
Appendix 1 

1 Elicitation method for continuous outcome measures  

For a continuous outcome measure, let 𝑋𝑖𝑗 denote the sample mean in study 𝑖 on treatment arm 𝑗, 

with 𝑗 = 1 the control arm and 𝑗 = 2 the experimental treatment arm. Suppose the sample means 

have the distributions 𝑋𝑖1 ~ 𝑁(𝜇𝑖 , 𝜎2/𝑛1) and 𝑋𝑖2 ~ 𝑁(𝜇𝑖 + 𝛽𝑖 , 𝜎2/𝑛2), where 𝑛1and 𝑛2 are the sample 

size in group 1 and 2, respectively. Note that in the following, we assume the variances 𝜎2 are equal 

across arms and studies. The treatment effect, mean difference (MD) 𝛽𝑖, is on the original scale. A 

standardised mean difference (SMD), 𝜙𝑖 =
𝛽𝑖

𝜎
, may be used in meta-analysis if the included studies 

used different scales.  

We further assume that the study-specific treatment effects are normally distributed: 

𝛽1, … , 𝛽𝑆 ~ 𝑁(𝑑𝑀𝐷, 𝜏𝑀𝐷
2 ), or   𝜙1, … , 𝜙𝑆 ~ 𝑁(𝑑𝑆𝑀𝐷, 𝜏𝑆𝑀𝐷

2 ) depending on the scale used in each study. We 

suppose that the expert again prefers to consider variability in treatment effects via ratios of treatment 

effects, and we now consider a modification of the three-stage approach in Section 3.1. 

If we can relate the treatment effects 𝛽𝑖 or 𝜙𝑖 to an odds ratio (OR) 𝛿𝑖, we could derive a distribution 

for 𝜏𝑀𝐷 (the variability in mean differences (MDs) in a population of treatment effects) or 𝜏𝑆𝑀𝐷 (the 

variability in standardised mean differences (SMDs) in a population of treatment effects) via a 

distribution of 𝜏 (the variability in ORs in a population of treatment effects), elicited as before. We 

follow the approach by Chinn (2000) (38), where a continuous response is dichotomised, and a 

normal distribution is approximated by a logistic distribution. 

A cut-off  𝑐 of interest is chosen (a clinically meaningful threshold in the observed response), and the 

OR 𝛿𝑖 is defined as 

𝛿𝑖 = (
𝑃(𝑋𝑖2≥𝑐)

𝑃(𝑋𝑖2<𝑐)
) / (

𝑃(𝑋𝑖1≥𝑐)

𝑃(𝑋𝑖1<𝑐)
). (1) 

We can approximate a normal distribution 𝑁(𝑚, 𝑠2) by a logistic distribution with same mean and 

variance, setting the location parameter in the logistic distribution to 𝑚 and the scale parameter to 
𝑠√3

𝜋
. 

Using the logistic distribution approximation, the OR (1) is  

𝛿𝑖 = exp (
𝜙𝑖𝜋

√3
) = exp (

𝛽𝑖𝜋

𝜎√3
) . 

We now have 

𝜏𝑆𝑀𝐷 =
√3𝜏

𝜋
, 

𝜏𝑀𝐷 =
√3𝜎𝜏

𝜋
, 



where 𝜏 is the between-study standard deviation (SD) on the log OR scale. Hence, we can now use 

the method in Section 3.1 with the following modification. 

1. Dichotomise the response using some appropriate cut-off 𝑐, to define a new treatment effect 

𝛿𝑖: the OR (1). 

2. Considering ORs for the dichotomised response, use the three-stage procedure to elicit a 

prior distribution for 𝜏, the variability in ORs in a population of treatment effects. 

3. Given a prior distribution for 𝜏, convert it to a prior distribution for the between-study SD 𝜏𝑀𝐷  

and 𝜏𝑆𝑀𝐷 on the continuous scale via 𝜏𝑀𝐷 =
√3𝜎𝜏

𝜋
 for MD, and 𝜏𝑆𝑀𝐷 =

√3𝜏

𝜋
 for SMD, where 𝜎 is 

an estimate of an individual level standard deviation. The estimate could be a summary 

measure of the SDs in the included studies, pooled from included studies, or obtained from a 

single representative study. 

