
Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 1 

 
 
 
 
High-throughput discovery of functional disordered regions: 
investigation of transactivation domains 
 
Charles N. J. Ravarani, Tamara Y. Erkina, Greet De Baets, Daniel C. Dudman, Alexandre M. Erkine 
& M. Madan Babu 
  
 
 
 
 
 
Review timeline: Submission date: 8 January 2018  
 Editorial Decision: 7 February 2018 
 Revision received: 27 March 2018 
 Editorial Decision: 3 April 2018 
 Revision received: 10 April 2018 
 Accepted: 11 April 2018 
 
 
Editor: Maria Polychonidou 
 
Transaction Report: 
 
(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, 
letters and reports are not edited. The original formatting of letters and referee reports may not be reflected in this 
compilation.) 
 
 

1st Editorial Decision 7 February 2018 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from two of the three referees who agreed to evaluate your study. We have not yet heard from 
reviewer #3 but since the recommendations of the other two referees are quite similar I prefer to 
make a decision now rather than further delaying the process. The two reviewers are overall 
supportive. They raise however a series of concerns, which we would ask you to address in a 
revision of the manuscript. If we receive comments from reviewer #3 within the next few days, I 
will forward them to you so that you can address them in your revision.  
 
The reviewers' recommendations are rather clear so I think that there is no need to repeat the points 
listed below. Please let me know in case you would like to discuss any of the points in further detail.  
 
--------------------------------------------------------  
REVIEWER REPORTS 
 
 
Reviewer #1:  
 
I n this short manuscript the authors set out and provide demonstration of a general strategy to map 
out the sequence requirements for functioning of intrinsically disordered protein domains. The 
method describes screening of a random or designed library of peptides linked to some functional in 
vivo assay, clonal selection by coupling survival to some enzyme activity or fluorescent reporter, 
next generation sequencing of positive clones and finally, a machine learning method to tease out 
sequence features and properties that dominate positive selection.  
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The strategy was applied in the yeast S. cerevisiae in which survival-selection was determined by 
expression of a selection gene product under the control of a promoter controlled by a transcription 
factor in which its activation domain has been replaced with random or directed libraries coding for 
20 amino acid peptides.  
 
Subsequent machine learning on resultant positive clones revealed several features of interest, both 
predicted (selection for negatively charged amino acids) and not so very obvious very strong 
selection for tryptophan in the sequences of the artificial activation domains. Tests with directed 
library revealed a novel DW tandem repeat as providing maximum activity. To the best of my 
knowledge, such a sequence has never been demonstrated to regulate transcription with such high 
activity.  
 
Overall, the study is well performed and the manuscript is well written. The screening method itself 
is not particularly novel in comparison to many other screening strategies. It appears to me, 
however, that the combination of the screen with data analysis could provide more insight into 
binding of IDPs to other molecules than more conventional analyses.  
 
I return again to the DW repeats. These are interesting for two reasons: First, while in vitro binding 
screens such as phage display have been shown to exhibit unusual amino acid biases, notably for 
abundances of tryptophan, I am not aware that in vivo screens show the same bias. This issue is 
discussed and the structural and thermodynamic consequences of multiple Trp tandem repeats were 
discussed and beautifully illustrated in the strange case of the "Trp Zipper", an extraordinarily stable 
beta hairpin discovered in a phage display screen (Cochran, A, et al. PNAS, 2001). Another 
unrelated structure that would be worth discussing is the co-crystal structure of the messenger RNA 
5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP (Marcotrigiano, et al. Cell, 1997). Here the 
7-methyl-GDP is nestled between two tryptophan rings forming an interesting and subtle interaction 
that might reflect something about the say that the author's weird TD repeat interacts.  
 
So all in all this is an interesting study that should be of interest to the general readership of MSB. I 
must say, however, that before it is accepted I'd suggest major revision to the figures, notably figure 
1, 3a, b, d and 4a, b. These are not of the quality, elegance and clarity that I have come to expect 
from this group and make difficult to follow, what should be straightforward ideas. Figures 3b, d 
and 4b are the worst and need to be substantially simplified and clarified to provide clear 
information that a general reader can appreciate.  
 
 
 
Reviewer #2:  
 
This manuscript describes a high-throughput method for finding what properties make a sequence 
activate transcription of a reporter gene when fused to a DNA-binding domain binding to the 
promoter of the reporter gene. Only a good handful of so-called activation domains are known from 
low-throughput experiments. This work represents so far the first high-throughput, unbiased screen 
of activatory peptides.  
 
Although a relatively low number of only 760 activating sequences were found in the screen, the 
authors were able to demonstrate in a cross-validation test that a machine learning classifier trained 
on a part of the activating and non-activating sequences can distinguish new activating and non-
activating sequences (at 1:1 ratio) with a precision much higher than random expectation. The 
manuscript therefore makes a unique and valuable contribution to the very challenging topic of 
transcriptional activation.  
 
Major points:  
 
1. According to the description in the Methods section, it seems that sequencing error rates are very 
high, because an error rate of 25% in the barcode are still accepted: 1 out of 4 nucleotides can be 
misread. That is an extremely high error rate and it would be important to comment on the causes 
and to discuss more the possible consequences for interpretation of the data.  
 
2. The authors describe that they cluster the sequences into clusters of similar sequences with a 
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minimum sequence similarity threshold of 90%. It is not clear a prior why this should be necessary, 
as one would expect that in a random library sequences with different barcodes would be unique, 
and the chance of two sequences of length 15 residues to be the same by chance is on the order of 
20^(-15) = 0. The authors need to discuss the possible origin of these similar sequences.  
 
Also, when the authors write that "The resulting mapping table for both the random and the 
designed libraries was aggregated to a count table where every sequence has its count recorded for 
each replicate", do they mean that every **centroid** has its counts recorded, which are the 
aggregate of all members of its cluster of similar sequences? Does it mean that 760 activating 
**centroid** sequences were discovered, or does the number 760 include the very similar 
sequences?  
 
3. The authors need to make sure that in their cross-validation benchmark on the machine learning 
predictors, none of the training sequences has a similarity to any of the test sequences higher than 
expected by chance. Otherwise, the prediction performance could be highly overestimated, as test 
sequences for which similar sequences have been trained on will be predicted much more accurately 
than the realistic cases in which no similar training sequence has been observed.  
 
The authors mention that many of the sequences they obtain are very similar to each other, hence the 
clustering. But how many are similar but have sequence identities below 80% or 90%? If pairs with 
sequence identities higher than what can be expected by chance (10-20%) are split between training 
and test set, the estimated performances of the predictors will be overestimated. A simple criterion 
could be to limit the sequence identity in a local alignment of the coding sequences to 30%. Here, 
sequence identity is defined as the fraction of identical aligned residue pairs to the length of the 
shorter sequence.  
 
4. There is a contradiction on page 18 in the online methods: "The dataset was split into 75% for 
training and the remaining 25% for testing..." This implies that the authors used 4-fold cross-
validation, but in the next sentence they write "The entire machine learning process was performed 
with repeated cross-validation (k = 5 folds and 10 repeats) on the training set." The entire procedure 
of cross-validation and sampling is not clear, as the authors do not seem to have used the standard 
cross-validating procedure. For example what does "10 repeats" refer to?  
 
 
Minor points:  
 
5. Instead of demonstrating the usefulness of the learned features of activating domains using the 
sequence WDWDWDWD..., it would be more convincing to show the activation potential for a less 
obvious sequence where the authors make use of the specific minipatterns they have learned. The 
prediction of WDWDWDWD... could have been made even before because it is known from earlier 
work using site-directed mutagenesis (http://www.pnas.org/content/111/34/E3506.full.pdf?with-
ds=yes) that mutations to W generaly increase activation potential and that negative charges are 
important to prevent aggregation.  
 
