bis(oleoyloxy)popyl((R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3oxopropyl) phosphite (21) :

Procedure **20** was similarly followed again for the preparation of **21**. $R_f = 0.5$ (25% EtOAc in hexane) $[\alpha]_D^{25} = -9.21(c=1.1, CHCl_3)$; ¹H NMR(400 MHz, CDCl_3): δ 6.15(d, 1H), 5.48-5.46(m, 1H), 5.35-5.3 (m, 4H) 4.39-4.09(m, 8H), 2.33-2.28(m, 4H), 2.06-1.97(m, 8H), 1.60-1.59(m, 4H), 1.53-1.50(m, 18H), 1.28-1.21(m, 40H), 0.94-0.93(m, 6H); ¹³C NMR(100 MHz, CDCl_3): δ 184.1, 173.2, 173.1, 168.1, 130.3, 130.1, 129.8, 83.2, 83.1, 73.0, 63.2, 63.0, 60.5, 38.6, 34.2, 34.1, 34.0, 32.0, 31.6, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 28.4, 28.1, 28.0, 27.3, 27.2, 27.1,25.7, 25.0, 24.8, 22.8, 22.6, 14.2, 14.1; ³¹P NMR(162 MHz, CDCl_3): δ 7.57. (MALDI-MS (ESI) m/z calculated for C₅₁H₉₄NO₁₁P [*M* + *Na*]⁺ 950.645 found 950.645; Elemental Analysis calculated for (C₅₁H₉₄NO₁₁P): C, 65.99; H, 10.21; N, 1.51; found: C, 65.65; H, 10.15; N, 1.50.

(R)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (3): $\begin{array}{c} & & \\ & &$

Procedure 1 was similarly followed again for the preparation of **3**, $R_f = 0.23$ (5% MeOH in CHCl₃). $[\alpha]_D^{25} = -11.23(c= 0.9, CHCl_3)$; ¹H NMR(400 MHz, CDCl₃): δ 8.65(br, 3H), 5.34(m, 4H), 4.58-4.14(m, 8H), 2.34-2.31(m, 4H), 2.02-2.00(m, 8H), 1.61(m, 4H), 1.26-1.11(m, 40H), 0.88-0.86(m, 6H); ¹³C NMR(100 MHz, CDCl₃): δ 178.1, 174.0, 130.3, 130.1, 129.8, 68.3, 65.0, 62.0, 53.2, 38.9, 34.1, 34.0, 33.9, 32.0, 31.9, 31.7, 31.6, 29.8, 29.7, 29.6, 29.4, 29.2, 29.1, 29.0, 28.3, 28.0, 27.9, 27.8, 27.7, 27.4, 27.3, 27.2, 27.1, 27.0, 26.9, 26.8, 24.9, 24.8, 22.7, 22.6, 14.1; ³¹P NMR(202 MHz, CDCl₃): δ -1.34 (MALDI-MS (ESI) m/z calculated for C₄₂H₇₇NO₁₀P [M + Na]⁺ 809.519 found 809.519; HRMS (ESI) m/z calculated for C₄₂H₇₇NO₁₀P [M + K]⁺ 825.4920 found 825.4920; Elemental Analysis calculated for (C₄₂H₇₇NO₁₀P): C, 64.10; H, 9.86; N, 1.78; found: C, 64.08; H, 9.85; N, 1.77.

(S)-methyl 2,2-dioxolane-4-carboxylate(14):

To a solution of **9**(10 g, 83.26 mmol) and 2,2-dimethoxy propane(12.24 mL, 99.91 mmol) in acetone(50 mL), HClO₄ (0.522 ml, 8.32 mmol) was added at 0° C in ice bath. The mixture was stirred at room temperature for 2h, concentrated to remove the volatiles in vacuum, diluted with NaHCO₃(50 mL), and extracted with ethyl acetate. The combined organic layers were dried (Na₂SO₄), filtered, and concentrated. The residue was purified by column chromatography (Hexane/EtOAc, 20:1) to yield compound **14** (12.26 g, 92%) as a colorless oil, $R_f \approx 0.5$ (10% EtOAc in hexane). ¹H NMR (400 MHz, CDCl₃): δ 4.54-4.51(m, 1H), 4.18-4.14(m, 1H), 4.04-4.01(m, 1H), 3.70(s, 3H), 1.42(s, 3H), 1.33(s, 3H); ¹³C NMR(100 MHz, CDCl₃): δ 171.5, 111.3, 74.1, 67.2, 52.2, 25.5, 25.4; Elemental Analysis calculated for (C₇H₁₂O₄): C, 52.49; H, 7.55; found: C, 52.50; H, 7.53.