2 Elicitation method for ordered categorical data 

For ordered categorical data, the likelihood function for the data would be a multinomial distribution 

with either a logit link function (i.e. a proportional odds model) or a probit link function. Suppose that 

there are 𝐾  outcome categories, denoted by 𝑐1, … , 𝑐𝐾 . Define 𝑃𝑖𝑗𝑘  to be the probability of an 

observation belonging to category 𝑘 or above, on treatment 𝑗 = 1,2, with 𝑗 = 1 the control arm and 𝑗 =

2 the experimental treatment arm, in study 𝑖. For a logit link function, the treatment effect in the 𝑖th 

study can be defined by a single OR 𝛿𝑖, the OR 

𝑃𝑖2𝑘

1−𝑃𝑖2𝑘
/

𝑃𝑖1𝑘

1−𝑃𝑖1𝑘
 (2) 

which is constant for all 𝑘. Hence, the outcome can be dichotomised into the two category sets 

𝑐1, … , 𝑐𝑘−1 and 𝑐𝑘, … , 𝑐𝐾, and the elicitation can proceed as in Section 3.1. 

If a probit link function is used, the treatment effect in study 𝑖 may be described by a shift 𝜇𝑖 in the 

mean of the latent normal variable, and we again require a prior distribution for  𝜏 ̃, the variability in 𝜇𝑖 

in a population of treatment effects. In this case, the OR (2) will change depending on the category 𝑘. 

However, an approximate prior for 𝜏 can be elicited using a similar approach to that in continuous 

outcome measures case: we dichotomise and approximate the latent normal variable by a latent 

logistic variable with scale parameter 
√3

𝜋
. We have the same modification as before: 

1. Dichotomise the response using some appropriate category 𝑐𝑘, and define a new treatment 

effect 𝛿𝑖 : the OR (2). 

2. Use the three-stage procedure to elicit a prior distribution for 𝜏, the variability in ORs in a 

population of treatment effects. 

3. Given a prior for 𝜏, convert this to a prior for  𝜏 ̃ via  



 𝜏 ̃ =
√3

π
𝜏.  

The interpretation of the heterogeneity parameter can be found in Table 1.  

Heterogeneity ‘range’ of 

treatment effect, 

𝑅, for scale-free 

outcome measure  

𝜏 for scale-free 

outcome measure 

𝜏 for outcome 

measure using 

probit or 

standardised 

mean difference 

scale 

𝜏 for outcome 

measure using 

mean difference 

scale 

No heterogeneity 1 0 0 0 

Low 1.21 0.05 0.028 0.028𝜎 

Moderate 1.48 0.1 0.06 0.06𝜎 

2.19 0.2 0.11 0.1𝜎 

3.24 0.3 0.17 0.17𝜎 

4.80 0.4 0.22 0.22𝜎 

7.10 0.5 0.28 0.28𝜎 

High 10.51 0.6 0.33 0.33𝜎 

15.55 0.7 0.39 0.39𝜎 

23.01 0.8 0.44 0.44𝜎 

34.06 0.9 0.50 0.50𝜎 

50.40 1.0 0.55 0.55𝜎 

Extremely high 357.81 1.5 0.83 0.83𝜎 

2540.20 2 1.10 1.10𝜎 

Table 1: Suggested interpretation of the between-study standard deviation. The scale-free outcome 

measure refers to odds ratio, relative risk, hazard ratio and ratio of means. The estimate of 𝜎 could be 

a summary measure of the standard deviations in the included studies, pooled from included studies, 

or obtained from a single representative study. 

 

 



Appendix 2 

1 BUGS code for example TA163 

model{                        # *** PROGRAM STARTS 

  for(i in 1:ns){             # LOOP THROUGH STUDIES 

    w[i,1] <- 0               # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0           # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,0.0001)          # vague priors for all trial baselines 

    for (k in 1:na[i]) {             # LOOP THROUGH ARMS 

      r[i,k] ~ dbin(p[i,k],n[i,k])   # binomial likelihood 

      logit(p[i,k]) <- mu[i] + delta[i,k]  # model for linear predictor 

      rhat[i,k] <- p[i,k] * n[i,k]   # expected value of the numerators  

      dev[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k]))   

                       +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))        #Deviance contribution  } 

       resdev[i] <- sum(dev[i,1:na[i]])       #  summed residual deviance contribution for this trial 