6. The description on top of page 17 seems to mean that the training **and** test sequences were 
subsampled to get a ratio of 1:1 between activatory and non-activatory sequences. However, the 
Supplementary Figures 6 and 9 show a dotted line with an "imbalance ratio" of 0.0116. This 
imbalance ration should be 0.5, shouldn't it? On the other hand, if test sequences were *not* 
subsampled, I would expect an imbalance ratio of 760 / 67000 = 0.113 and not 0.116.  
 
7. Figures S6 and S9: The x axis labels "1 - sensitivity" should be "1 - specificity". The FPR needs 
to be defined explicitly in the online methods.  
 
8. In the main text (Page 3) the authors write "...we obtained robust measurements for 67,000 
variants." In the methods, the authors write "Given the imbalance in our dataset (760 functional: 
65,517 non-functional...". This adds up to 66270, not 67000. If the authors want to round, it should 
be 66000. 
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1st Revision - authors' response 27 March 2018 

Note to all reviewers 
 
We are pleased to note that all the referees feel we have developed a useful method that allows to 
screen for functional regions in intrinsically disordered regions, and that we could successfully 
apply it to the challenging topic of transcription activation that is of interest to the scientific 
community:  
 
Reviewer #1: …“Overall, the study is well performed and the manuscript is well written. The 
screening method itself is not particularly novel in comparison to many other screening strategies. It 
appears to me, however, that the combination of the screen with data analysis could provide more 
insight into binding of IDPs to other molecules than more conventional analyses.”…” So all in all 
this is an interesting study that should be of interest to the general readership of MSB.”… 
 
Reviewer #2: …“Only a good handful of so-called activation domains are known from low-
throughput experiments. This work represents so far the first high-throughput, unbiased screen of 
activatory peptides.”…”The manuscript therefore makes a unique and valuable contribution to the 
very challenging topic of transcriptional activation.” 
 
Reviewer #3: …“This work is the first attempt to examine functionality of non-motif disordered 
regions (as far as I am aware) using a large-scale approach and should thus be of interest to a large 
audience. Their main result (that a large fraction of sequences can work as TADs) is interesting and 
novel.”… ”In summary, this is a very interesting paper in an important field that neatly combined 
high throughput methods with modern analysis methods”… 
 
Given the generally enthusiastic comments from the referees, and the highly constructive criticisms 
raised by them, we would like to suitably revise the paper for further consideration at Molecular 
Systems Biology as an article. In this document, we provide a point-by-point response to the 
referees’ comments along with the action taken for the revised paper. 
 
To help the reviewers and the editor go through our point-by-point responses, we have the 
reviewers’ statements in italics and our responses in normal text in blue. For each comment, we 
provide a suggested action that we propose to undertake while preparing a revised version of the 
paper wherein we also provide page numbers and line numbers in the revised manuscript.  
 
Response to Reviewer #1: pages 2-3 
Response to Reviewer #2: pages 4-9 
Response to Reviewer #3: pages 10-13 
 
We believe that by addressing the constructive criticisms raised by the expert referees in a revised 
manuscript, a considerably stronger paper has been produced. We therefore sincerely hope that the 
referees would support further consideration of a revised manuscript that addresses all the concerns. 
 
Sincerely, 
 
Charles, Alex and Madan 
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Point-by-point response to referees comments 
 
Reviewer #1: 
Comment 1.1: In this short manuscript the authors set out and provide demonstration of a general 
strategy to map out the sequence requirements for functioning of intrinsically disordered protein 
domains. The method describes screening of a random or designed library of peptides linked to 
some functional in vivo assay, clonal selection by coupling survival to some enzyme activity or 
fluorescent reporter, next generation sequencing of positive clones and finally, a machine learning 
method to tease out sequence features and properties that dominate positive selection. 
 
The strategy was applied in the yeast S. cerevisiae in which survival-selection was determined by 
expression of a selection gene product under the control of a promoter controlled by a transcription 
factor in which its activation domain has been replaced with random or directed libraries coding for 
20 amino acid peptides.  
 
Subsequent machine learning on resultant positive clones revealed several features of interest, both 
predicted (selection for negatively charged amino acids) and not so very obvious very strong 
selection for tryptophan in the sequences of the artificial activation domains. Tests with directed 
library revealed a novel DW tandem repeat as providing maximum activity. To the best of my 
knowledge, such a sequence has never been demonstrated to regulate transcription with such high 
activity. 
 
Overall, the study is well performed and the manuscript is well written. The screening method itself 
is not particularly novel in comparison to many other screening strategies. It appears to me, 
however, that the combination of the screen with data analysis could provide more insight into 
binding of IDPs to other molecules than more conventional analyses. 
 
Response: We thank the reviewer for his/her enthusiasm on our work, and the clarity with which 
he/she has summarised our work. We decided to adapt a previously established screen to 
demonstrate the feasibility of the approach. We agree with the reviewer that there are interesting 
ways to design the screen and systems that one could investigate. We look forward to applying our 
method to other problems and helping the community to apply this framework to their own scientific 
problems that are amenable to this approach. 
 
Comment 1.2: I return again to the DW repeats. These are interesting for two reasons: First, while 
in vitro binding screens such as phage display have been shown to exhibit unusual amino acid 
biases, notably for abundances of tryptophan, I am not aware that in vivo screens show the same 
bias. This issue is discussed and the structural and thermodynamic consequences of multiple Trp 
tandem repeats were discussed and beautifully illustrated in the strange case of the "Trp Zipper", an 
extraordinarily stable beta hairpin discovered in a phage display screen (Cochran, A, et al. PNAS, 
2001). Another unrelated structure that would be worth discussing is the co-crystal structure of the 
messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP (Marcotrigiano, et al. Cell, 
1997). Here the 7-methyl-GDP is nestled between two tryptophan rings forming an interesting and 
subtle interaction that might reflect something about the say that the author's weird TD repeat 
interacts. 
 
Response: The referee raises very interesting points and we agree that in vivo assays are unlikely to 
display amino acid bias. Unlike in phage display, negative selection is incorporated within IDR-
Screen because the selection for function happens within the cell where a given sequence can 
encounter other proteins that are expressed. Moreover, we are selecting for transcriptional activity 
instead of strong binders to components of the transcriptional machinery. Thus, the in vivo screening 
step will likely select against sticky sequences. For these reasons, it appears less likely that IDR-
Screen will exhibit unusual systematic/experimental amino acid biases. Nevertheless, functional 
sequences might still be systematically biased. We think as we perform different assays using this 
technology in the future, the existence of any systematic biases, if any, might become more obvious. 
 
We thank the reviewer for pointing us to these two references that are very relevant to further our 
understanding of how the DW dipeptide repeats might behave and that they might be exploited in 
other systems. We have discussed and referenced the two papers in the manuscript to draw the 
parallel to other systems (Page 4; line 172). 
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Comment 1.3: I'd suggest major revision to the figures, notably figure 1, 3a, b, d and 4a, b. These 
are not of the quality, elegance and clarity that I have come to expect from this group and make 
difficult to follow, what should be straightforward ideas. Figures 3b, d and 4b are the worst and 
need to be substantially simplified and clarified to provide clear information that a general reader 
can appreciate. 
 