(S)-3-(trityloxy)propane-1,2-diol(17):

To the solution of **14** (5.00 g, 31.25 mmol) in 100 ml of dry diethyl ether, LiAlH₄ (3g, 78.12 mmol) was added portion wisely at 0° C. The reaction mixture was stirred at room temperature for another 1hour. After that, reaction was quenched carefully with 2ml of H₂O, until no gas was released. 10ml 0.5 N HCl was added into the reaction mixture. The product was filtered by celite pad. The product was extracted with ethyl acetate (50mL x 3). The organic phase was washed with brine and dried over Na₂SO₄. After removal of the drying agent by filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography (50% EtOAc in Hexane) to yield the desired product **15**(3.87 g, 94% yield) as a colorless substance. The crude product **15** (3.87 g, 29.28 mmol) was dissolved in CH₂Cl₂, TBAI (1.08g, 2.92 mmol) and Triethylamine(12.28 ml, 87.85 mmol) were added to this solution. To this solution triphenylmethyl chloride (8.97 g, 32.21 mmol) was added at 0⁰ C in ice water bath and whole solution was stirred for 18h. After quenching the reaction with 0.5M aqueous HCl, the

resultant organic layer was washed with saturated NaHCO₃ and brine. The whole solution was dried over Na₂SO₄. Solvent was evaporated and the resultant residue was purified by chromatography (20% EtOAc in Hexane) to yield product **16** (9.4 g, 86% yield). To a solution of compound **16**(3g, 8.01 mmol) in 50ml CH₃CN-H₂O (2:1), SbCl₃ (1.82g, 8.01 mmol) was added portion wisely at room temperature. Resultant solution was refluxed for 4h at 40-50[°] C. After quenching the reaction with saturated NaHCO₃ the product was concentrated by removing the solvent in vacuum. The product was extracted with ethyl acetated (50mL x 3). The organic phase was washed with brine and dried over Na₂SO₄. After removal of the drying agent by filtration, the filtrate was concentrated under reduced pressure. The crude product was purified by silica gel column chromatography(50 % EtOAc in Hexane) to yield the desired product **17**(1.4g, 53% yield) as a colorless gummy substance, $R_f = 0.5$ (50% EtOAc in hexane); $[\alpha]_D^{25} = 3.8(c = 2.5, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.15(m, 15H), 3.81(m, 1H), 3.64-3.61(m, 1H), 3.55-3.51(m, 1H), 3.22-3.16(m, 2H), 2.92(br, 1H), 2.60(br, 1H); ¹³C NMR(125 MHz, CDCl₃): δ 143.7, 128.7, 127.9, 127.2, 86.9, 71.3, 65.0, 64.3; Elemental Analysis calculated for (C₂₂H₂₂O₃): C, 79.02; H, 6.63; found: C, 79.03; H, 6.61.

(Z)-(R)-3-(trityloxy)propane-1,2-diyl dioleate (18):

Procedure **12** was similarly followed again for the preparation of **18**. $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCL₃) : δ 7.44-7.23(m, 15H), 5.36(m, 4H), 5.27(m, 1H), 4.37-4.35(m, 1H), 4.26-4.25(m, 1H), 3.26-3.25(m, 2H), 2.35(m, 2H), 2.24-2.22(m, 2H), 2.05-2.03(m, 8H), 1.65-1.56(m, 2H), 1.28(m, 42H), 0.90-0.88(m, 6H); ¹³C NMR (500 MHz, CDCL₃) : δ 173.42, 173.06, 143.76, 130.35, 130.14, 129.86, 128.77, 128.23,128.06,127.98, 127.25, 86.58, 70.60, 62.98, 622.41, 34.52, 34.23, 32.05, 31.67, 29.91, 29.87, 29.84, 29.80, 29.77, 29.67, 29.62, 29.46, 29.41, 29.36, 29.31, 29.26, 29.24, 27.37, 27.33, 25.80, 25.10, 24.97, 22.81, 22.71, 14.23; (MALDI-MS (ESI) m/z calculated for C₅₈H₈₆O₅ [M + Na]⁺ 885.637 found 885.637; Elemental Analysis calculated for (C₅₈H₈₆O₅): C, 80.69; H, 10.04; found: C, 80.72; H, 10.05.

