
Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 1 

 
 
 
 
High-throughput discovery of functional disordered regions: 
investigation of transactivation domains 
 
Charles N. J. Ravarani, Tamara Y. Erkina, Greet De Baets, Daniel C. Dudman, Alexandre M. Erkine 
& M. Madan Babu 
  
 
 
 
 
 
Review timeline: Submission date: 8 January 2018  
 Editorial Decision: 7 February 2018 
 Revision received: 27 March 2018 
 Editorial Decision: 3 April 2018 
 Revision received: 10 April 2018 
 Accepted: 11 April 2018 
 
 
Editor: Maria Polychonidou 
 
Transaction Report: 
 
(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, 
letters and reports are not edited. The original formatting of letters and referee reports may not be reflected in this 
compilation.) 
 
 

1st Editorial Decision 7 February 2018 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from two of the three referees who agreed to evaluate your study. We have not yet heard from 
reviewer #3 but since the recommendations of the other two referees are quite similar I prefer to 
make a decision now rather than further delaying the process. The two reviewers are overall 
supportive. They raise however a series of concerns, which we would ask you to address in a 
revision of the manuscript. If we receive comments from reviewer #3 within the next few days, I 
will forward them to you so that you can address them in your revision.  
 
The reviewers' recommendations are rather clear so I think that there is no need to repeat the points 
listed below. Please let me know in case you would like to discuss any of the points in further detail.  
 
--------------------------------------------------------  
REVIEWER REPORTS 
 
 
Reviewer #1:  
 
I n this short manuscript the authors set out and provide demonstration of a general strategy to map 
out the sequence requirements for functioning of intrinsically disordered protein domains. The 
method describes screening of a random or designed library of peptides linked to some functional in 
vivo assay, clonal selection by coupling survival to some enzyme activity or fluorescent reporter, 
next generation sequencing of positive clones and finally, a machine learning method to tease out 
sequence features and properties that dominate positive selection.  
 



Molecular Systems Biology   Peer Review Process File  
 

 

 
© European Molecular Biology Organization 2 

The strategy was applied in the yeast S. cerevisiae in which survival-selection was determined by 
expression of a selection gene product under the control of a promoter controlled by a transcription 
factor in which its activation domain has been replaced with random or directed libraries coding for 
20 amino acid peptides.  
 
Subsequent machine learning on resultant positive clones revealed several features of interest, both 
predicted (selection for negatively charged amino acids) and not so very obvious very strong 
selection for tryptophan in the sequences of the artificial activation domains. Tests with directed 
library revealed a novel DW tandem repeat as providing maximum activity. To the best of my 
knowledge, such a sequence has never been demonstrated to regulate transcription with such high 
activity.  
 
Overall, the study is well performed and the manuscript is well written. The screening method itself 
is not particularly novel in comparison to many other screening strategies. It appears to me, 
however, that the combination of the screen with data analysis could provide more insight into 
binding of IDPs to other molecules than more conventional analyses.  
 
I return again to the DW repeats. These are interesting for two reasons: First, while in vitro binding 
screens such as phage display have been shown to exhibit unusual amino acid biases, notably for 
abundances of tryptophan, I am not aware that in vivo screens show the same bias. This issue is 
discussed and the structural and thermodynamic consequences of multiple Trp tandem repeats were 
discussed and beautifully illustrated in the strange case of the "Trp Zipper", an extraordinarily stable 
beta hairpin discovered in a phage display screen (Cochran, A, et al. PNAS, 2001). Another 
unrelated structure that would be worth discussing is the co-crystal structure of the messenger RNA 
5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP (Marcotrigiano, et al. Cell, 1997). Here the 
7-methyl-GDP is nestled between two tryptophan rings forming an interesting and subtle interaction 
that might reflect something about the say that the author's weird TD repeat interacts.  
 
So all in all this is an interesting study that should be of interest to the general readership of MSB. I 
must say, however, that before it is accepted I'd suggest major revision to the figures, notably figure 
1, 3a, b, d and 4a, b. These are not of the quality, elegance and clarity that I have come to expect 
from this group and make difficult to follow, what should be straightforward ideas. Figures 3b, d 
and 4b are the worst and need to be substantially simplified and clarified to provide clear 
information that a general reader can appreciate.  
 
 
 
Reviewer #2:  
 
This manuscript describes a high-throughput method for finding what properties make a sequence 
activate transcription of a reporter gene when fused to a DNA-binding domain binding to the 
promoter of the reporter gene. Only a good handful of so-called activation domains are known from 
low-throughput experiments. This work represents so far the first high-throughput, unbiased screen 
of activatory peptides.  
 
Although a relatively low number of only 760 activating sequences were found in the screen, the 
authors were able to demonstrate in a cross-validation test that a machine learning classifier trained 
on a part of the activating and non-activating sequences can distinguish new activating and non-
activating sequences (at 1:1 ratio) with a precision much higher than random expectation. The 
manuscript therefore makes a unique and valuable contribution to the very challenging topic of 
transcriptional activation.  
 
Major points:  
 
1. According to the description in the Methods section, it seems that sequencing error rates are very 
high, because an error rate of 25% in the barcode are still accepted: 1 out of 4 nucleotides can be 
misread. That is an extremely high error rate and it would be important to comment on the causes 
and to discuss more the possible consequences for interpretation of the data.  
 
2. The authors describe that they cluster the sequences into clusters of similar sequences with a 
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minimum sequence similarity threshold of 90%. It is not clear a prior why this should be necessary, 
as one would expect that in a random library sequences with different barcodes would be unique, 
and the chance of two sequences of length 15 residues to be the same by chance is on the order of 
20^(-15) = 0. The authors need to discuss the possible origin of these similar sequences.  
 
Also, when the authors write that "The resulting mapping table for both the random and the 
designed libraries was aggregated to a count table where every sequence has its count recorded for 
each replicate", do they mean that every **centroid** has its counts recorded, which are the 
aggregate of all members of its cluster of similar sequences? Does it mean that 760 activating 
**centroid** sequences were discovered, or does the number 760 include the very similar 
sequences?  
 
3. The authors need to make sure that in their cross-validation benchmark on the machine learning 
predictors, none of the training sequences has a similarity to any of the test sequences higher than 
expected by chance. Otherwise, the prediction performance could be highly overestimated, as test 
sequences for which similar sequences have been trained on will be predicted much more accurately 
than the realistic cases in which no similar training sequence has been observed.  
 
The authors mention that many of the sequences they obtain are very similar to each other, hence the 
clustering. But how many are similar but have sequence identities below 80% or 90%? If pairs with 
sequence identities higher than what can be expected by chance (10-20%) are split between training 
and test set, the estimated performances of the predictors will be overestimated. A simple criterion 
could be to limit the sequence identity in a local alignment of the coding sequences to 30%. Here, 
sequence identity is defined as the fraction of identical aligned residue pairs to the length of the 
shorter sequence.  
 
4. There is a contradiction on page 18 in the online methods: "The dataset was split into 75% for 
training and the remaining 25% for testing..." This implies that the authors used 4-fold cross-
validation, but in the next sentence they write "The entire machine learning process was performed 
with repeated cross-validation (k = 5 folds and 10 repeats) on the training set." The entire procedure 
of cross-validation and sampling is not clear, as the authors do not seem to have used the standard 
cross-validating procedure. For example what does "10 repeats" refer to?  
 
 
Minor points:  
 
5. Instead of demonstrating the usefulness of the learned features of activating domains using the 
sequence WDWDWDWD..., it would be more convincing to show the activation potential for a less 
obvious sequence where the authors make use of the specific minipatterns they have learned. The 
prediction of WDWDWDWD... could have been made even before because it is known from earlier 
work using site-directed mutagenesis (http://www.pnas.org/content/111/34/E3506.full.pdf?with-
ds=yes) that mutations to W generaly increase activation potential and that negative charges are 
important to prevent aggregation.  
 