Response: We appreciate the feedback on the general quality of the figures. Specifically, the 
schematics of the paper in Figure 1, Figure 3a and Figure 4a should have been of higher quality. We 
also agree that the feature importance tables in Figure 3b, Figure 3d and Figure 4b were overly 
complicated with too much details, making the major conclusions less clear to the readers.  
 
We have split the figures, made them bigger and have also redesigned the schematics of Figure 1, 
old Figure 3a and old Figure 4a to make them of higher quality and clearer. Furthermore, we have 
simplified the feature importance description in Figure 3, Figure 4B and Figure 5, as well as 
provided clear descriptions of the features.  
 
We hope that the revised manuscript and the figures meet the expectation of this referee for 
publication in MSB. 
 
 
 
Reviewer #2: 
Comment 2.1: This manuscript describes a high-throughput method for finding what properties 
make a sequence activate transcription of a reporter gene when fused to a DNA-binding domain 
binding to the promoter of the reporter gene. Only a good handful of so-called activation domains 
are known from low-throughput experiments. This work represents so far the first high-throughput, 
unbiased screen of activatory peptides. 
 
Although a relatively low number of only 760 activating sequences were found in the screen, the 
authors were able to demonstrate in a cross-validation test that a machine learning classifier 
trained on a part of the activating and non-activating sequences can distinguish new activating and 
non-activating sequences (at 1:1 ratio) with a precision much higher than random expectation. The 
manuscript therefore makes a unique and valuable contribution to the very challenging topic of 
transcriptional activation. 
 
Response: We would like to thank this referee for his/her enthusiasm on our work. We are also 
grateful for the extremely thoughtful, thorough and constructive suggestions to improve our work. 
Although the number of functional sequences of 739 (revised) is not very high, we believe it is 
astonishing that such a large number of completely random peptides can decide between life and 
death of the organism.  
 
Comment 2.2: According to the description in the Methods section, it seems that sequencing error 
rates are very high, because an error rate of 25% in the barcode are still accepted: 1 out of 4 
nucleotides can be misread. That is an extremely high error rate and it would be important to 
comment on the causes and to discuss more the possible consequences for interpretation of the data. 
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Response: We apologise for not being clear in our methods and for the potential misunderstanding. 
We wish to clarify that the sequencing error rates are not 25%. The error rates of sequencing in our 
experiments are very low, with more than 94% of sequencing cycles being over a score of Q30. 
Most importantly, to ensure high quality, we removed reads with expected error rates above 1 (i.e. 
more than 1 position based on the Q score of the sequence), further reducing the risk of having 
mistakes in the barcode assignments. 
 

 
 
Response Figure 1: Representative Quality Score distribution of Sequencing Runs (screenshot from 
the MiSeq output). More than 94% of the sequencing cycles have a quality above Q30, which, 
together with the minimal Levenshtein distance (see next page) between barcodes of 4, reduces the 
concern that barcodes could have been wrongly assigned (please see below). 

Furthermore, in order to accurately distinguish between replicates of samples (three replicates, 
barcoded), we have designed barcodes of length 8 and with minimum Levenshtein distances of 4 
(i.e. a distance that consists in the number of substitutions, insertions and deletions required to 
change one nucleic acid sequence to another). This means that there would at least need to be 4 
sequencing mistakes in order for any pair of the 3 barcodes that we used to be confused with each 
other. With this very stringent design in mind we have accepted error rates of up to 25% (only in the 
barcode region), which, for a barcode length of 8, translates to a maximum of 2 mistakes (0.25 * 8 = 
2). Thus, the sequence reads obtained should be accurately grouped by their barcodes (specifically: 
AGGCAGAA, GGACTCCT and TAGGCATG). We have clarified this in detail in the Materials 
and Methods section (Page 10; Line 423). 
 
Comment 2.3: The authors describe that they cluster the sequences into clusters of similar 
sequences with a minimum sequence similarity threshold of 90%. It is not clear a prior why this 
should be necessary, as one would expect that in a random library sequences with different 
barcodes would be unique, and the chance of two sequences of length 15 residues to be the same by 
chance is on the order of 20^(-15) = 0. The authors need to discuss the possible origin of these 
similar sequences. 
 
Response: The reviewer is right to point out that theoretically it is not necessary to select any 
threshold other than 100% identity to cluster reads into the distinct nucleotide sequences (centroids) 
present in the experiment. However practically, we picked this threshold as a way to balance the 
trade-off between over- and underestimating the number of “distinct” nucleotide sequences detected 
in the experiment.  
 
To explain this further, let’s consider that the number of reads from the surviving sequences (i.e. 
they are selected for in the screen) across samples. Among these sequences, it is likely that a certain 
number of reads which pass our quality control filter may still contain errors. If we picked a 
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threshold of 100% identity, each of the distinct reads (some with errors) would be assigned its own 
centroid, whereas in reality some of the “unique sequences” that pass our filter might be a result of a 
same sequence with different sequencing errors, giving rise to the distinct reads (especially if their 
read counts are low).  
 
This type of over-estimation of number of unique sequences would be especially detrimental to our 
downstream analyses, as it would artificially increase the number of activating sequences detected, 
whereas in reality they would have just been artefacts from the sequencing. On the other side of the 
trade-off, picking a loose threshold could lead to a different problem: that of under-estimation where 
truly different nucleotide sequences (with some similarity) would falsely be aggregated into a single 
centroid sequence.  
 
However, as the reviewer also points out, since we are working with a random library, it is very 
unlikely for two independent nucleotide sequences to be similar to 90%. Therefore, our choice of a 
threshold of 90% will not be a problem. 
 

 
 

Response Figure 2: The different unique sequences are shown in the sequence space (grey region) 
as dots. The size of the dots indicates the number of reads supporting the sequence. Points in the 
close proximity of sequences (circled region) with high read abundance (pink and purple) are 
grouped together into clusters if they are within a circle of radius of 90% sequence identity 
(indicated by grey arrows). The main sequence of the cluster is referred to as centroid sequences. 
This approach allows associating sequences with a few errors manifested in mismatches, insertions 
or deletions into clusters representing their “true” sequence. Given the vast sequence space in a 
random 60mer DNA library, it is very unlikely that two biological sequences from the experiment 
would be clustered together in this way (inter-cluster distances). 

That is why we chose a more tolerant threshold for aggregation as (i) we do not run the risk of 
aggregating truly different sequences (preventing under-estimation of the number of sequences), 
whilst (ii) we make sure that sequences with errors are aggregated into the same centroids from 
which they originate (preventing over-estimating the number of sequences). In this way, we 
discovered 739 (centroid) sequences in the random library. 
 
During the revision, we have ensured to use a clearer set of terminologies to describe these concepts 
and terms throughout the Materials and Methods section (Page 9; Line 413). Furthermore, we have 
created a schematic that helps to clarify these concepts, visualising the distinction between centroid 
sequences and the number of reads that support these sequences as a box in Appendix Figure S2.  
 
Comment 2.4: Also, when the authors write that "The resulting mapping table for both the random 
and the designed libraries was aggregated to a count table where every sequence has its count 
recorded for each replicate", do they mean that every **centroid** has its counts recorded, which 
are the aggregate of all members of its cluster of similar sequences? Does it mean that 760 
activating **centroid** sequences were discovered, or does the number 760 include the very 
similar sequences? 
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In the sentence referred to by the reviewer, we have used the wrong term “aggregate”, which has 
made this portion of description of the data processing unclear. The centroids sequences are not 
aggregated in any way. At this stage of the pipeline, the pre-processed sequencing reads (filtered and 
trimmed sequences which were used to build the clusters), are mapped back to the different centroid 
sequences. The number of reads that were uniquely mapped back to the centroid sequences in this 
way was recorded. This data was then used to estimate the growth rates (next section). The different 
centroid sequences are by definition different to each other and do not share a high degree of 
sequence similarity (less than 90%). In the later stages of the pipeline, where the centroid clusters 
are assigned to be functional or non-functional based on their growth scores, we do indeed have 739 
very distinct functional sequences that do not share a high degree of sequence identity (see also 
response to Comment 2.5). This has now been clarified in the Materials and Methods section of the 
manuscript (Page 9; Line 413) as well as in Appendix Figure S2. 
 