(Z)-(S)-3-hydroxypropane-1,2-diyl dioleate(19):

Procedure **13** was similarly followed again for the preparation of **19**, $R_f = 0.5$ (15% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃): δ 5.36-5.31(m, 4H), 4.15-4.08(m, 4H), 3.73-3.72(m, 2H), 2.35-2.30(m, 4H), 2.05-1.98(m, 4H), 1.63-1.59(m, 4H), 1.29-1.25(m, 44H), 0.89-0.86(m, 6H); ¹³C NMR(125 MHz, CDCl₃): δ 174.1, 130.3, 130.1, 129.8, 72.2, 68.5, 65.1, 34.4, 34.2, 32.0, 31.6, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.2, 27.3, 27.3, 25.7, 25.1, 24.8, 22.8, 22.7, 14.2, (MALDI-MS (ESI) m/z calculated for C₃₉H₇₂O₅ [M + Na]⁺ 643.527 found 643.527.

(S)-2,3-bis(oleoyloxy)propyl phosphonate (8):

Procedure **6** was similarly followed again for the preparation of **8**, $R_f = 0.4$ (5% MeOH in CHCl₃); ¹H NMR(500 MHz, CDCl₃): δ 7.50(br, 1H), 6.04(s, 1H), 5.35-5.32(m, 4H), 5.31(m, 1H), 4.59-4.57(m, 1H), 4.23-4.16(m, 2H), 3.99-3.16(m, 1H), 3.05-3.01(m, 6H), 2.29-2.24(m, 4H), 2.04-1.94(m, 8H),1.57-1.56(m, 4H), 1.34-1.29(m, 49H), 0.89-0.86(m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 173.5, 130.3, 130.1, 129.8, 129.8, 69.8, 62.7, 62.2, 34.4, 34.2, 32.0, 31.6, 29.9, 29.8, 29.8, 29.7, 29.6, 29.4, 29.4, 29.3, 29.3, 27.3, 25.7, 24.9, 22.8, 22.6, 14.2, 14.1, 8.6. ³¹P NMR(202 MHz, CDCl₃): δ 4.81, 4.13 (tautomerization),(MALDI-MS (ESI) m/z calculated for C₄₅H₈₈NO₇P [$M + Na - NEt_3$]⁺ 707.498 found 707.498 (In MALDI-MS counter ion triethyl amine is replaced by sodium ion); Elemental Analysis calculated for (C₄₅H₈₈NO₇P): C, 68.75; H, 11.28; N, 1.78; found: C, 68.78; H, 11.26; N, 1.75.

(S)-2,3-bis(oleoyloxy)propyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3oxopropyl) phosphite(22):

Procedure 20 was similarly followed again for the preparation of 22, $R_f = 0.5$ (25% EtOAc in hexane); $[\alpha]_D^{25} = 9.53(c = 2.4, CHCl_3)$; ¹H NMR(500 MHz, CDCl_3) : δ 6.18(m, 1H), 5.48(m, 1H), 5.35-.5.29(m, 4H), 4.83(m, 1H), 4.40-4.10(m, 7H), 2.34-2.31(m, 4H), 2.11-1.94(m, 8H), 1.60(m, 4H), 1.46-1.33(m, 18H), 1.28-1.12(m, 40H) 0.87-0.85(m, 6H); ¹³C NMR (125 MHz, CDCl_3): δ 184.1, 173.2, 173.1, 168.1, 130.3, 130.1, 129.8, 83.2, 80.3, 73.0, 68.5, 66.1, 65.1, 63.2, 63.0, 61.6, 60.5, 54.5, 38.5, 34.2, 34.1, 34.0, 32.0, 31.6, 29.9, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 29.0, 28.4, 28.1, 28.0, 27.3, 27.1, 25.2, 24.9, 22.8, 22.69, 14.2, 14.1; ³¹P NMR(202 MHz, CDCl_3): δ 8.43. (MALDI-MS (ESI) m/z calculated for C₅₁H₉₄NO₁₁P [M + Na]⁺ 950.645 found 950.645; Elemental Analysis calculated for (C₅₁H₉₄NO₁₁P): C, 65.99; H, 10.21; N, 1.51; found: C, 65.65; H,10.15; N, 1.50.