6. The description on top of page 17 seems to mean that the training **and** test sequences were 
subsampled to get a ratio of 1:1 between activatory and non-activatory sequences. However, the 
Supplementary Figures 6 and 9 show a dotted line with an "imbalance ratio" of 0.0116. This 
imbalance ration should be 0.5, shouldn't it? On the other hand, if test sequences were *not* 
subsampled, I would expect an imbalance ratio of 760 / 67000 = 0.113 and not 0.116.  
 
7. Figures S6 and S9: The x axis labels "1 - sensitivity" should be "1 - specificity". The FPR needs 
to be defined explicitly in the online methods.  
 
8. In the main text (Page 3) the authors write "...we obtained robust measurements for 67,000 
variants." In the methods, the authors write "Given the imbalance in our dataset (760 functional: 
65,517 non-functional...". This adds up to 66270, not 67000. If the authors want to round, it should 
be 66000. 
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1st Revision - authors' response 27 March 2018 

Note to all reviewers 
 
We are pleased to note that all the referees feel we have developed a useful method that allows to 
screen for functional regions in intrinsically disordered regions, and that we could successfully 
apply it to the challenging topic of transcription activation that is of interest to the scientific 
community:  
 
Reviewer #1: …“Overall, the study is well performed and the manuscript is well written. The 
screening method itself is not particularly novel in comparison to many other screening strategies. It 
appears to me, however, that the combination of the screen with data analysis could provide more 
insight into binding of IDPs to other molecules than more conventional analyses.”…” So all in all 
this is an interesting study that should be of interest to the general readership of MSB.”… 
 
Reviewer #2: …“Only a good handful of so-called activation domains are known from low-
throughput experiments. This work represents so far the first high-throughput, unbiased screen of 
activatory peptides.”…”The manuscript therefore makes a unique and valuable contribution to the 
very challenging topic of transcriptional activation.” 
 
Reviewer #3: …“This work is the first attempt to examine functionality of non-motif disordered 
regions (as far as I am aware) using a large-scale approach and should thus be of interest to a large 
audience. Their main result (that a large fraction of sequences can work as TADs) is interesting and 
novel.”… ”In summary, this is a very interesting paper in an important field that neatly combined 
high throughput methods with modern analysis methods”… 
 
Given the generally enthusiastic comments from the referees, and the highly constructive criticisms 
raised by them, we would like to suitably revise the paper for further consideration at Molecular 
Systems Biology as an article. In this document, we provide a point-by-point response to the 
referees’ comments along with the action taken for the revised paper. 
 
To help the reviewers and the editor go through our point-by-point responses, we have the 
reviewers’ statements in italics and our responses in normal text in blue. For each comment, we 
provide a suggested action that we propose to undertake while preparing a revised version of the 
paper wherein we also provide page numbers and line numbers in the revised manuscript.  
 
Response to Reviewer #1: pages 2-3 
Response to Reviewer #2: pages 4-9 
Response to Reviewer #3: pages 10-13 
 
We believe that by addressing the constructive criticisms raised by the expert referees in a revised 
manuscript, a considerably stronger paper has been produced. We therefore sincerely hope that the 
referees would support further consideration of a revised manuscript that addresses all the concerns. 
 
Sincerely, 
 
Charles, Alex and Madan 
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Point-by-point response to referees comments 
 
Reviewer #1: 
Comment 1.1: In this short manuscript the authors set out and provide demonstration of a general 
strategy to map out the sequence requirements for functioning of intrinsically disordered protein 
domains. The method describes screening of a random or designed library of peptides linked to 
some functional in vivo assay, clonal selection by coupling survival to some enzyme activity or 
fluorescent reporter, next generation sequencing of positive clones and finally, a machine learning 
method to tease out sequence features and properties that dominate positive selection. 
 
The strategy was applied in the yeast S. cerevisiae in which survival-selection was determined by 
expression of a selection gene product under the control of a promoter controlled by a transcription 
factor in which its activation domain has been replaced with random or directed libraries coding for 
20 amino acid peptides.  
 
Subsequent machine learning on resultant positive clones revealed several features of interest, both 
predicted (selection for negatively charged amino acids) and not so very obvious very strong 
selection for tryptophan in the sequences of the artificial activation domains. Tests with directed 
library revealed a novel DW tandem repeat as providing maximum activity. To the best of my 
knowledge, such a sequence has never been demonstrated to regulate transcription with such high 
activity. 
 
Overall, the study is well performed and the manuscript is well written. The screening method itself 
is not particularly novel in comparison to many other screening strategies. It appears to me, 
however, that the combination of the screen with data analysis could provide more insight into 
binding of IDPs to other molecules than more conventional analyses. 
 
Response: We thank the reviewer for his/her enthusiasm on our work, and the clarity with which 
he/she has summarised our work. We decided to adapt a previously established screen to 
demonstrate the feasibility of the approach. We agree with the reviewer that there are interesting 
ways to design the screen and systems that one could investigate. We look forward to applying our 
method to other problems and helping the community to apply this framework to their own scientific 
problems that are amenable to this approach. 
 
Comment 1.2: I return again to the DW repeats. These are interesting for two reasons: First, while 
in vitro binding screens such as phage display have been shown to exhibit unusual amino acid 
biases, notably for abundances of tryptophan, I am not aware that in vivo screens show the same 
bias. This issue is discussed and the structural and thermodynamic consequences of multiple Trp 
tandem repeats were discussed and beautifully illustrated in the strange case of the "Trp Zipper", an 
extraordinarily stable beta hairpin discovered in a phage display screen (Cochran, A, et al. PNAS, 
2001). Another unrelated structure that would be worth discussing is the co-crystal structure of the 
messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP (Marcotrigiano, et al. Cell, 
1997). Here the 7-methyl-GDP is nestled between two tryptophan rings forming an interesting and 
subtle interaction that might reflect something about the say that the author's weird TD repeat 
interacts. 
 
Response: The referee raises very interesting points and we agree that in vivo assays are unlikely to 
display amino acid bias. Unlike in phage display, negative selection is incorporated within IDR-
Screen because the selection for function happens within the cell where a given sequence can 
encounter other proteins that are expressed. Moreover, we are selecting for transcriptional activity 
instead of strong binders to components of the transcriptional machinery. Thus, the in vivo screening 
step will likely select against sticky sequences. For these reasons, it appears less likely that IDR-
Screen will exhibit unusual systematic/experimental amino acid biases. Nevertheless, functional 
sequences might still be systematically biased. We think as we perform different assays using this 
technology in the future, the existence of any systematic biases, if any, might become more obvious. 
 
We thank the reviewer for pointing us to these two references that are very relevant to further our 
understanding of how the DW dipeptide repeats might behave and that they might be exploited in 
other systems. We have discussed and referenced the two papers in the manuscript to draw the 
parallel to other systems (Page 4; line 172). 
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Comment 1.3: I'd suggest major revision to the figures, notably figure 1, 3a, b, d and 4a, b. These 
are not of the quality, elegance and clarity that I have come to expect from this group and make 
difficult to follow, what should be straightforward ideas. Figures 3b, d and 4b are the worst and 
need to be substantially simplified and clarified to provide clear information that a general reader 
can appreciate. 
 
Response: We appreciate the feedback on the general quality of the figures. Specifically, the 
schematics of the paper in Figure 1, Figure 3a and Figure 4a should have been of higher quality. We 
also agree that the feature importance tables in Figure 3b, Figure 3d and Figure 4b were overly 
complicated with too much details, making the major conclusions less clear to the readers.  
 
We have split the figures, made them bigger and have also redesigned the schematics of Figure 1, 
old Figure 3a and old Figure 4a to make them of higher quality and clearer. Furthermore, we have 
simplified the feature importance description in Figure 3, Figure 4B and Figure 5, as well as 
provided clear descriptions of the features.  
 