Comment 2.5: The authors need to make sure that in their cross-validation benchmark on the 
machine learning predictors, none of the training sequences has a similarity to any of the test 
sequences higher than expected by chance. Otherwise, the prediction performance could be highly 
overestimated, as test sequences for which similar sequences have been trained on will be predicted 
much more accurately than the realistic cases in which no similar training sequence has been 
observed. 
 
The authors mention that many of the sequences they obtain are very similar to each other, hence 
the clustering. But how many are similar but have sequence identities below 80% or 90%? If pairs 
with sequence identities higher than what can be expected by chance (10-20%) are split between 
training and test set, the estimated performances of the predictors will be overestimated. A simple 
criterion could be to limit the sequence identity in a local alignment of the coding sequences to 30%. 
Here, sequence identity is defined as the fraction of identical aligned residue pairs to the length of 
the shorter sequence. 
 
Response: We thank the referee for raising this point. Related to Comment 2.3 above and our 
calculations below, the peptide sequences from the random library are unlikely to be affected by the 
concern raised because their amino acid sequences are very different to each other (next paragraph).    
 
To assess for similarity between peptide sequences, we did not use sequence identity as this assumes 
that the peptide sequences can be aligned. Whereas in our case, the peptide sequences are so 
different to each other that it is not possible to align them to a satisfactory degree. Instead we use the 
Levenshtein distance between sequences (also referred to in response to Comment 2.2). The 
Levenshtein distance in the amino acid sequence space between two sequences is the number of 
substitutions, insertions or deletions of amino acids required to transform one sequence into the 
other. We have calculated the pair-wise Levenshtein distances between all the functional peptide 
sequences of the random library and the wild-type TAD sequences in the design library. For each 
sequence, we have then selected the minimum distance to all other sequences, i.e. the distance 
between the pairs that are the most similar, and normalized by the sequence length.  
 
The concern raised by the reviewer applies to a much lesser extent to the random library where the 
median of the minimum pair-wise normalised Levenshtein distance across sequences is 0.65 
(Response Figure 3, Left). In other words, on average, 65% of the amino acids of the sequences 
need to be changed for two sequences to be identical. 
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Response Figure 3: The distribution of minimum pair-wise Levenshtein distances between 
functional sequences in random and design library. 

For the design library, it is true that the sequences in the dataset by design are very similar as they 
are variants of a wild type TAD sequence. The wild-type sequence together with all its variants 
constitutes a TAD set (13 TAD sets in our study). It should be noted that the wild-type sequences 
themselves are significantly different (median of the minimum Levenshtein distance (normalized by 
length) among the sequence pairs is 0.65; see Response Figure 3, right). However, if we implement 
the constraint suggested by the referee, it would remove all point mutations and just retain one 
sequence per TAD set. Such a dataset would be too small for training and subsequent testing. 
Therefore, we did not originally incorporate this sampling strategy that controls for sequence 
similarity within TAD sets. 
 
To address the reviewer’s concern, we have now come up with a slightly revised strategy for the 
analysis of sequences in the design library. We have now applied group k-fold cross-validation 
(k=5) rather than k-fold cross-validation. A group is a TAD set, which is defined as a wild-type 
TAD sequence and all their variants. Therefore, for each data split, four-fifth of the 13 TAD sets 
(~10 TAD sets) were assigned to the training set and one-fifth (~3 TAD sets) were assigned as the 
validation set (this procedure was carried out 10 times). This ensured that variants within a TAD set 
(which are highly similar) were not split between the training and the validation sets. The results 
from this calculation are now presented in the manuscript. 
 
We thank this reviewer again for raising this point. We feel that addressing this point has increased 
the robustness of the method and the models that we present in the paper. This has resulted in 
updating Figures 4B and 5 as well as Appendix Figures S12 and S13 and Tables EV7 and EV8. 
This is also discussed in Materials and Methods (Page 12; Line 563) and Appendix Figure S3. 
 
Comment 2.6: There is a contradiction on page 18 in the online methods: "The dataset was split 
into 75% for training and the remaining 25% for testing..." This implies that the authors used 4-fold 
cross-validation, but in the next sentence they write "The entire machine learning process was 
performed with repeated cross-validation (k = 5 folds and 10 repeats) on the training set." The 
entire procedure of cross-validation and sampling is not clear, as the authors do not seem to have 
used the standard cross-validating procedure. For example what does "10 repeats" refer to? 
 
Response: We apologise for being ambiguous on what we refer to when using these terminologies. 
We have followed the definition as in The Elements of Statistical Learning (ISBN 978-0-387-
84858-7) on page 222: “The training set is used to fit the models; the validation set is used to 
estimate prediction error for model selection; the test set is used for assessment of the generalization 
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error of the final chosen model. Ideally, the test set should be kept in a “vault,” and be brought out 
only at the end of the data analysis.” According to that definition, we first split the original data for 
the random library into a training set (75% of the sequences) and testing set (25% of the sequences). 
For the sequences in the training set, we have performed k-fold cross-validation (k = 5) and repeated 
that process a total of 10 times for training and validation of our models. We then took the top 
models from that procedure and evaluated performance on the testing set, which we kept separate 
during training (i.e. locked away in a data vault; 25% of the sequences from the original data as 
mentioned above). This allowed us to evaluate how the final models perform when totally new and 
unseen data is given. 
 
Because of the new sampling strategy for the analysis of the designed sequences (please see 
response to comment 2.5), we now do not split the original data into an initial training and testing 
set due to the smaller number of TAD sets. Instead, we performed a group k-fold cross validation 
for training and validating the models (where a group is defined as a TAD set). The details of the 
sampling strategies applied in the revised manuscript for the analysis of the random, design and 
combined libraries are presented in Appendix Figure S3 and are described in the Methods section. 
 
We have clarified the definitions in the Materials and Methods section (Page 12; Line 543). We now 
clearly define what we refer to when using training, validation and testing sets in our machine 
learning approaches, and have made sure to be consistent when using these definitions across the 
manuscript. We have also improved Appendix Figure S3 to make these distinctions clearer. 
 
Comment 2.7: Instead of demonstrating the usefulness of the learned features of activating domains 
using the sequence WDWDWDWD..., it would be more convincing to show the activation potential 
for a less obvious sequence where the authors make use of the specific minipatterns they have 
learned. The prediction of WDWDWDWD... could have been made even before because it is known 
from earlier work using site-directed mutagenesis 
(http://www.pnas.org/content/111/34/E3506.full.pdf?with-ds=yes) that mutations to W generaly 
increase activation potential and that negative charges are important to prevent aggregation. 
 
Response: We agree with the reviewer that a clear link between W and activity could have been 
established based on the important work of Warfield et al. that we have also cited. However just 
repeating Ws or Ds did not function as TADs and we found it surprising and exciting that increasing 
the number of combined Ws and Ds would work comparably to VP16, one of the most active 
sequences. We fully agree that using the model as a generative tool to design new sequences and 
comprehensively testing their performance is a wonderful direction. We hope to undertake in the 
near future as a separate study. 
 