(S)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl) phosphate(2):

Procedure 1 was similarly followed again for the preparation of $2, R_f = 0.23$ (5% MeOH in CHCl₃); $[\alpha]_D^{25} = 11.59(c = 1.6, CHCl_3)$; ¹H NMR(400 MHz, CDCl₃): δ 8.26-8.18(br, 3H), 5.35-5.32(m, 4H), 4.56-4.08(m, 8H), 2.34-2.31(m, 4H), 2.04-1.99(m, 8H), 1.59(m, 4H), 1.28-1.16(m, 40), 0.87-0.85(m, 6H); ¹³C NMR (100 MHz, CDCl₃) : δ 178.1, 174.1, 130.3, 130.1, 129.8, 68.5, 65.1, 39.0, 34.2, 33.9, 32.0, 31.8, 31.6, 29.8, 29.7, 29.6, 29.5, 29.4, 29.2, 28.7, 27.8, 27.3, 27.2, 27.1, 26.9, 26.8, 25.7, 24.9, 22.7, 22.6, 14.1. ³¹P NMR (202 MHz, CDCl₃) : δ -1.55.; (MALDI-MS (ESI) m/z calculated for C₄₂H₇₇NO₁₀P [*M* + *Na*]⁺ 809.518 found 809.518; HRMS (ESI) m/z

calculated for $C_{42}H_{77}NO_{10}P[M + K]^+$ 825.4920 found 825.4920; Elemental Analysis calculated: C, 64.09; H, 9.86; N, 1.78; found: C, 64.08; H, 9.85; N, 1.77.

(S)-2,3-bis(oleoyloxy)propyl(R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3oxopropyl) phosphite (23):

Procedure **20** was similarly followed again for the preparation of **23**, $R_f = 0.5$ (25% EtOAc in hexane); $[\alpha]_D^{25} = -7.29(c = 5.8, CHCl_3)$; ¹H NMR(500 MHz, CDCl_3) : δ 6.12(m, 1H), 5.33-5.31(m, 4H), 5.27(m, 1H), 4.40-4.23(m, 8H), 2.28(m, 4H), 1.97-1.94(m, 8H), 1.62-1.61(m, 4H), 1.40-1.38(m, 18H), 1.19-1.12(m, 40H), 0.82-0.81(m, 6H); ¹³C NMR(125 MHz, CDCl_3) : δ 185.2, 173.9, 174.0, 168.9, 129.9, 129.7, 82.6, 80.0, 64.9, 64.5, 53.7, 40.1, 38.8, 38.5, 34.9, 31.9, 29.7, 29.6, 29.5, 29.3, 29.1, 28.2, 27.9, 27.2, 27.1, 26.9, 26.8, 26.6, 26.4, 24.8, 22.6, 14.2; ³¹P NMR (202 MHz, CDCl_3): δ 8.17. (MALDI-MS (ESI) m/z calculated for C₅₁H₉₄NO₁₁P [M + Na]⁺ 950.645 found 950.645; Elemental Analysis calculated for (C₅₁H₉₄NO₁₁P): C, 65.99; H, 10.21; N, 1.51; found: C, 65.65; H, 10.15; N, 1.50.

(R)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl)phosphate(4):

Procedure **1** was similarly followed again for the preparation of **4**, $R_f = 0.23$ (5% MeOH in CHCl₃); $[\alpha]_D^{25} = -18.96$ (c = 5.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃) : δ 8.43(br, 3H), 5.31(m, 4H), 4.54-4.12(m, 8H), 2.33-2.27(m, 4H), 2.01-1.99(m, 8H), 1.57(m, 4H), 1.57-1.14(m, 40H), 0.86(m, 6H); ¹³C NMR (125MHz, CDCl₃) : δ 173.5, 171.2, 130.3, 130.0, 129.7, 62.8, 60.4, 34.0, 31.9, 31.5, 29.8, 29.7, 29.7, 29.7, 29.6, 29.5, 29.3, 29.2, 29.1, 29.0, 27.7, 27.2, 25.6, 24.8, 22.7, 22.6, 21.0, 14.2, 14.1,; ³¹P NMR (202 MHz, CDCl₃) : δ -1.18; (MALDI-MS (ESI) m/z calculated for C₄₂H₇₇NO₁₀P [M + Na]⁺ 809.518 found 809.518; HRMS (ESI) m/z calculated for