    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 

      # trial-specific LOR distributions 

      delta[i,k] ~ dnorm(md[i,k],precisiond[i,k]) 

      # mean of LOR distributions (with multi-arm trial correction) 

      md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] 

      # precision of LOR distributions (with multi-arm trial correction) 

      precisiond[i,k] <- precision *2*(k-1)/k 

      # adjustment for multi-arm RCTs 

      w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 

      sw[i,k] <- sum(w[i,1:k-1])/(k-1)        # cumulative adjustment for multi-arm trials 

    } 



  }    

  totresdev <- sum(resdev[])           # Total Residual Deviance 

  d[1]<-0       # treatment effect is zero for reference treatment 

  # vague priors for treatment effects 

  for (k in 2:nt){  d[k] ~ dnorm(0,0.0001)  

    OR[k] <- exp(d[k]) 

    d.new[k] ~ dnorm(d[k],precision)  

    OR.new[k] <- exp(d.new[k])  

  } 

  # vague prior U[0,5] for between-trial SD 

  tau ~ dunif(0,5)      

  precision <- pow(tau,-2)   # between-trial precision = (1/between-trial variance) 

  # informative prior using Turner et al (2012) 

  #tau2~dlnorm(-2.57,0.33)   # prior for between study variance from lognormal (-2.57, 1.74^2) 

  #tau<-sqrt(tau2) 

  #precision<-1/tau2       # between-trial precision = (1/between-trial variance) 

  # informative prior using Turner et al (2012) truncated so that the ratio of ORs can't exceed 10 

  #tau2~dlnorm(-2.57,0.33)I(,0.345)   # R=exp(3.92tau)=> tau^2=(log(10)/3.92)^2=0.345 

  #tau<-sqrt(tau2) 

  #precision<-1/tau2       # between-trial precision = (1/between-trial variance) 

  # informative prior using elicitation 

  #R~dgamma(2.68,0.721) #elicited prior for the ‘range’ of OR 

  #tau<-log(R+1)/3.92    #minimum of R is 1; convert the ‘range’ of OR to the between-study standard 

deviation 

  #precision<-pow(tau,-2)       # between-trial precision = (1/between-trial variance) 

}                                    # *** PROGRAM ENDS                     



#Data (1=placebo, 2=infliximab, 3=ciclosporin) 

list(ns=4,nt=3) 

t[,1]  t[,2] n[,1] r[,1] n[,2] r[,2] na[] 

1 2 21 14 24 7 2  

1 2 3 3 3 0 2  

1 3 9 4 11 3 2  

1 3 15 3 14 3 2  

END 

 

2 BUGS code for example TA336 

model{                               # *** PROGRAM STARTS 

  for(i in 1:ns){                      #   LOOP THROUGH STUDIES 

    w[i,1] <- 0                 # adjustment for multi-arm trials is zero for control arm 

    delta[i,1] <- 0             # treatment effect is zero for control arm 

    mu[i] ~ dnorm(0,0.0001)           # vague priors for all trial baselines 

    for (k in 1:na[i]) {             #  LOOP THROUGH ARMS 

      var[i,k] <- pow(se[i,k],2)   # calculate variances 

      prec[i,k] <- 1/var[i,k]      # set precisions 

      y[i,k] ~ dnorm(theta[i,k],prec[i,k]) # binomial likelihood 

      theta[i,k] <- mu[i] + delta[i,k]  # model for linear predictor 

      dev[i,k] <- (y[i,k]-theta[i,k])*(y[i,k]-theta[i,k])*prec[i,k]  #Deviance contribution 

    } 

    #  summed residual deviance contribution for this trial 

    resdev[i] <- sum(dev[i,1:na[i]])        

    for (k in 2:na[i]) {             # LOOP THROUGH ARMS 

      # trial-specific distributions 



      delta[i,k] ~ dnorm(md[i,k],precisiond[i,k]) 

      # mean of distributions, with multi-arm trial correction 

      md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k] 

      # precision of distributions (with multi-arm trial correction) 

      precisiond[i,k] <- precision *2*(k-1)/k 

      # adjustment, multi-arm RCTs 

      w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]]) 

      # cumulative adjustment for multi-arm trials 

      sw[i,k] <- sum(w[i,1:k-1])/(k-1) 