Comment 2.8: The description on top of page 17 seems to mean that the training **and** test 
sequences were subsampled to get a ratio of 1:1 between activatory and non-activatory sequences. 
However, the Supplementary Figures 6 and 9 show a dotted line with an "imbalance ratio" of 
0.0116. This imbalance ration should be 0.5, shouldn't it? On the other hand, if test sequences were 
*not* subsampled, I would expect an imbalance ratio of 760 / 67000 = 0.113 and not 0.116. 
 
Response: We apologise for not being clear. We aimed to maintain a similar ratio of imbalance 
between the functional:non-functional sequences (complete dataset: 739/63385=0.0117) in the 
training (75%) and the testing (25%) set for the random library. The actual value after sampling may 
deviate slightly from this ratio as observed for the training set (0.0115). While performing the k-fold 
cross validation, we subsampled the training set to the minority class to ensure that the model is not 
biased by the majority class. However, while evaluating the performance on the validation set or the 
testing set, the imbalance is maintained to prevent over-estimation of performance and reflect the 
real imbalance in the original data set. The reviewer pointed out correctly that the number of non-
functional sequences in the main text is mentioned as 67,000, which was incorrect (this has been 
revised and corrected now). 
 
We have now described at what stage the sub-sampling is performed in the Materials and Methods 
section (Page 12; Line 550) as well as highlight it in Appendix Figure S3. We also provide the 
accurate number of sequences used in the study throughout the manuscript in several instances 
(related to last comment below). 
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Comment 2.9: Figures S6 and S9: The x axis labels "1 - sensitivity" should be "1 - specificity". The 
FPR needs to be defined explicitly in the online methods. 
 
Response: We now clearly defined how the false positive rate (FPR) in the machine learning stages 
is calculated in the Materials and Methods section (Page 14; Line 665). We apologise for this error 
and have them errors in the x-axis labels of Appendix Figure S6, S8, S12, S13 to “1-specificity”. 
 
Comment 2.10: In the main text (Page 3) the authors write "...we obtained robust measurements for 
67,000 variants." In the methods, the authors write "Given the imbalance in our dataset (760 
functional: 65,517 non-functional...". This adds up to 66270, not 67000. If the authors want to 
round, it should be 66000. 
 
Response: We apologize for making this mistake. We have now made sure to give the correct 
number for the random library analysis: a total of 64,124 sequences used in the study (63,385 + 739; 
non-functional and functional sequences, respectively). The reason for revision of the numbers is 
because do not include the stop codon sequences from the dataset (i.e. sequences with a stop codon 
as its first trinucleotide). This change is reflected at several instances throughout the manuscript. 
 
In summary, addressing the constructive comments of this referee has greatly strengthened the 
manuscript. We hope the referee finds the revised manuscript suitable for publication in MSB.  
 
 
 
Reviewer #3: 
 
Comment 3.1: Ravarani et al. present an integrated experimental-computational analysis of 
intrinsically disordered regions, in particular, the transactivation domain of HSF1. They start with 
an elegant screening system that inserts a random DNA sequence instead of the wt TAD of HSF1; 
they then apply heat shock, which leads to death in absence of a functional TAD. They thus discover 
a few hundred functional transactivation domains and develop a machine learning algorithm to 
discriminate functional from non-functional sequences. They supplement this by screening TAD of 
other transcription factors, including mutants thereof and obtain a somewhat better predictor.  
 
Response: We thank the reviewer for his/her enthusiasm of our work and for the constructive 
comments on our work. Addressing the issues raised has improved the quality of our work and 
manuscript. We hope that the revised manuscript meets the expectation of this referee for 
publication in MSB. 
 
Comment 3.2: This work is the first attempt to examine functionality of non-motif disordered 
regions (as far as I am aware) using a large-scale approach and should thus be of interest to a large 
audience. Their main result (that a large fraction of sequences can work as TADs) is interesting and 
novel. However, I personally think that the manuscript focusses a bit much on the machine learning 
aspect, which, while performed and discussed extensively, I find less insightful and prediction 
performance remains relatively low.  
 
Response: We appreciate this point of the referee. We agree that the field of transcription initiation 
is of fundamental importance and that this has guided us to choose it as our system of study. Firstly, 
we hope that the proposed framework will not be limited to studying transactivation domains, and 
that it can be applied to a range of systems where IDRs can be screened for a defined function. The 
generality and the emphasis on the machine learning part of the paper were aimed at making this 
point.  
Secondly, while it seems that the predictive power of the models that were developed are modest 
(for which we give additional reasons below), it allows one to compare, extract and interpret which 
of the defined and definable features are important for TAD functionality in a common, comparative 
framework. For these reasons, we respectfully feel that it is worth discussing the machine learning 
part to the extent that we did in our manuscript. 
 
Comment 3.3: In the initial screen, the authors massively under sample sequence space (measuring 
about 10^5 out of 20^20). I'm hence very surprised that they obtain any functional sequences at all, 
let alone that many (~1% of the sequences screened). That alone is, I think, a very interesting result 
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- the authors do not seem to comment on it further. It does go to show just how "fuzzy" and non-
specific the TAD interactions really are, and I think it deserves further discussion and examination. 
To illustrate how much 1% really is, compare it to e.g. results from phage display for peptide 
binding motifs. Out of large randomized libraries (around 10^10), one usually obtains a handful of 
binders (so far less than even 0.01%). Surely, even all sequences containing the mini-motif (DE in 
proximity to FWY) would not make up 1% of all sequences? 
 
Response: We were also surprised to note that 1% of the sequences were functional and agree that 
is a very large number, considering that a short and completely random sequence can decide 
between life and death of the organism hosting it. From the analysis of the structures of TADs in 
complex with co-factors (Appendix Figure S9), it is clear that different sequences adopt similar 
binding mode when interacting with the various co-factors. This suggests that a large number of 
sequences can and are compatible with co-factor interaction. Furthermore, many sequences can 
fulfil the role of a TAD by interacting with one of many components of the transcriptional 
machinery and hence a larger fraction of the sequences may survive the screen.  
 
From a technical point, unlike phage display, in the case of IDR-Screen, the random peptide is not 
selected for binding to a specific protein of the transcriptional machinery but to any of the over 100 
proteins that are involved in transcriptional initiation (selection is for function, and not explicitly for 
binding). Therefore, we might pick up more sequences that are functional through IDR-Screen 
compared to phage display for identifying binders to a specific protein of interest. We thank the 
referee for encouraging us to discuss this point, which we do now in the discussion of the revised 
manuscript (Page 7; Line 313). 
 
Comment 3.4: Going back to the first point (non-specificity of TADs), I found it a bit surprising to 
see so much "red" in Figure S8, even in the alanine scanning. So many-single point mutations 
leading to non-functional TADs would imply more specificity, which is surprising. From eye-balling 
Fig S8, it seems that most TADs fall into two camps: highly sensitive (e.g., AH or Gln3), tolerating 
only very few mutations, or are highly permissive (vP16 or Oaf1). From the first point, I would've 
expected all TADs to be of the second camp (remember, 1% of random sequences are functional, 
even single mutants from a known sequence are a tiny slice of sequence space). This certainly 
warrants further analysis. Are there technical/experimental reasons for this difference between 
different TADs? 
 