 $C_{42}H_{77}NO_{10}P[M + K]^+$ 825.4920 found 825.4920; Elemental Analysis calculated: C, 64.09; H, 9.86; N, 1.78; found: C, 64.08; H, 9.85; N, 1.77.

3. ¹H NMR, ³¹P NMR and ¹³C NMR, MALDI-MS Spectra: ¹H NMR spectra of (S)-methyl 2,3-dihydroxypropanoate (9)

¹³C NMR Spectra of (S)-methyl 2,3-dihydroxypropanoate (9)

¹H NMR spectra of (S)-methyl 2-hydroxy-3-(trityloxy)propanoate (10)

¹³C NMR Spectra of compound (S)-methyl 2-hydroxy-3-(trityloxy)propanoate (10)

¹H NMR spectra of (R)-3-(trityloxy)propane-1,2-diol(11)

¹³C NMR Spectra of (R)-3-(trityloxy)propane-1,2-diol (11)

¹H NMR Spectra of (Z)-(S)-3-(trityloxy)propane-1,2-diyl dioleate (12)

¹³C NMR Spectra of (Z)-(S)-3-(trityloxy)propane-1,2-diyl dioleate (12)

¹H NMR Spectra of (Z)-(S)-3-hydroxypropane-1,2-diyl dioleate (13)

¹³C NMR Spectra of (Z)-(S)-3-hydroxypropane-1,2-diyl dioleate (13)

¹H NMR Spectra of Triethylammonium (R)-2,3-bis (oleoyloxy)propyl phosphonate (6)

¹³C NMR Spectra of Triethylammonium (R)-2,3-bis (oleoyloxy)propyl phosphonate (6)

³¹P NMR Spectra of Triethylammonium (R)-2,3-bis (oleoyloxy)propyl phosphonate (6)

MALDI-MS of Triethylammonium (R)-2,3-bis (oleoyloxy)propyl phosphonate (6)

¹H NMR Spectra of (S)-methyl 2,2-dioxolane-4-carboxylate(14)

¹³C NMR Spectra of (S)-methyl 2,2-dioxolane-4-carboxylate(14)

¹H NMR Spectra of (S)-3-(trityloxy)propane-1,2-diol (17)

¹³C NMR Spectra of (S)-3-(trityloxy)propane-1,2-diol(17):

¹H NMR Spectra of (Z)-(R)-3-(trityloxy)propane-1,2-diyl dioleate (18)

¹³C NMR Spectra of (Z)-(R)-3-(trityloxy)propane-1,2-diyl dioleate (18)

¹H NMR Spectra of (Z)-(S)-3-hydroxypropane-1,2-diyl dioleate(19)

¹³C NMR Spectra of (Z)-(S)-3-hydroxypropane-1,2-diyl dioleate(19)

¹H NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl phosphonate (8)

¹³C NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl phosphonate (8)

¹H NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite(22)

¹³C NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite(22)

³¹P NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite(22)

¹H NMR Spectra of (S)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl) phosphate(2)

¹³C NMR Spectra of (S)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl) phosphate(2)

³¹P NMR Spectra of (S)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl) phosphate(2)

¹H NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl(R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (23)

¹³C NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl(R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (23)

³¹P NMR Spectra of (S)-2,3-bis(oleoyloxy)propyl(R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (23)

¹H NMR Spectra of (R)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl)phosphate(4)

 $^{13}C\ NMR\ Spectra\ of\ \ 4(R)-2-amino-2-carboxyethyl\ ((S)-2,3-bis(oleoyloxy)propyl)phosphate(4)$

³¹P NMR Spectra of (R)-2-amino-2-carboxyethyl ((S)-2,3-bis(oleoyloxy)propyl)phosphate(4)