    } 

  }    

  totresdev <- sum(resdev[])            #Total Residual Deviance 

  d[1]<-0       # treatment effect is zero for control arm 

  d.new[1]<-0 

   # vague priors for treatment effects 

  for (k in 2:nt){  d[k] ~ dnorm(0,0.0001)  

    d.new[k] ~ dnorm(d[k],precision) } 

  # vague prior U[0,5] for between-trial SD 

  tau ~ dunif(0,5)      

  precision <- pow(tau,-2)   # between-trial precision = (1/between-trial variance) 

   # informative prior using Turner et al (2012) on odds ratio scale 

  #tau2~dlnorm(-2.56,0.33)  #odds ratio scale 

  #tau<-sqrt(tau2)/1.81*2.61   #mean difference scale; 2.61 is the mean of individual level standard 

deviation 

  #precision <- pow(tau,-2)   # between-trial precision = (1/between-trial variance) 



  # informative prior using Turner et al (2012) truncated so that the ratio of ORs can't exceed 10 on the 

odds ratio scale, R=exp(3.92tau)=>tau^2=(log(10)/3.92)^2=0.345 

  #tau2~dlnorm(-2.56,0.33)I(,0.345)   

  #tau<-sqrt(tau2)/1.81*2.61  #mean difference scale 

  #precision <- pow(tau,-2)   # between-trial precision = (1/between-trial variance) 

  # informative prior using elicitation 

  #R~dgamma(1.94,0.823)        #odds ratio scale 

  #tau<-log(R+1)/3.92/1.81*2.61  #mean difference scale, #minimum of R is 1 

  #precision<-pow(tau,-2)       # between-trial precision = (1/between-trial variance) 

}                                     # *** PROGRAM ENDS      

 

#Data (1=Placebo+Met+SU, 2=Sita+Met+SU, 3=Empa 10mg+Met+SU, 4=Lina+Met+SU, 

5=Saxa+Met+SU, 6=Can 300mg+Met, 7=Can 100mg+Met, 8=Empa 25mg+Met+SU) 

list(ns=6,nt=8) 

t[,1] t[,2] t[,3] y[,1] y[,2] y[,3] se[,1] se[,2] se[,3] na[]  

1 3 8 -0.39 -2.16 -2.39 0.15 0.15 0.16 3  

1 4 NA -0.06 0.27 NA 0.16 0.09 NA 2 

1 2 NA -0.70 0.40 NA 0.3316 0.2551 NA 2 

1 5 NA -0.60 0.20 NA 0.1849 0.1945 NA 2 

2 6 NA 0.2649 -2.384 NA 0.1325 0.1325 NA 2 

1 7 6 -0.648 -1.945 -2.408 0.2362 0.2362 0.2362 3 

END 

  

 



Appendix 3 

1 R code instructions 

A function elicitHeterogen() is available in the R package SHELF (30). The elicitation tool can 

be run using the commands 

library(SHELF) 

elicitHeterogen() 

Type ?elicitHeterogen for further instructions. 

 

2 Elicited prior distribution for the re-analysis of TA163 and TA336 

Table 1 shows the number of bins used and the number of probs/chips allocated in each bin for the 

re-analysis of TA163 and TA336. The elicited prior for 𝑅 − 1 was gamma (2.62, 0.721). It presented 

the beliefs that the probability of heterogeneity being low, moderate and high as 0.01, 0.85, and 0.14, 

respectively. The R function used was elicitHeterogen(lower=1,upper=10,nbins=9).  

The elicited prior for 𝑅 − 1 was gamma (1.94, 0.741). It presented the beliefs that the probability of 

heterogeneity being low, moderate and high as 0.06, 0.88, and 0.06, respectively. The R function 

used was 

elicitHeterogen(lower=1,upper=10,nbins=9,sigma=2.61,scale.free=FALSE). 

Bin boundary [1, 2) [2, 3) [3, 4) [4, 5) [5, 6) [6, 7) [7, 8) [8,9) [9, 10) 

Number of probs 

allocated (TA136) 

4 5 6 6 5 4 2 1 1 

Number of probs 

allocated (TA336) 

4 5 4 3 2 1 1 0 0 

Table 1: The number of bins and the number of probs allocated in each bin for the re-analysis of 

TA163 and TA336. 

 

 

 

 