We hope that the revised manuscript and the figures meet the expectation of this referee for 
publication in MSB. 
 
 
 
Reviewer #2: 
Comment 2.1: This manuscript describes a high-throughput method for finding what properties 
make a sequence activate transcription of a reporter gene when fused to a DNA-binding domain 
binding to the promoter of the reporter gene. Only a good handful of so-called activation domains 
are known from low-throughput experiments. This work represents so far the first high-throughput, 
unbiased screen of activatory peptides. 
 
Although a relatively low number of only 760 activating sequences were found in the screen, the 
authors were able to demonstrate in a cross-validation test that a machine learning classifier 
trained on a part of the activating and non-activating sequences can distinguish new activating and 
non-activating sequences (at 1:1 ratio) with a precision much higher than random expectation. The 
manuscript therefore makes a unique and valuable contribution to the very challenging topic of 
transcriptional activation. 
 
Response: We would like to thank this referee for his/her enthusiasm on our work. We are also 
grateful for the extremely thoughtful, thorough and constructive suggestions to improve our work. 
Although the number of functional sequences of 739 (revised) is not very high, we believe it is 
astonishing that such a large number of completely random peptides can decide between life and 
death of the organism.  
 
Comment 2.2: According to the description in the Methods section, it seems that sequencing error 
rates are very high, because an error rate of 25% in the barcode are still accepted: 1 out of 4 
nucleotides can be misread. That is an extremely high error rate and it would be important to 
comment on the causes and to discuss more the possible consequences for interpretation of the data. 
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Response: We apologise for not being clear in our methods and for the potential misunderstanding. 
We wish to clarify that the sequencing error rates are not 25%. The error rates of sequencing in our 
experiments are very low, with more than 94% of sequencing cycles being over a score of Q30. 
Most importantly, to ensure high quality, we removed reads with expected error rates above 1 (i.e. 
more than 1 position based on the Q score of the sequence), further reducing the risk of having 
mistakes in the barcode assignments. 
 

 
 
Response Figure 1: Representative Quality Score distribution of Sequencing Runs (screenshot from 
the MiSeq output). More than 94% of the sequencing cycles have a quality above Q30, which, 
together with the minimal Levenshtein distance (see next page) between barcodes of 4, reduces the 
concern that barcodes could have been wrongly assigned (please see below). 

Furthermore, in order to accurately distinguish between replicates of samples (three replicates, 
barcoded), we have designed barcodes of length 8 and with minimum Levenshtein distances of 4 
(i.e. a distance that consists in the number of substitutions, insertions and deletions required to 
change one nucleic acid sequence to another). This means that there would at least need to be 4 
sequencing mistakes in order for any pair of the 3 barcodes that we used to be confused with each 
other. With this very stringent design in mind we have accepted error rates of up to 25% (only in the 
barcode region), which, for a barcode length of 8, translates to a maximum of 2 mistakes (0.25 * 8 = 
2). Thus, the sequence reads obtained should be accurately grouped by their barcodes (specifically: 
AGGCAGAA, GGACTCCT and TAGGCATG). We have clarified this in detail in the Materials 
and Methods section (Page 10; Line 423). 
 
Comment 2.3: The authors describe that they cluster the sequences into clusters of similar 
sequences with a minimum sequence similarity threshold of 90%. It is not clear a prior why this 
should be necessary, as one would expect that in a random library sequences with different 
barcodes would be unique, and the chance of two sequences of length 15 residues to be the same by 
chance is on the order of 20^(-15) = 0. The authors need to discuss the possible origin of these 
similar sequences. 
 
Response: The reviewer is right to point out that theoretically it is not necessary to select any 
threshold other than 100% identity to cluster reads into the distinct nucleotide sequences (centroids) 
present in the experiment. However practically, we picked this threshold as a way to balance the 
trade-off between over- and underestimating the number of “distinct” nucleotide sequences detected 
in the experiment.  
 
To explain this further, let’s consider that the number of reads from the surviving sequences (i.e. 
they are selected for in the screen) across samples. Among these sequences, it is likely that a certain 
number of reads which pass our quality control filter may still contain errors. If we picked a 
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threshold of 100% identity, each of the distinct reads (some with errors) would be assigned its own 
centroid, whereas in reality some of the “unique sequences” that pass our filter might be a result of a 
same sequence with different sequencing errors, giving rise to the distinct reads (especially if their 
read counts are low).  
 
This type of over-estimation of number of unique sequences would be especially detrimental to our 
downstream analyses, as it would artificially increase the number of activating sequences detected, 
whereas in reality they would have just been artefacts from the sequencing. On the other side of the 
trade-off, picking a loose threshold could lead to a different problem: that of under-estimation where 
truly different nucleotide sequences (with some similarity) would falsely be aggregated into a single 
centroid sequence.  
 
However, as the reviewer also points out, since we are working with a random library, it is very 
unlikely for two independent nucleotide sequences to be similar to 90%. Therefore, our choice of a 
threshold of 90% will not be a problem. 
 

 
 

Response Figure 2: The different unique sequences are shown in the sequence space (grey region) 
as dots. The size of the dots indicates the number of reads supporting the sequence. Points in the 
close proximity of sequences (circled region) with high read abundance (pink and purple) are 
grouped together into clusters if they are within a circle of radius of 90% sequence identity 
(indicated by grey arrows). The main sequence of the cluster is referred to as centroid sequences. 
This approach allows associating sequences with a few errors manifested in mismatches, insertions 
or deletions into clusters representing their “true” sequence. Given the vast sequence space in a 
random 60mer DNA library, it is very unlikely that two biological sequences from the experiment 
would be clustered together in this way (inter-cluster distances). 

That is why we chose a more tolerant threshold for aggregation as (i) we do not run the risk of 
aggregating truly different sequences (preventing under-estimation of the number of sequences), 
whilst (ii) we make sure that sequences with errors are aggregated into the same centroids from 
which they originate (preventing over-estimating the number of sequences). In this way, we 
discovered 739 (centroid) sequences in the random library. 
 
During the revision, we have ensured to use a clearer set of terminologies to describe these concepts 
and terms throughout the Materials and Methods section (Page 9; Line 413). Furthermore, we have 
created a schematic that helps to clarify these concepts, visualising the distinction between centroid 
sequences and the number of reads that support these sequences as a box in Appendix Figure S2.  
 
Comment 2.4: Also, when the authors write that "The resulting mapping table for both the random 
and the designed libraries was aggregated to a count table where every sequence has its count 
recorded for each replicate", do they mean that every **centroid** has its counts recorded, which 
are the aggregate of all members of its cluster of similar sequences? Does it mean that 760 
activating **centroid** sequences were discovered, or does the number 760 include the very 
similar sequences? 
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In the sentence referred to by the reviewer, we have used the wrong term “aggregate”, which has 
made this portion of description of the data processing unclear. The centroids sequences are not 
aggregated in any way. At this stage of the pipeline, the pre-processed sequencing reads (filtered and 
trimmed sequences which were used to build the clusters), are mapped back to the different centroid 
sequences. The number of reads that were uniquely mapped back to the centroid sequences in this 
way was recorded. This data was then used to estimate the growth rates (next section). The different 
centroid sequences are by definition different to each other and do not share a high degree of 
sequence similarity (less than 90%). In the later stages of the pipeline, where the centroid clusters 
are assigned to be functional or non-functional based on their growth scores, we do indeed have 739 
very distinct functional sequences that do not share a high degree of sequence identity (see also 
response to Comment 2.5). This has now been clarified in the Materials and Methods section of the 
manuscript (Page 9; Line 413) as well as in Appendix Figure S2. 
 