¹H NMR Spectra of (R)-2,3-bis(oleoyloxy)popyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (20)

¹³C NMR Spectra of (R)-2,3-bis(oleoyloxy)popyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (20)

³¹P NMR Spectra of (R)-2,3-bis(oleoyloxy)popyl((S)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (20)

¹H NMR Spectra of (S)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (1)

¹³C NMR Spectra of (S)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (1)

³¹P NMR Spectra of (S)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (1)

MALDI-TOP-MS of (S)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (1)

HRMS (ESI) of (S)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (1)

¹H NMR Spectra of(R)-2,3-bis(oleoyloxy)popyl((R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (21)

¹³C NMR Spectra of (R)-2,3-bis(oleoyloxy)popyl((R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (21)

³¹P NMR Spectra of (R)-2,3-bis(oleoyloxy)popyl((R)-3-(tert-butoxy)-2-((tert-butoxycarbonyl)amino)-3-oxopropyl) phosphite (21)

¹H NMR Spectra of (R)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (3)

¹³C NMR Spectra of (R)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (3)

³¹P NMR Spectra of (R)-2 amino-2-carboxyethyl-((R)-2,3-bis(oleoyloxy)propyl) phosphate (3)

4. DLS Analysis, Preperation of relipidated Tissue Factor and FXa procoagulant Assay

4.1 DLS Analysis: 25µl of Liposome containing TF was diluted with deionized water to get final volume of 1mL and the DLS measurement was taken with it to get the overall idea about the diameter of the prepared liposome.

Fig S1: DLS analysis with different types of TF containing liposome.

4.2 Preparation of relipidated Tissue-Factor: In Pyrex glass tube 80% (W/W) PC and 20% PS Pyrex were taken and evaporated to dry by passing N_2 gas with constant rolling the tube, which makes lipid film at the bottom of the tube. These lipids were suspended into Hepes buffer having the detergent β -octyl- glucopyranoside. For reconstitution of TF, purified TF (1:10000, mole ratio of TF:PL) was incubated with suspended PL in buffer for half an hour, and the mixture was dialyzed against Hepes buffer for 72 hr to form the TF embedded liposomes.

4.3 FXa procoagulant Assay: With these liposomes pro-coagulant activity was measured by FXa generation assay. Saturated concentration of lipidated TF (1nM) was incubated with limited concentration of recombinant FVIIa (10pM) for 5 min followed by incubate with saturated concentration of FX (175nM) for 10 min in Hepes buffer saline (HBSA) having 5mM CaCl₂. Reaction was stopped with 20mM EDTA solution. Generated FXa was estimated using substantial amount of chromogenic substrate S-2765 by colorimetric method, measuring 2 min kinetics at 405nm. Data presented here are as mean +/- SEM (n=3). Differences are statistically significant at p < 0.05 by student's t-test.

5. Computational Section

5.1 Supplemental Material and Methods:

Computational modeling of flTF-FVIIa in membrane bilayer:

The solvated-equilibrated full-length TF-FVIIa in POPC:POPS in a 4:1 ratio was taken from our previously MD simulation work.⁵ Here, different forms of phosphatidylserine viz. 1,2-dioleoyl-*sn*-glycero-3-phospho-L-serine and 2,3-dioleoyl-*sn*-glycero-1-phospho-D-serine are denoted by molecule 1 and 4, respectively. In the POPC:POPS lipid bilayer, POPS is molecule 1. To construct molecule 4 lipid bilayer, molecule 1 was extracted from this bilayer. Since the molecules are identical in all respects except for their chirality, viz. R- and S-type. Therefore, molecule 4 was created from 1 using discovery studio software. Parameter and topology file for molecule 4 was created using the existing topology file molecule 1. After that, PC:4 lipid bilayer were constructed. In addition to these systems, we have also constructed POPC (100%) bilayer using CHARMM membrane builder server and subjected to equilibration run (8-10 ns) as similar with the previously mentioned protocol.⁵ We have made three individual fITF-FVIIa binary complex systems imbedded in three independent lipid bilayer, POPC, POPC:1 and POPC:4 bilayer for MD simulation study. Bad lipid and water molecules were removed from TF-FVIIa complex system in order to prevent steric clashes among them.