Response: We thank the referee for this comment. Motivated by this suggestion, we have calculated 
the tolerance score for every TAD in our design library. Tolerance is defined as the number of 
variants that confer survival over all variants tested for that TAD. We then analysed the distribution 
of the tolerance scores of the different TAD sequences. Intriguingly, we find a unimodal distribution 
where a majority of the TAD sequences have intermediate tolerance scores. As the reviewer points 
out, VP16 and Oaf1 are at the most tolerant end of the spectrum whereas Gln3 is in the least tolerant 
end of the spectrum. This suggests that most TADs are tolerant to a certain extent and this is likely 
to be determined by the nature of the substitution as summarised in an updated version of Figure 
4A. We are not aware of specific technical or experimental reasons for this difference between the 
TADs. 
 
We now present an analysis of mutational tolerance for the different sequences and present the 
results as Appendix Figure S11 and discuss it in the main text (Page 6; Line 247).  
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Response Figure 4: Histogram of the tolerance for scanning (point mutation) variants. The 
tolerance values were grouped into 6 bins and each group is coloured according to its tolerance 
(gradient between green, most tolerant and red, least tolerant). The name of the sequence set as well 
as the WT sequence are provided. 
 
Comment 3.5: The raw sequencing data does not seem to be given, only the author's assignment of 
"functional" and "non-functional" even in the supplement, the authors should provide the raw data, 
or at least their growth estimate. Such experiments tend to be noisy, so many sequences are likely 
not real. Did the authors not try to clone a few identified sequences and measure growth under heat 
shock? (except for the handful in Fig 4c). 
 
Response: We thank the referee for raising this point. We now provide all the growth estimates in 
supplementary tables. The reviewer is right to point out that these experiments tend to be noisy. 
Apart from characterization by the high through-put selection and sequencing experiment, we did 
initially pick a few single colonies, performed the dilution experiment (below) and Sanger 
sequencing to confirm the behaviour of some of the sequences, which were not presented in our 
original manuscript. This is now discussed (Page 3; Line 137) and presented as Appendix Figure 
S4 in the revised manuscript. Furthermore, we now provide the estimated growth rates in Table 
EV1 and Table EV5. 
 

  
 

Figure 5: Spot dilution assay for sequences identified during the screen of the random library both 
at permissible temperature for ∆HSF1 strains to grow (30ºC) and at non-permissible heat shock 

Gln3
QQNGEIAQLWDFN

AH
PEFPGIELQELQELQALLQQ

Pdr1
EDLYSILWSDVY

EKLF TAD1 (19−37)
PFPDTQDDFLKWWRSEEAQ

ESX
DELSWIIELLEKDG

hHSF1 AD1 (401−420)
MLSSHGFSVDTSALLDLFSP

Gal4 (860−872)
TMDDVYNYLFDD

KLF4
EFNDLLDLDFILSN

LexA scr top#1
EDDDEFSLWDSML

EBNA2
DLDESWDYIFETTE

plantHSFA2
VADDIWEELLSEDL

Oaf1 (1035−1047)
LFDYDFLFGNDFA

vP16 min x 2
DFDLDMLGDFDLDMLG

1

2

3

4

[0,0.167] (0.167,0.333] (0.333,0.5] (0.5,0.667] (0.667,0.833] (0.833,1]
tolerance group

co
un

t 0.2
0.4
0.6
0.8

tolerance

low high

∆TAD HSF1 (empty) 

VP16 

LFMTELLRSFDGYDGATLDG 

SKWPDLGDLIDKDTPPFAFL 

PLSPPCCTSLLNENIEFWLL 

IGDCCILGSSGGEKGLFGLF 

YTDCSHWCWANYSSEEYVGP 

1 1/3 1/9 1/27 1/81 1/243 1 1/3 1/9 1/27 1/81 1/243 

37ºC30ºC Heat shock Estimate

functional

functional

non-functional

48.30

functional7.70

functional4.83

functional3.64

functional2.39

Classification



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 15 

temperatures of 37ºC. VP16 and ∆TAD-HSF1 strains are given as reference points. Growth 
estimates (in a.u.) and classification are shown on the right. 
 
Comment 3.6: In the same vein, I see that a number (25 or ~3.5%) of sequences are a single amino 
acid, with another 100 or so (>10%) being 4 amino acids or less. These are surely false positives? 
This would translate to a FP rate far higher than the authors suggest. 
 
Response: In the earlier version of the manuscript, the FPR metric was defined using growth rate 
estimates based on negative sequences that we knew will not confer TAD functionality from prior 
knowledge (e.g. those containing a stop codon as the first trinucleotide). We felt that this was an 
objective criterion. However, we do agree that this metric does not reflect the experimental FPR (i.e. 
sequences that were wrongly detected as functional during the selection experiment). For instance, 
as the reviewer points out, sequences with less than 4 amino acids are less likely to be functional and 
are unlikely to be true positives. By considering all sequences with 4 or fewer amino acids as non-
functional we obtain the estimated false positives as13.5% (100 sequences with 4 or fewer amino 
acids / 739 sequences). We now discuss this point in the Materials and Methods (Page 11; Line 488) 
to ensure that the reader is aware of these considerations. 
  
Comment 3.7: I apologize for making a relatively straightforward technical point, but it appears to 
me that the authors do always evaluate their ML frameworks by cross-validation (hence the 
performance of the ones trained on "designed sequences" performs better than both the ones trained 
on the random-screened sequences and the combined one). To obtain a better and more comparable 
evaluation it would make sense to instead use a separate validation set (not used for training) to 
ascertain performance. Would also help to see how much the combined ML actually performs better 
than the one trained on the results from the screen on random sequences. 
 
Response: We apologize for the ambiguity and for the misunderstanding. In the previous version, 
we indeed performed the calculations according to what the referee mentions. For all models that 
were trained, we did have an initial training (75%) vs. testing (25%) set split of the data where the 
testing set was never used in training the model.  Then according to the k-fold cross-validation, the 
training set was further split into a training set and validation set, with which the models were 
trained and evaluated. The final model was then evaluated with the initial testing set which was 
never used for training. This is what we reported in the paper.  
 
We did the same for the random library in the revised manuscript. On the other hand, to minimize 
sequence similarity between the training and validation sets in the design library, we have now come 
up with a slightly revised strategy. We have applied group k-fold cross-validation (k=5) rather than 
k-fold cross validation. Due to the large number of sequence sets that this approach requires, we 
have just used cross-validation for the design library analysis without the additional evaluation of a 
test set due to limited size of the dataset upon splitting. For the combined library, we have 
implemented the reviewers suggestion and evaluated the models trained with the combined library 
on the testing set of the random library. We note that the performance remains comparable to the 
models trained purely based on the random library.  
 
We have now used consistent terminology throughout the manuscript and clarified this in the 
Materials and Methods section of the manuscript as well as in the Appendix Figure S3. The results 
from this calculation are now presented in the manuscript in updated Figures 4B and 5 as well as 
Appendix Figures S12 and S13 and Tables EV7 and EV8. This is also discussed in Materials and 
Methods (Page 12; Line 550) and Appendix Figure S3. 
 
Comment 3.8: This may be somewhat a question of personal preference, but I would think a more 
descriptive title is better suited (as the authors do not actually test "functional disordered protein 
regions" in general, but rather focus on the rather specialized case of transcription factor 
transactivation domains). 
 
Response: Thank you for this suggestion, we have changed the title to the following “High-
throughput discovery of functional disordered protein regions: investigation of transactivation 
domains”. We hope this new title reflects the generality of the approach and the specific system 
(transactivation domains) that it was applied to. 
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Comment 3.9: In Fig. 4c) I do not see cells with WD10 sequences survive "much better" than wt 
HSF... A little bit better, if that. Some better or clearer data (longer growth times, etc.) would be 
needed to make that claim. 
 