Comment 2.5: The authors need to make sure that in their cross-validation benchmark on the 
machine learning predictors, none of the training sequences has a similarity to any of the test 
sequences higher than expected by chance. Otherwise, the prediction performance could be highly 
overestimated, as test sequences for which similar sequences have been trained on will be predicted 
much more accurately than the realistic cases in which no similar training sequence has been 
observed. 
 
The authors mention that many of the sequences they obtain are very similar to each other, hence 
the clustering. But how many are similar but have sequence identities below 80% or 90%? If pairs 
with sequence identities higher than what can be expected by chance (10-20%) are split between 
training and test set, the estimated performances of the predictors will be overestimated. A simple 
criterion could be to limit the sequence identity in a local alignment of the coding sequences to 30%. 
Here, sequence identity is defined as the fraction of identical aligned residue pairs to the length of 
the shorter sequence. 
 
Response: We thank the referee for raising this point. Related to Comment 2.3 above and our 
calculations below, the peptide sequences from the random library are unlikely to be affected by the 
concern raised because their amino acid sequences are very different to each other (next paragraph).    
 
To assess for similarity between peptide sequences, we did not use sequence identity as this assumes 
that the peptide sequences can be aligned. Whereas in our case, the peptide sequences are so 
different to each other that it is not possible to align them to a satisfactory degree. Instead we use the 
Levenshtein distance between sequences (also referred to in response to Comment 2.2). The 
Levenshtein distance in the amino acid sequence space between two sequences is the number of 
substitutions, insertions or deletions of amino acids required to transform one sequence into the 
other. We have calculated the pair-wise Levenshtein distances between all the functional peptide 
sequences of the random library and the wild-type TAD sequences in the design library. For each 
sequence, we have then selected the minimum distance to all other sequences, i.e. the distance 
between the pairs that are the most similar, and normalized by the sequence length.  
 
The concern raised by the reviewer applies to a much lesser extent to the random library where the 
median of the minimum pair-wise normalised Levenshtein distance across sequences is 0.65 
(Response Figure 3, Left). In other words, on average, 65% of the amino acids of the sequences 
need to be changed for two sequences to be identical. 
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Response Figure 3: The distribution of minimum pair-wise Levenshtein distances between 
functional sequences in random and design library. 

For the design library, it is true that the sequences in the dataset by design are very similar as they 
are variants of a wild type TAD sequence. The wild-type sequence together with all its variants 
constitutes a TAD set (13 TAD sets in our study). It should be noted that the wild-type sequences 
themselves are significantly different (median of the minimum Levenshtein distance (normalized by 
length) among the sequence pairs is 0.65; see Response Figure 3, right). However, if we implement 
the constraint suggested by the referee, it would remove all point mutations and just retain one 
sequence per TAD set. Such a dataset would be too small for training and subsequent testing. 
Therefore, we did not originally incorporate this sampling strategy that controls for sequence 
similarity within TAD sets. 
 
To address the reviewer’s concern, we have now come up with a slightly revised strategy for the 
analysis of sequences in the design library. We have now applied group k-fold cross-validation 
(k=5) rather than k-fold cross-validation. A group is a TAD set, which is defined as a wild-type 
TAD sequence and all their variants. Therefore, for each data split, four-fifth of the 13 TAD sets 
(~10 TAD sets) were assigned to the training set and one-fifth (~3 TAD sets) were assigned as the 
validation set (this procedure was carried out 10 times). This ensured that variants within a TAD set 
(which are highly similar) were not split between the training and the validation sets. The results 
from this calculation are now presented in the manuscript. 
 
We thank this reviewer again for raising this point. We feel that addressing this point has increased 
the robustness of the method and the models that we present in the paper. This has resulted in 
updating Figures 4B and 5 as well as Appendix Figures S12 and S13 and Tables EV7 and EV8. 
This is also discussed in Materials and Methods (Page 12; Line 563) and Appendix Figure S3. 
 
Comment 2.6: There is a contradiction on page 18 in the online methods: "The dataset was split 
into 75% for training and the remaining 25% for testing..." This implies that the authors used 4-fold 
cross-validation, but in the next sentence they write "The entire machine learning process was 
performed with repeated cross-validation (k = 5 folds and 10 repeats) on the training set." The 
entire procedure of cross-validation and sampling is not clear, as the authors do not seem to have 
used the standard cross-validating procedure. For example what does "10 repeats" refer to? 
 
Response: We apologise for being ambiguous on what we refer to when using these terminologies. 
We have followed the definition as in The Elements of Statistical Learning (ISBN 978-0-387-
84858-7) on page 222: “The training set is used to fit the models; the validation set is used to 
estimate prediction error for model selection; the test set is used for assessment of the generalization 
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error of the final chosen model. Ideally, the test set should be kept in a “vault,” and be brought out 
only at the end of the data analysis.” According to that definition, we first split the original data for 
the random library into a training set (75% of the sequences) and testing set (25% of the sequences). 
For the sequences in the training set, we have performed k-fold cross-validation (k = 5) and repeated 
that process a total of 10 times for training and validation of our models. We then took the top 
models from that procedure and evaluated performance on the testing set, which we kept separate 
during training (i.e. locked away in a data vault; 25% of the sequences from the original data as 
mentioned above). This allowed us to evaluate how the final models perform when totally new and 
unseen data is given. 
 
Because of the new sampling strategy for the analysis of the designed sequences (please see 
response to comment 2.5), we now do not split the original data into an initial training and testing 
set due to the smaller number of TAD sets. Instead, we performed a group k-fold cross validation 
for training and validating the models (where a group is defined as a TAD set). The details of the 
sampling strategies applied in the revised manuscript for the analysis of the random, design and 
combined libraries are presented in Appendix Figure S3 and are described in the Methods section. 
 
We have clarified the definitions in the Materials and Methods section (Page 12; Line 543). We now 
clearly define what we refer to when using training, validation and testing sets in our machine 
learning approaches, and have made sure to be consistent when using these definitions across the 
manuscript. We have also improved Appendix Figure S3 to make these distinctions clearer. 
 
Comment 2.7: Instead of demonstrating the usefulness of the learned features of activating domains 
using the sequence WDWDWDWD..., it would be more convincing to show the activation potential 
for a less obvious sequence where the authors make use of the specific minipatterns they have 
learned. The prediction of WDWDWDWD... could have been made even before because it is known 
from earlier work using site-directed mutagenesis 
(http://www.pnas.org/content/111/34/E3506.full.pdf?with-ds=yes) that mutations to W generaly 
increase activation potential and that negative charges are important to prevent aggregation. 
 
Response: We agree with the reviewer that a clear link between W and activity could have been 
established based on the important work of Warfield et al. that we have also cited. However just 
repeating Ws or Ds did not function as TADs and we found it surprising and exciting that increasing 
the number of combined Ws and Ds would work comparably to VP16, one of the most active 
sequences. We fully agree that using the model as a generative tool to design new sequences and 
comprehensively testing their performance is a wonderful direction. We hope to undertake in the 
near future as a separate study. 
 
Comment 2.8: The description on top of page 17 seems to mean that the training **and** test 
sequences were subsampled to get a ratio of 1:1 between activatory and non-activatory sequences. 
However, the Supplementary Figures 6 and 9 show a dotted line with an "imbalance ratio" of 
0.0116. This imbalance ration should be 0.5, shouldn't it? On the other hand, if test sequences were 
*not* subsampled, I would expect an imbalance ratio of 760 / 67000 = 0.113 and not 0.116. 
 
Response: We apologise for not being clear. We aimed to maintain a similar ratio of imbalance 
between the functional:non-functional sequences (complete dataset: 739/63385=0.0117) in the 
training (75%) and the testing (25%) set for the random library. The actual value after sampling may 
deviate slightly from this ratio as observed for the training set (0.0115). While performing the k-fold 
cross validation, we subsampled the training set to the minority class to ensure that the model is not 
biased by the majority class. However, while evaluating the performance on the validation set or the 
testing set, the imbalance is maintained to prevent over-estimation of performance and reflect the 
real imbalance in the original data set. The reviewer pointed out correctly that the number of non-
functional sequences in the main text is mentioned as 67,000, which was incorrect (this has been 
revised and corrected now). 
 