Molecular dynamic simulation protocol:

Molecular dynamic (MD) simulations were performed using NAMD2.9 tools along with CHARMM36 force field parameter.^{6,7} All three systems, flTF-FVIIa in PC, PC:1 and PC:4 membrane lipid were solvated using TIP3P water model in a periodic truncated with box size

128(x) x 128(y) x 182(z) Å³ at least 12 Å from any given atom. 5mM calcium ionic concentration was maintained by replacing several water molecules with Ca^{2+} and Cl^{-} ions in the systems. Temperature of the system was kept constant at 310 K using 1 ps⁻¹ dampling coefficient () by Langevin dynamics. The Particle Mesh Ewald (PME) method was used for long-range electrostatic interaction calculation.⁸ The direct non-bonded potential cutoff was set to 12 Å with pair-list distance cutoff of 2 Å. During the simulation, 1-4 scaling factor was used. The constant pressure was maintained at 1 atm using the Langevin piston Nose-Hoover method using the periodic boundary conditions.^{9,10} For the proper equilibration of the system, the model complex in lipid bilayer was subjected to several cycles of equilibration followed by energy minimization. Initially, dynamics were performed on all lipids, water molecules and counterions with 4000 steps of energy minimization for the first 0.5 ns simulation with 1 fs time interval using a short "constant-pressure" in NPT condition to pack lipid and water molecules against the protein and the counterions to relax their positions, however the modeled protein was kept fixed in this equilibration run. In the next step, 2 ns short equilibration was performed with 2 fs timestep using NPT with protein constrained, in which SHAKE algorithm was applied for all hydrogen atoms. Protein atoms were constrained with a small harmonic potential (1.0 kcal/mol/Å² spring constant). In this last run, the whole system was switched to NPnAT ensemble (constant membrane-normal pressure, Pn, temperature and membrane area) with 2 fs timestep interval without any constraint on the proteins for 40 ns production run. Detailed of the system sizes and simulation setup are summarized in Table S1.

5.2 Supplemental Tables:

System	fITF-FVIIa complex	flTF-FVIIa complex	fITF-FVIIa complex
	in PC lipid bilayer model	in PC:1 lipid bilayer model	in PC:4 lipid bilayer model
Lipids	100POPC:100POPC	160POPC:40POPS (1)	160POPC:40POPS(4)
composition	[100 leaflets in each	[100 leaflets in each leaflets]	[100 leaflets in each leaflets]
	leaflets]		
Initial box size	$124(x) \times 124(y) \times 175(z) =$	$128(x) \times 128(y) \times 182(z) =$	$128(x) \times 128(y) \times 182(z) =$
(Å ³)	2,690,800 Å ³	2,981,888 Å ³	2,981,888 Å ³
Number of Ca ²⁺	15 (9 bound + 6 additional	16 (9 bound + 7 additional	16 (9 bound + 7 additional
ions	ions)	ions)	ions)
Number of Cl-	13 (1bound + 12	17 (1bound + 16 additional	17 (1bound + 16 additional
ions	additional	ions)	ions)
	ions)		
Water model	TIP3P	TIP3P	TIP3P
Number of	63644	72,342	69,392
water molecules			
Total number of	253310	279,869	278,056
atoms			
Time sten	2 fs	2 fs	2 fs
integration	2 15	2 15	2 15
Simulation setup	Minimization (4000	$Minimization (4000 steps) \rightarrow$	$Minimization (4000 steps) \rightarrow$
schemes	steps) ->	Heating at 310 K \rightarrow 0.5 ns	Heating at 310 K \rightarrow 0.5 ns
selicities	Heating at 310 K \rightarrow 0.5 ns	NPT simulation under	NPT simulation under
	NDT simulation under	ner i sinulation under	ner i sinulation under
		Testraints on proteins $\rightarrow 2$ is	Testraints on proteins $\rightarrow 2$ lis
	restraints on proteins $\rightarrow 2$	with 21s timestep using NP1	with 21s timestep using NP1
	ns with 21s timestep using	ensemble with protein	ensemble with protein
	NPT ensemble with	constrained \rightarrow	constrained \rightarrow
	protein constrained \rightarrow	proteins simulations without	proteins simulations without
	proteins simulations	any restraint on protein	any restraint on protein using
	without	using NPnAT (production	NPnAT (production run)
	any restraint on protein	run)	
	using NPnAT (production		
	run)		
Total simulation	40 ns	40 ns	40 ns
time in			
production run			
(NPnAT			
ensemble)			

Table S1. Summary of the system size and NAMD simulation setup.