Response: We agree that the comparatively increased growth as inferred from the dilution assay is 
modest. We rephrase our statement to indicate that the that WDx10 sequence performs comparably 
to the wild-type sequence and added the results to Figure 6. 
 
Comment 3.10: It might be more instructive (and impressive) to try a number of other TAD 
sequences designed with the discovered features (rather than just all W, all D and WD10). 
 
Response: We fully agree that using the model as a generative tool to design new sequences and 
comprehensively testing their performance is a wonderful direction. We hope to undertake in the 
near future as a separate study. 
 
 
2nd Editorial Decision 3 April 2018 

Thank you for sending us your revised manuscript. We have now heard back from the referee who 
was asked to evaluate your study. As you will see below, reviewer #2 is satisfied with the 
modifications made and thinks that the study is now suitable for publication.  
 
Before we formally accept the manuscript, we would like to ask you to address some remaining 
editorial issues listed below.   
 
 
----------------------------------------------------------------------------  
REVIEWER REPORT 
 
 
Reviewer #2:  
 
The authors have responded very constructively to the reviewer comments and have substantially 
improve their manuscript. All major issues have been addressed in my view. 
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  questions	
  are	
  reported	
  in	
  the	
  manuscript	
  itself.	
  We	
  encourage	
  you	
  to	
  include	
  a	
  
specific	
  subsection	
  in	
  the	
  methods	
  section	
  for	
  statistics,	
  reagents,	
  animal	
  models	
  and	
  human	
  subjects.	
  	
  

In	
  the	
  pink	
  boxes	
  below,	
  provide	
  the	
  page	
  number(s)	
  of	
  the	
  manuscript	
  draft	
  or	
  figure	
  legend(s)	
  where	
  the	
  
information	
  can	
  be	
  located.	
  Every	
  question	
  should	
  be	
  answered.	
  If	
  the	
  question	
  is	
  not	
  relevant	
  to	
  your	
  research,	
  
please	
  write	
  NA	
  (non	
  applicable).

B-­‐	
  Statistics	
  and	
  general	
  methods

the	
  assay(s)	
  and	
  method(s)	
  used	
  to	
  carry	
  out	
  the	
  reported	
  observations	
  and	
  measurements	
  
an	
  explicit	
  mention	
  of	
  the	
  biological	
  and	
  chemical	
  entity(ies)	
  that	
  are	
  being	
  measured.
an	
  explicit	
  mention	
  of	
  the	
  biological	
  and	
  chemical	
  entity(ies)	
  that	
  are	
  altered/varied/perturbed	
  in	
  a	
  controlled	
  manner.

the	
  exact	
  sample	
  size	
  (n)	
  for	
  each	
  experimental	
  group/condition,	
  given	
  as	
  a	
  number,	
  not	
  a	
  range;
a	
  description	
  of	
  the	
  sample	
  collection	
  allowing	
  the	
  reader	
  to	
  understand	
  whether	
  the	
  samples	
  represent	
  technical	
  or	
  
biological	
  replicates	
  (including	
  how	
  many	
  animals,	
  litters,	
  cultures,	
  etc.).

1.	
  Data

the	
  data	
  were	
  obtained	
  and	
  processed	
  according	
  to	
  the	
  field’s	
  best	
  practice	
  and	
  are	
  presented	
  to	
  reflect	
  the	
  results	
  of	
  the	
  
experiments	
  in	
  an	
  accurate	
  and	
  unbiased	
  manner.
figure	
  panels	
  include	
  only	
  data	
  points,	
  measurements	
  or	
  observations	
  that	
  can	
  be	
  compared	
  to	
  each	
  other	
  in	
  a	
  scientifically	
  
meaningful	
  way.
graphs	
  include	
  clearly	
  labeled	
  error	
  bars	
  for	
  independent	
  experiments	
  and	
  sample	
  sizes.	
  Unless	
  justified,	
  error	
  bars	
  should	
  
not	
  be	
  shown	
  for	
  technical	
  replicates.
if	
  n<	
  5,	
  the	
  individual	
  data	
  points	
  from	
  each	
  experiment	
  should	
  be	
  plotted	
  and	
  any	
  statistical	
  test	
  employed	
  should	
  be	
  
justified

YOU	
  MUST	
  COMPLETE	
  ALL	
  CELLS	
  WITH	
  A	
  PINK	
  BACKGROUND	
  ê

not	
  applicable

not	
  applicable

These	
  are	
  described	
  in	
  detail	
  in	
  the	
  materials	
  and	
  methods	
  section	
  of	
  the	
  paper.

not	
  applicable

not	
  applicable

not	
  applicable

not	
  applicable

definitions	
  of	
  statistical	
  methods	
  and	
  measures:

Journal	
  Submitted	
  to:	
  Molecular	
  Systems	
  Biology
Corresponding	
  Author	
  Name:	
  Charles	
  Ravarani,	
  Alexander	
  Erkine	
  and	
  M.	
  Madan	
  Babu

C-­‐	
  Reagents

yes

yes	
  and	
  these	
  are	
  described	
  in	
  the	
  materials	
  and	
  methods	
  section	
  of	
  the	
  paper.

yes

yes



6.	
  To	
  show	
  that	
  antibodies	
  were	
  profiled	
  for	
  use	
  in	
  the	
  system	
  under	
  study	
  (assay	
  and	
  species),	
  provide	
  a	
  citation,	
  catalog	
  
number	
  and/or	
  clone	
  number,	
  supplementary	
  information	
  or	
  reference	
  to	
  an	
  antibody	
  validation	
  profile.	
  e.g.,	
  
Antibodypedia	
  (see	
  link	
  list	
  at	
  top	
  right),	
  1DegreeBio	
  (see	
  link	
  list	
  at	
  top	
  right).

7.	
  Identify	
  the	
  source	
  of	
  cell	
  lines	
  and	
  report	
  if	
  they	
  were	
  recently	
  authenticated	
  (e.g.,	
  by	
  STR	
  profiling)	
  and	
  tested	
  for	
  
mycoplasma	
  contamination.

*	
  for	
  all	
  hyperlinks,	
  please	
  see	
  the	
  table	
  at	
  the	
  top	
  right	
  of	
  the	
  document

8.	
  Report	
  species,	
  strain,	
  gender,	
  age	
  of	
  animals	
  and	
  genetic	
  modification	
  status	
  where	
  applicable.	
  Please	
  detail	
  housing	
  
and	
  husbandry	
  conditions	
  and	
  the	
  source	
  of	
  animals.

9.	
  For	
  experiments	
  involving	
  live	
  vertebrates,	
  include	
  a	
  statement	
  of	
  compliance	
  with	
  ethical	
  regulations	
  and	
  identify	
  the	
  
committee(s)	
  approving	
  the	
  experiments.

10.	
  We	
  recommend	
  consulting	
  the	
  ARRIVE	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  (PLoS	
  Biol.	
  8(6),	
  e1000412,	
  2010)	
  to	
  ensure	
  
that	
  other	
  relevant	
  aspects	
  of	
  animal	
  studies	
  are	
  adequately	
  reported.	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  
Guidelines’.	
  See	
  also:	
  NIH	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  MRC	
  (see	
  link	
  list	
  at	
  top	
  right)	
  recommendations.	
  	
  Please	
  confirm	
  
compliance.

11.	
  Identify	
  the	
  committee(s)	
  approving	
  the	
  study	
  protocol.

12.	
  Include	
  a	
  statement	
  confirming	
  that	
  informed	
  consent	
  was	
  obtained	
  from	
  all	
  subjects	
  and	
  that	
  the	
  experiments	
  
conformed	
  to	
  the	
  principles	
  set	
  out	
  in	
  the	
  WMA	
  Declaration	
  of	
  Helsinki	
  and	
  the	
  Department	
  of	
  Health	
  and	
  Human	
  
Services	
  Belmont	
  Report.