We have now described at what stage the sub-sampling is performed in the Materials and Methods 
section (Page 12; Line 550) as well as highlight it in Appendix Figure S3. We also provide the 
accurate number of sequences used in the study throughout the manuscript in several instances 
(related to last comment below). 
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Comment 2.9: Figures S6 and S9: The x axis labels "1 - sensitivity" should be "1 - specificity". The 
FPR needs to be defined explicitly in the online methods. 
 
Response: We now clearly defined how the false positive rate (FPR) in the machine learning stages 
is calculated in the Materials and Methods section (Page 14; Line 665). We apologise for this error 
and have them errors in the x-axis labels of Appendix Figure S6, S8, S12, S13 to “1-specificity”. 
 
Comment 2.10: In the main text (Page 3) the authors write "...we obtained robust measurements for 
67,000 variants." In the methods, the authors write "Given the imbalance in our dataset (760 
functional: 65,517 non-functional...". This adds up to 66270, not 67000. If the authors want to 
round, it should be 66000. 
 
Response: We apologize for making this mistake. We have now made sure to give the correct 
number for the random library analysis: a total of 64,124 sequences used in the study (63,385 + 739; 
non-functional and functional sequences, respectively). The reason for revision of the numbers is 
because do not include the stop codon sequences from the dataset (i.e. sequences with a stop codon 
as its first trinucleotide). This change is reflected at several instances throughout the manuscript. 
 
In summary, addressing the constructive comments of this referee has greatly strengthened the 
manuscript. We hope the referee finds the revised manuscript suitable for publication in MSB.  
 
 
 
Reviewer #3: 
 
Comment 3.1: Ravarani et al. present an integrated experimental-computational analysis of 
intrinsically disordered regions, in particular, the transactivation domain of HSF1. They start with 
an elegant screening system that inserts a random DNA sequence instead of the wt TAD of HSF1; 
they then apply heat shock, which leads to death in absence of a functional TAD. They thus discover 
a few hundred functional transactivation domains and develop a machine learning algorithm to 
discriminate functional from non-functional sequences. They supplement this by screening TAD of 
other transcription factors, including mutants thereof and obtain a somewhat better predictor.  
 
Response: We thank the reviewer for his/her enthusiasm of our work and for the constructive 
comments on our work. Addressing the issues raised has improved the quality of our work and 
manuscript. We hope that the revised manuscript meets the expectation of this referee for 
publication in MSB. 
 
Comment 3.2: This work is the first attempt to examine functionality of non-motif disordered 
regions (as far as I am aware) using a large-scale approach and should thus be of interest to a large 
audience. Their main result (that a large fraction of sequences can work as TADs) is interesting and 
novel. However, I personally think that the manuscript focusses a bit much on the machine learning 
aspect, which, while performed and discussed extensively, I find less insightful and prediction 
performance remains relatively low.  
 
Response: We appreciate this point of the referee. We agree that the field of transcription initiation 
is of fundamental importance and that this has guided us to choose it as our system of study. Firstly, 
we hope that the proposed framework will not be limited to studying transactivation domains, and 
that it can be applied to a range of systems where IDRs can be screened for a defined function. The 
generality and the emphasis on the machine learning part of the paper were aimed at making this 
point.  
Secondly, while it seems that the predictive power of the models that were developed are modest 
(for which we give additional reasons below), it allows one to compare, extract and interpret which 
of the defined and definable features are important for TAD functionality in a common, comparative 
framework. For these reasons, we respectfully feel that it is worth discussing the machine learning 
part to the extent that we did in our manuscript. 
 
Comment 3.3: In the initial screen, the authors massively under sample sequence space (measuring 
about 10^5 out of 20^20). I'm hence very surprised that they obtain any functional sequences at all, 
let alone that many (~1% of the sequences screened). That alone is, I think, a very interesting result 
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- the authors do not seem to comment on it further. It does go to show just how "fuzzy" and non-
specific the TAD interactions really are, and I think it deserves further discussion and examination. 
To illustrate how much 1% really is, compare it to e.g. results from phage display for peptide 
binding motifs. Out of large randomized libraries (around 10^10), one usually obtains a handful of 
binders (so far less than even 0.01%). Surely, even all sequences containing the mini-motif (DE in 
proximity to FWY) would not make up 1% of all sequences? 
 
Response: We were also surprised to note that 1% of the sequences were functional and agree that 
is a very large number, considering that a short and completely random sequence can decide 
between life and death of the organism hosting it. From the analysis of the structures of TADs in 
complex with co-factors (Appendix Figure S9), it is clear that different sequences adopt similar 
binding mode when interacting with the various co-factors. This suggests that a large number of 
sequences can and are compatible with co-factor interaction. Furthermore, many sequences can 
fulfil the role of a TAD by interacting with one of many components of the transcriptional 
machinery and hence a larger fraction of the sequences may survive the screen.  
 
From a technical point, unlike phage display, in the case of IDR-Screen, the random peptide is not 
selected for binding to a specific protein of the transcriptional machinery but to any of the over 100 
proteins that are involved in transcriptional initiation (selection is for function, and not explicitly for 
binding). Therefore, we might pick up more sequences that are functional through IDR-Screen 
compared to phage display for identifying binders to a specific protein of interest. We thank the 
referee for encouraging us to discuss this point, which we do now in the discussion of the revised 
manuscript (Page 7; Line 313). 
 
Comment 3.4: Going back to the first point (non-specificity of TADs), I found it a bit surprising to 
see so much "red" in Figure S8, even in the alanine scanning. So many-single point mutations 
leading to non-functional TADs would imply more specificity, which is surprising. From eye-balling 
Fig S8, it seems that most TADs fall into two camps: highly sensitive (e.g., AH or Gln3), tolerating 
only very few mutations, or are highly permissive (vP16 or Oaf1). From the first point, I would've 
expected all TADs to be of the second camp (remember, 1% of random sequences are functional, 
even single mutants from a known sequence are a tiny slice of sequence space). This certainly 
warrants further analysis. Are there technical/experimental reasons for this difference between 
different TADs? 
 
Response: We thank the referee for this comment. Motivated by this suggestion, we have calculated 
the tolerance score for every TAD in our design library. Tolerance is defined as the number of 
variants that confer survival over all variants tested for that TAD. We then analysed the distribution 
of the tolerance scores of the different TAD sequences. Intriguingly, we find a unimodal distribution 
where a majority of the TAD sequences have intermediate tolerance scores. As the reviewer points 
out, VP16 and Oaf1 are at the most tolerant end of the spectrum whereas Gln3 is in the least tolerant 
end of the spectrum. This suggests that most TADs are tolerant to a certain extent and this is likely 
to be determined by the nature of the substitution as summarised in an updated version of Figure 
4A. We are not aware of specific technical or experimental reasons for this difference between the 
TADs. 
 
We now present an analysis of mutational tolerance for the different sequences and present the 
results as Appendix Figure S11 and discuss it in the main text (Page 6; Line 247).  
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Response Figure 4: Histogram of the tolerance for scanning (point mutation) variants. The 
tolerance values were grouped into 6 bins and each group is coloured according to its tolerance 
(gradient between green, most tolerant and red, least tolerant). The name of the sequence set as well 
as the WT sequence are provided. 
 
Comment 3.5: The raw sequencing data does not seem to be given, only the author's assignment of 
"functional" and "non-functional" even in the supplement, the authors should provide the raw data, 
or at least their growth estimate. Such experiments tend to be noisy, so many sequences are likely 
not real. Did the authors not try to clone a few identified sequences and measure growth under heat 
shock? (except for the handful in Fig 4c). 
 