Table S2. Comparative analysis of interacting residues of light chain of FVIIa and TF with two distinct phosphatidylserine moiety (molecule 1 and 4) for H-bond formation with a distance cut-off of 3.5 Å obtained from 40 ns simulation study of flTF-FVIIa binary complex in two lipid environment.

Protein	fITF-FVIIa complex	fITF-FVIIa complex
	in molecule 1 lipid environment	in molecule 4 lipid environment
Tissue Factor	Glu183-mainN/1-sideO13	Lys159-sideNZ/4-sideO14
	Asp180-mainN/1-sideO13A	Ser161-sideOG/4-sideO14
	Tyr185-sideOH/1-sideO13A	Ser162-sideOG/4-sideO13
	PS1-mainN/Glu183-sideOE1	Ser163-sideOG/4-sideO14
	PS1-mainN/Asp180-sideOD1	Gly251-mainN/4-sideO14
	Gly182-mainN/1-sideO32	
	Lys159-sideNZ/1-sideO13B	
	PS1-mainN/Asp180-sideOD2	
	Lys181-sideNZ/1-sideO32	
	Glu183-mainN/1-sideO11	
	PS1-mainN/Asn184-mainO	
	Asn184-mainN/1-sideO21	
Factor VIIa	PS1-mainN/Gla7-sideOE11	Gly11-mainN/4-sideO13
	Gla29-sideCB/1-sideO11	Gly11-mainN/4-sideO14
	PS1-mainN/Arg9-mainO	Gly11-mainN/4-sideP
	PS1-mainN/Gla16-sideOE21	Arg28-sideNH1/4-sideO13A
	PS1-mainN/Gla16-sideOE22	Arg28-sideNH2/4-sideO13B
	PS1-mainN/Gla6-sideOE12	Lys32-sideNZ/4-sideO13A
	PS1-mainN/Asn2-sideOD1	

6. References

- (1) Müller, J.; Feifel, S. C.; Schmiederer, T.; Zocher, R.; Süssmuth, R. D. In Vitro Synthesis of New Cyclodepsipeptides of the PF1022-Type: Probing the Alpha-D-Hydroxy Acid Tolerance of PF1022 Synthetase. *Chembiochem* **2009**, *10* (2), 323–328.
- (2) Maltese, M. Reductive Demercuration in Deprotection of Trityl Thioethers, Trityl Amines, and Trityl Ethers. *J Org Chem* **2001**, *66* (23), 7615–7625.
- (3) Sigurdsson, S.; Strömberg, R. Side Reactions in the H-Phosphonate Approach to Oligonucleotide Synthesis: A Kinetic Investigation on Bisacylphosphite Formation and 5'-O-Acylation. *Nucleosides Nucleotides Nucleic Acids* **2003**, *22* (1), 1–12.
- (4) Lindh, I.; Stawinski, J. A General Method for the Synthesis of Glycerophospholipids and Their Analogs via H-Phosphonate Intermediates. *J Org Chem* **1989**, *54* (6), 1338–1342.
- (5) Prasad, R.; Sen, P. Structural Modulation of Factor VIIa by Full-Length Tissue Factor (TF 1-263): Implication of Novel Interactions between EGF2 Domain and TF. J Biomol Struct Dyn 2017, 1–13.
- Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. *J Comput Chem* 1983, *4* (2), 187–217.
- (7) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. *J Phys Chem B* **1998**, *102* (18), 3586–3616.
- (8) Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. *J Chem Phys* **1993**, *98* (12), 10089.
- (9) Feller, S. E.; Zhang, Y.; Pastor, R. W.; Brooks, B. R. Constant Pressure Molecular Dynamics Simulation: The Langevin Piston Method. *J Chem Phys* **1995**, *103* (11), 4613.
- (10) Martyna, G. J.; Tobias, D. J.; Klein, M. L. Constant Pressure Molecular Dynamics Algorithms. *J Chem Phys* **1994**, *101* (5), 4177.