13.	
  For	
  publication	
  of	
  patient	
  photos,	
  include	
  a	
  statement	
  confirming	
  that	
  consent	
  to	
  publish	
  was	
  obtained.

14.	
  Report	
  any	
  restrictions	
  on	
  the	
  availability	
  (and/or	
  on	
  the	
  use)	
  of	
  human	
  data	
  or	
  samples.

15.	
  Report	
  the	
  clinical	
  trial	
  registration	
  number	
  (at	
  ClinicalTrials.gov	
  or	
  equivalent),	
  where	
  applicable.

16.	
  For	
  phase	
  II	
  and	
  III	
  randomized	
  controlled	
  trials,	
  please	
  refer	
  to	
  the	
  CONSORT	
  flow	
  diagram	
  (see	
  link	
  list	
  at	
  top	
  right)	
  
and	
  submit	
  the	
  CONSORT	
  checklist	
  (see	
  link	
  list	
  at	
  top	
  right)	
  with	
  your	
  submission.	
  See	
  author	
  guidelines,	
  under	
  
‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  submitted	
  this	
  list.

17.	
  For	
  tumor	
  marker	
  prognostic	
  studies,	
  we	
  recommend	
  that	
  you	
  follow	
  the	
  REMARK	
  reporting	
  guidelines	
  (see	
  link	
  list	
  at	
  
top	
  right).	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  followed	
  these	
  guidelines.

18.	
  Provide	
  accession	
  codes	
  for	
  deposited	
  data.	
  See	
  author	
  guidelines,	
  under	
  ‘Data	
  Deposition’.

Data	
  deposition	
  in	
  a	
  public	
  repository	
  is	
  mandatory	
  for:
a.	
  Protein,	
  DNA	
  and	
  RNA	
  sequences
b.	
  Macromolecular	
  structures
c.	
  Crystallographic	
  data	
  for	
  small	
  molecules
d.	
  Functional	
  genomics	
  data	
  
e.	
  Proteomics	
  and	
  molecular	
  interactions

19.	
  Deposition	
  is	
  strongly	
  recommended	
  for	
  any	
  datasets	
  that	
  are	
  central	
  and	
  integral	
  to	
  the	
  study;	
  please	
  consider	
  the	
  
journal’s	
  data	
  policy.	
  If	
  no	
  structured	
  public	
  repository	
  exists	
  for	
  a	
  given	
  data	
  type,	
  we	
  encourage	
  the	
  provision	
  of	
  
datasets	
  in	
  the	
  manuscript	
  as	
  a	
  Supplementary	
  Document	
  (see	
  author	
  guidelines	
  under	
  ‘Expanded	
  View’	
  or	
  in	
  
unstructured	
  repositories	
  such	
  as	
  Dryad	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  Figshare	
  (see	
  link	
  list	
  at	
  top	
  right).
20.	
  Access	
  to	
  human	
  clinical	
  and	
  genomic	
  datasets	
  should	
  be	
  provided	
  with	
  as	
  few	
  restrictions	
  as	
  possible	
  while	
  
respecting	
  ethical	
  obligations	
  to	
  the	
  patients	
  and	
  relevant	
  medical	
  and	
  legal	
  issues.	
  If	
  practically	
  possible	
  and	
  compatible	
  
with	
  the	
  individual	
  consent	
  agreement	
  used	
  in	
  the	
  study,	
  such	
  data	
  should	
  be	
  deposited	
  in	
  one	
  of	
  the	
  major	
  public	
  access-­‐
controlled	
  repositories	
  such	
  as	
  dbGAP	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  EGA	
  (see	
  link	
  list	
  at	
  top	
  right).
21.	
  As	
  far	
  as	
  possible,	
  primary	
  and	
  referenced	
  data	
  should	
  be	
  formally	
  cited	
  in	
  a	
  Data	
  Availability	
  section.	
  Please	
  state	
  
whether	
  you	
  have	
  included	
  this	
  section.

Examples:
Primary	
  Data
Wetmore	
  KM,	
  Deutschbauer	
  AM,	
  Price	
  MN,	
  Arkin	
  AP	
  (2012).	
  Comparison	
  of	
  gene	
  expression	
  and	
  mutant	
  fitness	
  in	
  
Shewanella	
  oneidensis	
  MR-­‐1.	
  Gene	
  Expression	
  Omnibus	
  GSE39462
Referenced	
  Data
Huang	
  J,	
  Brown	
  AF,	
  Lei	
  M	
  (2012).	
  Crystal	
  structure	
  of	
  the	
  TRBD	
  domain	
  of	
  TERT	
  and	
  the	
  CR4/5	
  of	
  TR.	
  Protein	
  Data	
  Bank	
  
4O26
AP-­‐MS	
  analysis	
  of	
  human	
  histone	
  deacetylase	
  interactions	
  in	
  CEM-­‐T	
  cells	
  (2013).	
  PRIDE	
  PXD000208

22.	
  Computational	
  models	
  that	
  are	
  central	
  and	
  integral	
  to	
  a	
  study	
  should	
  be	
  shared	
  without	
  restrictions	
  and	
  provided	
  in	
  a	
  
machine-­‐readable	
  form.	
  	
  The	
  relevant	
  accession	
  numbers	
  or	
  links	
  should	
  be	
  provided.	
  When	
  possible,	
  standardized	
  
format	
  (SBML,	
  CellML)	
  should	
  be	
  used	
  instead	
  of	
  scripts	
  (e.g.	
  MATLAB).	
  Authors	
  are	
  strongly	
  encouraged	
  to	
  follow	
  the	
  
MIRIAM	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  deposit	
  their	
  model	
  in	
  a	
  public	
  database	
  such	
  as	
  Biomodels	
  (see	
  link	
  list	
  
at	
  top	
  right)	
  or	
  JWS	
  Online	
  (see	
  link	
  list	
  at	
  top	
  right).	
  If	
  computer	
  source	
  code	
  is	
  provided	
  with	
  the	
  paper,	
  it	
  should	
  be	
  
deposited	
  in	
  a	
  public	
  repository	
  or	
  included	
  in	
  supplementary	
  information.

23.	
  Could	
  your	
  study	
  fall	
  under	
  dual	
  use	
  research	
  restrictions?	
  Please	
  check	
  biosecurity	
  documents	
  (see	
  link	
  list	
  at	
  top	
  
right)	
  and	
  list	
  of	
  select	
  agents	
  and	
  toxins	
  (APHIS/CDC)	
  (see	
  link	
  list	
  at	
  top	
  right).	
  According	
  to	
  our	
  biosecurity	
  guidelines,	
  
provide	
  a	
  statement	
  only	
  if	
  it	
  could.

F-­‐	
  Data	
  Accessibility

G-­‐	
  Dual	
  use	
  research	
  of	
  concern

D-­‐	
  Animal	
  Models

E-­‐	
  Human	
  Subjects

not	
  applicale

not	
  applicable

not	
  applicable

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicale

We	
  use	
  PDB	
  co-­‐ordinates	
  to	
  visualise	
  TAD	
  complexes	
  in	
  Appendix	
  Figure	
  S9	
  and	
  provide	
  the	
  PDB	
  
codes	
  directly	
  in	
  the	
  figure.

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicale

not	
  applicable

We	
  provide	
  all	
  relevant	
  datasets	
  as	
  Extended	
  View	
  Tables	
  S1-­‐S8
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