Response: We thank the referee for raising this point. We now provide all the growth estimates in 
supplementary tables. The reviewer is right to point out that these experiments tend to be noisy. 
Apart from characterization by the high through-put selection and sequencing experiment, we did 
initially pick a few single colonies, performed the dilution experiment (below) and Sanger 
sequencing to confirm the behaviour of some of the sequences, which were not presented in our 
original manuscript. This is now discussed (Page 3; Line 137) and presented as Appendix Figure 
S4 in the revised manuscript. Furthermore, we now provide the estimated growth rates in Table 
EV1 and Table EV5. 
 

  
 

Figure 5: Spot dilution assay for sequences identified during the screen of the random library both 
at permissible temperature for ∆HSF1 strains to grow (30ºC) and at non-permissible heat shock 
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temperatures of 37ºC. VP16 and ∆TAD-HSF1 strains are given as reference points. Growth 
estimates (in a.u.) and classification are shown on the right. 
 
Comment 3.6: In the same vein, I see that a number (25 or ~3.5%) of sequences are a single amino 
acid, with another 100 or so (>10%) being 4 amino acids or less. These are surely false positives? 
This would translate to a FP rate far higher than the authors suggest. 
 
Response: In the earlier version of the manuscript, the FPR metric was defined using growth rate 
estimates based on negative sequences that we knew will not confer TAD functionality from prior 
knowledge (e.g. those containing a stop codon as the first trinucleotide). We felt that this was an 
objective criterion. However, we do agree that this metric does not reflect the experimental FPR (i.e. 
sequences that were wrongly detected as functional during the selection experiment). For instance, 
as the reviewer points out, sequences with less than 4 amino acids are less likely to be functional and 
are unlikely to be true positives. By considering all sequences with 4 or fewer amino acids as non-
functional we obtain the estimated false positives as13.5% (100 sequences with 4 or fewer amino 
acids / 739 sequences). We now discuss this point in the Materials and Methods (Page 11; Line 488) 
to ensure that the reader is aware of these considerations. 
  
Comment 3.7: I apologize for making a relatively straightforward technical point, but it appears to 
me that the authors do always evaluate their ML frameworks by cross-validation (hence the 
performance of the ones trained on "designed sequences" performs better than both the ones trained 
on the random-screened sequences and the combined one). To obtain a better and more comparable 
evaluation it would make sense to instead use a separate validation set (not used for training) to 
ascertain performance. Would also help to see how much the combined ML actually performs better 
than the one trained on the results from the screen on random sequences. 
 
Response: We apologize for the ambiguity and for the misunderstanding. In the previous version, 
we indeed performed the calculations according to what the referee mentions. For all models that 
were trained, we did have an initial training (75%) vs. testing (25%) set split of the data where the 
testing set was never used in training the model.  Then according to the k-fold cross-validation, the 
training set was further split into a training set and validation set, with which the models were 
trained and evaluated. The final model was then evaluated with the initial testing set which was 
never used for training. This is what we reported in the paper.  
 
We did the same for the random library in the revised manuscript. On the other hand, to minimize 
sequence similarity between the training and validation sets in the design library, we have now come 
up with a slightly revised strategy. We have applied group k-fold cross-validation (k=5) rather than 
k-fold cross validation. Due to the large number of sequence sets that this approach requires, we 
have just used cross-validation for the design library analysis without the additional evaluation of a 
test set due to limited size of the dataset upon splitting. For the combined library, we have 
implemented the reviewers suggestion and evaluated the models trained with the combined library 
on the testing set of the random library. We note that the performance remains comparable to the 
models trained purely based on the random library.  
 
We have now used consistent terminology throughout the manuscript and clarified this in the 
Materials and Methods section of the manuscript as well as in the Appendix Figure S3. The results 
from this calculation are now presented in the manuscript in updated Figures 4B and 5 as well as 
Appendix Figures S12 and S13 and Tables EV7 and EV8. This is also discussed in Materials and 
Methods (Page 12; Line 550) and Appendix Figure S3. 
 
Comment 3.8: This may be somewhat a question of personal preference, but I would think a more 
descriptive title is better suited (as the authors do not actually test "functional disordered protein 
regions" in general, but rather focus on the rather specialized case of transcription factor 
transactivation domains). 
 
Response: Thank you for this suggestion, we have changed the title to the following “High-
throughput discovery of functional disordered protein regions: investigation of transactivation 
domains”. We hope this new title reflects the generality of the approach and the specific system 
(transactivation domains) that it was applied to. 
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Comment 3.9: In Fig. 4c) I do not see cells with WD10 sequences survive "much better" than wt 
HSF... A little bit better, if that. Some better or clearer data (longer growth times, etc.) would be 
needed to make that claim. 
 
Response: We agree that the comparatively increased growth as inferred from the dilution assay is 
modest. We rephrase our statement to indicate that the that WDx10 sequence performs comparably 
to the wild-type sequence and added the results to Figure 6. 
 
Comment 3.10: It might be more instructive (and impressive) to try a number of other TAD 
sequences designed with the discovered features (rather than just all W, all D and WD10). 
 
Response: We fully agree that using the model as a generative tool to design new sequences and 
comprehensively testing their performance is a wonderful direction. We hope to undertake in the 
near future as a separate study. 
 
 
2nd Editorial Decision 3 April 2018 

Thank you for sending us your revised manuscript. We have now heard back from the referee who 
was asked to evaluate your study. As you will see below, reviewer #2 is satisfied with the 
modifications made and thinks that the study is now suitable for publication.  
 
Before we formally accept the manuscript, we would like to ask you to address some remaining 
editorial issues listed below.   
 
 
----------------------------------------------------------------------------  
REVIEWER REPORT 
 
 
Reviewer #2:  
 
The authors have responded very constructively to the reviewer comments and have substantially 
improve their manuscript. All major issues have been addressed in my view. 
 
 
 



USEFUL	  LINKS	  FOR	  COMPLETING	  THIS	  FORM

http://www.antibodypedia.com
http://1degreebio.org
http://www.equator-‐network.org/reporting-‐guidelines/improving-‐bioscience-‐research-‐reporting-‐the-‐arrive-‐guidelines-‐for-‐reporting-‐animal-‐research/

http://grants.nih.gov/grants/olaw/olaw.htm
http://www.mrc.ac.uk/Ourresearch/Ethicsresearchguidance/Useofanimals/index.htm
http://ClinicalTrials.gov

http://www.consort-‐statement.org

http://www.consort-‐statement.org/checklists/view/32-‐consort/66-‐title
è

http://www.equator-‐network.org/reporting-‐guidelines/reporting-‐recommendations-‐for-‐tumour-‐marker-‐prognostic-‐studies-‐remark/
è

http://datadryad.org
è

http://figshare.com
è

http://www.ncbi.nlm.nih.gov/gap
è

http://www.ebi.ac.uk/ega

http://biomodels.net/

http://biomodels.net/miriam/
è http://jjj.biochem.sun.ac.za
è http://oba.od.nih.gov/biosecurity/biosecurity_documents.html
è http://www.selectagents.gov/
è

è
è

è
è

� common	  tests,	  such	  as	  t-‐test	  (please	  specify	  whether	  paired	  vs.	  unpaired),	  simple	  χ2	  tests,	  Wilcoxon	  and	  Mann-‐Whitney	  
tests,	  can	  be	  unambiguously	  identified	  by	  name	  only,	  but	  more	  complex	  techniques	  should	  be	  described	  in	  the	  methods	  
section;

� are	  tests	  one-‐sided	  or	  two-‐sided?
� are	  there	  adjustments	  for	  multiple	  comparisons?
� exact	  statistical	  test	  results,	  e.g.,	  P	  values	  =	  x	  but	  not	  P	  values	  <	  x;
� definition	  of	  ‘center	  values’	  as	  median	  or	  average;
� definition	  of	  error	  bars	  as	  s.d.	  or	  s.e.m.	  

1.a.	  How	  was	  the	  sample	  size	  chosen	  to	  ensure	  adequate	  power	  to	  detect	  a	  pre-‐specified	  effect	  size?

1.b.	  For	  animal	  studies,	  include	  a	  statement	  about	  sample	  size	  estimate	  even	  if	  no	  statistical	  methods	  were	  used.

2.	  Describe	  inclusion/exclusion	  criteria	  if	  samples	  or	  animals	  were	  excluded	  from	  the	  analysis.	  Were	  the	  criteria	  pre-‐
established?

3.	  Were	  any	  steps	  taken	  to	  minimize	  the	  effects	  of	  subjective	  bias	  when	  allocating	  animals/samples	  to	  treatment	  (e.g.	  
randomization	  procedure)?	  If	  yes,	  please	  describe.	  

For	  animal	  studies,	  include	  a	  statement	  about	  randomization	  even	  if	  no	  randomization	  was	  used.

4.a.	  Were	  any	  steps	  taken	  to	  minimize	  the	  effects	  of	  subjective	  bias	  during	  group	  allocation	  or/and	  when	  assessing	  results	  
(e.g.	  blinding	  of	  the	  investigator)?	  If	  yes	  please	  describe.

4.b.	  For	  animal	  studies,	  include	  a	  statement	  about	  blinding	  even	  if	  no	  blinding	  was	  done

5.	  For	  every	  figure,	  are	  statistical	  tests	  justified	  as	  appropriate?

Do	  the	  data	  meet	  the	  assumptions	  of	  the	  tests	  (e.g.,	  normal	  distribution)?	  Describe	  any	  methods	  used	  to	  assess	  it.

Is	  there	  an	  estimate	  of	  variation	  within	  each	  group	  of	  data?

Is	  the	  variance	  similar	  between	  the	  groups	  that	  are	  being	  statistically	  compared?

Manuscript	  Number:	  MSB-‐18-‐8190

EMBO	  PRESS	  

A-‐	  Figures	  

Reporting	  Checklist	  For	  Life	  Sciences	  Articles	  (Rev.	  July	  2015)

This	  checklist	  is	  used	  to	  ensure	  good	  reporting	  standards	  and	  to	  improve	  the	  reproducibility	  of	  published	  results.	  These	  guidelines	  are	  
consistent	  with	  the	  Principles	  and	  Guidelines	  for	  Reporting	  Preclinical	  Research	  issued	  by	  the	  NIH	  in	  2014.	  Please	  follow	  the	  journal’s	  
authorship	  guidelines	  in	  preparing	  your	  manuscript.	  	  

PLEASE	  NOTE	  THAT	  THIS	  CHECKLIST	  WILL	  BE	  PUBLISHED	  ALONGSIDE	  YOUR	  PAPER

Please	  fill	  out	  these	  boxes	  ê	  (Do	  not	  worry	  if	  you	  cannot	  see	  all	  your	  text	  once	  you	  press	  return)

a	  specification	  of	  the	  experimental	  system	  investigated	  (eg	  cell	  line,	  species	  name).

Each	  figure	  caption	  should	  contain	  the	  following	  information,	  for	  each	  panel	  where	  they	  are	  relevant:

2.	  Captions

The	  data	  shown	  in	  figures	  should	  satisfy	  the	  following	  conditions:

Source	  Data	  should	  be	  included	  to	  report	  the	  data	  underlying	  graphs.	  Please	  follow	  the	  guidelines	  set	  out	  in	  the	  author	  ship	  
guidelines	  on	  Data	  Presentation.

a	  statement	  of	  how	  many	  times	  the	  experiment	  shown	  was	  independently	  replicated	  in	  the	  laboratory.

Any	  descriptions	  too	  long	  for	  the	  figure	  legend	  should	  be	  included	  in	  the	  methods	  section	  and/or	  with	  the	  source	  data.

Please	  ensure	  that	  the	  answers	  to	  the	  following	  questions	  are	  reported	  in	  the	  manuscript	  itself.	  We	  encourage	  you	  to	  include	  a	  
specific	  subsection	  in	  the	  methods	  section	  for	  statistics,	  reagents,	  animal	  models	  and	  human	  subjects.	  	  

In	  the	  pink	  boxes	  below,	  provide	  the	  page	  number(s)	  of	  the	  manuscript	  draft	  or	  figure	  legend(s)	  where	  the	  
information	  can	  be	  located.	  Every	  question	  should	  be	  answered.	  If	  the	  question	  is	  not	  relevant	  to	  your	  research,	  
please	  write	  NA	  (non	  applicable).

B-‐	  Statistics	  and	  general	  methods

the	  assay(s)	  and	  method(s)	  used	  to	  carry	  out	  the	  reported	  observations	  and	  measurements	  
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  being	  measured.
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  altered/varied/perturbed	  in	  a	  controlled	  manner.

the	  exact	  sample	  size	  (n)	  for	  each	  experimental	  group/condition,	  given	  as	  a	  number,	  not	  a	  range;
a	  description	  of	  the	  sample	  collection	  allowing	  the	  reader	  to	  understand	  whether	  the	  samples	  represent	  technical	  or	  
biological	  replicates	  (including	  how	  many	  animals,	  litters,	  cultures,	  etc.).

1.	  Data

the	  data	  were	  obtained	  and	  processed	  according	  to	  the	  field’s	  best	  practice	  and	  are	  presented	  to	  reflect	  the	  results	  of	  the	  
experiments	  in	  an	  accurate	  and	  unbiased	  manner.
figure	  panels	  include	  only	  data	  points,	  measurements	  or	  observations	  that	  can	  be	  compared	  to	  each	  other	  in	  a	  scientifically	  
meaningful	  way.
graphs	  include	  clearly	  labeled	  error	  bars	  for	  independent	  experiments	  and	  sample	  sizes.	  Unless	  justified,	  error	  bars	  should	  
not	  be	  shown	  for	  technical	  replicates.
if	  n<	  5,	  the	  individual	  data	  points	  from	  each	  experiment	  should	  be	  plotted	  and	  any	  statistical	  test	  employed	  should	  be	  
justified

YOU	  MUST	  COMPLETE	  ALL	  CELLS	  WITH	  A	  PINK	  BACKGROUND	  ê

not	  applicable

not	  applicable

These	  are	  described	  in	  detail	  in	  the	  materials	  and	  methods	  section	  of	  the	  paper.

not	  applicable

not	  applicable

not	  applicable

not	  applicable

definitions	  of	  statistical	  methods	  and	  measures:
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C-‐	  Reagents

yes

yes	  and	  these	  are	  described	  in	  the	  materials	  and	  methods	  section	  of	  the	  paper.

yes

yes



6.	  To	  show	  that	  antibodies	  were	  profiled	  for	  use	  in	  the	  system	  under	  study	  (assay	  and	  species),	  provide	  a	  citation,	  catalog	  
number	  and/or	  clone	  number,	  supplementary	  information	  or	  reference	  to	  an	  antibody	  validation	  profile.	  e.g.,	  
Antibodypedia	  (see	  link	  list	  at	  top	  right),	  1DegreeBio	  (see	  link	  list	  at	  top	  right).

7.	  Identify	  the	  source	  of	  cell	  lines	  and	  report	  if	  they	  were	  recently	  authenticated	  (e.g.,	  by	  STR	  profiling)	  and	  tested	  for	  
mycoplasma	  contamination.

*	  for	  all	  hyperlinks,	  please	  see	  the	  table	  at	  the	  top	  right	  of	  the	  document

8.	  Report	  species,	  strain,	  gender,	  age	  of	  animals	  and	  genetic	  modification	  status	  where	  applicable.	  Please	  detail	  housing	  
and	  husbandry	  conditions	  and	  the	  source	  of	  animals.

9.	  For	  experiments	  involving	  live	  vertebrates,	  include	  a	  statement	  of	  compliance	  with	  ethical	  regulations	  and	  identify	  the	  
committee(s)	  approving	  the	  experiments.

10.	  We	  recommend	  consulting	  the	  ARRIVE	  guidelines	  (see	  link	  list	  at	  top	  right)	  (PLoS	  Biol.	  8(6),	  e1000412,	  2010)	  to	  ensure	  
that	  other	  relevant	  aspects	  of	  animal	  studies	  are	  adequately	  reported.	  See	  author	  guidelines,	  under	  ‘Reporting	  
Guidelines’.	  See	  also:	  NIH	  (see	  link	  list	  at	  top	  right)	  and	  MRC	  (see	  link	  list	  at	  top	  right)	  recommendations.	  	  Please	  confirm	  
compliance.

11.	  Identify	  the	  committee(s)	  approving	  the	  study	  protocol.

12.	  Include	  a	  statement	  confirming	  that	  informed	  consent	  was	  obtained	  from	  all	  subjects	  and	  that	  the	  experiments	  
conformed	  to	  the	  principles	  set	  out	  in	  the	  WMA	  Declaration	  of	  Helsinki	  and	  the	  Department	  of	  Health	  and	  Human	  
Services	  Belmont	  Report.

13.	  For	  publication	  of	  patient	  photos,	  include	  a	  statement	  confirming	  that	  consent	  to	  publish	  was	  obtained.

14.	  Report	  any	  restrictions	  on	  the	  availability	  (and/or	  on	  the	  use)	  of	  human	  data	  or	  samples.

15.	  Report	  the	  clinical	  trial	  registration	  number	  (at	  ClinicalTrials.gov	  or	  equivalent),	  where	  applicable.

16.	  For	  phase	  II	  and	  III	  randomized	  controlled	  trials,	  please	  refer	  to	  the	  CONSORT	  flow	  diagram	  (see	  link	  list	  at	  top	  right)	  
and	  submit	  the	  CONSORT	  checklist	  (see	  link	  list	  at	  top	  right)	  with	  your	  submission.	  See	  author	  guidelines,	  under	  
‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  submitted	  this	  list.

17.	  For	  tumor	  marker	  prognostic	  studies,	  we	  recommend	  that	  you	  follow	  the	  REMARK	  reporting	  guidelines	  (see	  link	  list	  at	  
top	  right).	  See	  author	  guidelines,	  under	  ‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  followed	  these	  guidelines.

18.	  Provide	  accession	  codes	  for	  deposited	  data.	  See	  author	  guidelines,	  under	  ‘Data	  Deposition’.

Data	  deposition	  in	  a	  public	  repository	  is	  mandatory	  for:
a.	  Protein,	  DNA	  and	  RNA	  sequences
b.	  Macromolecular	  structures
c.	  Crystallographic	  data	  for	  small	  molecules
d.	  Functional	  genomics	  data	  
e.	  Proteomics	  and	  molecular	  interactions

19.	  Deposition	  is	  strongly	  recommended	  for	  any	  datasets	  that	  are	  central	  and	  integral	  to	  the	  study;	  please	  consider	  the	  
journal’s	  data	  policy.	  If	  no	  structured	  public	  repository	  exists	  for	  a	  given	  data	  type,	  we	  encourage	  the	  provision	  of	  
datasets	  in	  the	  manuscript	  as	  a	  Supplementary	  Document	  (see	  author	  guidelines	  under	  ‘Expanded	  View’	  or	  in	  
unstructured	  repositories	  such	  as	  Dryad	  (see	  link	  list	  at	  top	  right)	  or	  Figshare	  (see	  link	  list	  at	  top	  right).
20.	  Access	  to	  human	  clinical	  and	  genomic	  datasets	  should	  be	  provided	  with	  as	  few	  restrictions	  as	  possible	  while	  
respecting	  ethical	  obligations	  to	  the	  patients	  and	  relevant	  medical	  and	  legal	  issues.	  If	  practically	  possible	  and	  compatible	  
with	  the	  individual	  consent	  agreement	  used	  in	  the	  study,	  such	  data	  should	  be	  deposited	  in	  one	  of	  the	  major	  public	  access-‐
controlled	  repositories	  such	  as	  dbGAP	  (see	  link	  list	  at	  top	  right)	  or	  EGA	  (see	  link	  list	  at	  top	  right).
21.	  As	  far	  as	  possible,	  primary	  and	  referenced	  data	  should	  be	  formally	  cited	  in	  a	  Data	  Availability	  section.	  Please	  state	  
whether	  you	  have	  included	  this	  section.

Examples:
Primary	  Data
Wetmore	  KM,	  Deutschbauer	  AM,	  Price	  MN,	  Arkin	  AP	  (2012).	  Comparison	  of	  gene	  expression	  and	  mutant	  fitness	  in	  
Shewanella	  oneidensis	  MR-‐1.	  Gene	  Expression	  Omnibus	  GSE39462
Referenced	  Data
Huang	  J,	  Brown	  AF,	  Lei	  M	  (2012).	  Crystal	  structure	  of	  the	  TRBD	  domain	  of	  TERT	  and	  the	  CR4/5	  of	  TR.	  Protein	  Data	  Bank	  
4O26
AP-‐MS	  analysis	  of	  human	  histone	  deacetylase	  interactions	  in	  CEM-‐T	  cells	  (2013).	  PRIDE	  PXD000208

22.	  Computational	  models	  that	  are	  central	  and	  integral	  to	  a	  study	  should	  be	  shared	  without	  restrictions	  and	  provided	  in	  a	  
machine-‐readable	  form.	  	  The	  relevant	  accession	  numbers	  or	  links	  should	  be	  provided.	  When	  possible,	  standardized	  
format	  (SBML,	  CellML)	  should	  be	  used	  instead	  of	  scripts	  (e.g.	  MATLAB).	  Authors	  are	  strongly	  encouraged	  to	  follow	  the	  
MIRIAM	  guidelines	  (see	  link	  list	  at	  top	  right)	  and	  deposit	  their	  model	  in	  a	  public	  database	  such	  as	  Biomodels	  (see	  link	  list	  
at	  top	  right)	  or	  JWS	  Online	  (see	  link	  list	  at	  top	  right).	  If	  computer	  source	  code	  is	  provided	  with	  the	  paper,	  it	  should	  be	  
deposited	  in	  a	  public	  repository	  or	  included	  in	  supplementary	  information.

23.	  Could	  your	  study	  fall	  under	  dual	  use	  research	  restrictions?	  Please	  check	  biosecurity	  documents	  (see	  link	  list	  at	  top	  
right)	  and	  list	  of	  select	  agents	  and	  toxins	  (APHIS/CDC)	  (see	  link	  list	  at	  top	  right).	  According	  to	  our	  biosecurity	  guidelines,	  
provide	  a	  statement	  only	  if	  it	  could.

F-‐	  Data	  Accessibility

G-‐	  Dual	  use	  research	  of	  concern

D-‐	  Animal	  Models

E-‐	  Human	  Subjects

not	  applicale

not	  applicable

not	  applicable

not	  applicale

not	  applicale

not	  applicale

not	  applicale

not	  applicale

not	  applicale

We	  use	  PDB	  co-‐ordinates	  to	  visualise	  TAD	  complexes	  in	  Appendix	  Figure	  S9	  and	  provide	  the	  PDB	  
codes	  directly	  in	  the	  figure.

not	  applicale

not	  applicale

not	  applicale

not	  applicale

not	  applicale

not	  applicale

not	  applicable

We	  provide	  all	  relevant	  datasets	  as	  Extended	  View	  Tables	  S1-‐S8
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