Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015

H-Rubies, a New Family of Red Emitting Fluorescent pH sensors for Living Cells

Guillaume Despras⁺, Alsu Zamaleeva⁺, Lucie Dardevet, Céline Tisseyre, Joao Gamelas Magalhaes, Charlotte Garner, Michel De Waard, Sebastian Amigorena, Anne Feltz, Jean-Maurice Mallet, Mayeul Collot*

Supplementary information

Spectral and physico-chemical properties, absorption and emission spectra at different pH, pKa titration curves and metal sensitivities of H-Rubies

State	$\lambda_{abs}(nm)$	λ _{em} (nm)	pK _a	ε (M ⁻¹ cm ⁻¹)	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a OFF ^b	583 584	609 608	N/A ^c	63403 N/A°	0.40 N/A ^c	N/A ^c	N/A ^c
^a Proto	nated form:	рН 4		1011	10/11		
^b Depro	otonated form	n: pH 10					
° Not fo	ound to be a	pH probe					

Imidazole

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

HR-mOH

0.00

400

500

600

Wavelength (nm)

.03

0.09 11.02 12.03 13.10

700

650

600

Wavelength [nm]

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

0 545

700

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

HK-U

State	$\lambda_{abs}(nm)$	λ _{em} (nm)	pK _a	е (M ⁻¹ cm ⁻¹)	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a OFF ^b	579 544	601 599	6.17 ± 0.10	48432 33146	0.47 N/A ^c	-	753
^a Protonated form: pH 4 ^b Deprotonated form: pH 10			^c Non-fluorescent				

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

OH

Br

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

III PIC

State	$\lambda_{abs}(nm)$	$\lambda_{em} \left(nm ight)$	pK _a	ε (M ⁻¹ cm ⁻¹)	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a OFF ^b	574 N/A ^c	597 598	8.75 ± 0.16	52000 N/A ^c	0.09 N/A ^d	-	955
^a Protonated form: pH 4 ^b Deprotonated form: pH 10 ^c Poor solubility			^d Non-fluorescen	t			

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

HR-OMe

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

HR-	pOH

0.00

400

500

.

State	$\lambda_{abs}(nm)$	$\lambda_{em} (nm)$	pK _a	$\frac{\epsilon}{(M^{-1} cm^{-1})}$	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a OFF ^b	576 579	597 598	8.97 ± 0.0	05 61528 34458	0.55 0.06	9	34
^a Proto	nated form:	pH 4					
^b Depro	tonated forn	n: pH 10					
	0.2	25 -			pH 2.98 — 7.49 — 4.00 — 8.01 — 4.61 — 9.02 — 5.06 — 10.01 —	-	4000 -
	0.1 sq V 0.1	15-			5.51 — 10.98 — 5.99 — 12.02 — 6.52 — 13.00 — 6.99 —	- - - In	- - -
	0.0)5 -					

600

Wavelength (nm)

7.49 8.01 9.02

700

рΗ

2.98

650

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

700

1000

0 545

600

Wavelength [nm]

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

HR-oOH	
	-

State	$\lambda_{abs}(nm)$	$\lambda_{em} \left(nm ight)$	pK _a	ε (M ⁻¹ cm ⁻¹)	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a	581	603	0.69 ± 0.17	79073	0.75	2	966
$\mathrm{OFF}^{\mathrm{b}}$	576	603	9.08 ± 0.17	49872	0.27	3	800
^a Protonated form: pH 4							
^b Depro	tonated form	n: pH 10					
		0.30					5000

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Pi	p-	Al	ky	/ne
	-		_	

State	$\lambda_{abs}(nm)$	λ _{em} (nm)	pK _a	ε (M ⁻¹ cm ⁻¹)	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a OFF ^b	577 579	600 602	4.95 ± 0.09	95685 28554	0.34 0.15	2	3
^a Protonated form: pH 4 ^b Deprotonated form: pH 10							
		03-		A	p	22	200

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

П	D	Г	5	۸
п	K	- [1	A

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

1	L	Г)		1
	Π	Г	۲.	·F	L

State	$\lambda_{abs}(nm)$	$\lambda_{em} (nm)$	рК _а	ε (M ⁻¹ cm ⁻¹)	Φ	$\Phi_{ m ON}/\Phi_{ m OFF}$	Dynamic Intensity
ON ^a	574	600		18421	0.09	6	6
$\mathrm{OFF}^{\mathrm{b}}$	534	598	5.33 ± 0.13	38042	0.02		
^a Protor	nated form:	pH 4					
^b Depro	tonated form	n: pH 10					

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

H	R- /	<u> </u>
-		

СООН

700

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

. .

он о

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

он о

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

<u>HR-CysA</u>					
$\lambda_{abs}(nm)$	λ _{em} (nm)	рК _а	ε (M ⁻¹ cm ⁻¹)		
577	602	N/A	49000		
	<u>ysA</u> λ _{abs} (nm) 577	ySA λ _{abs} (nm) λ _{em} (nm) 577 602	$\frac{\lambda_{abs}(nm) \lambda_{em}(nm) \qquad pK_a}{577 \qquad 602 \qquad N/A}$		

597

123000

^a Protonated form: pH 4

572

OFF^b

^b Deprotonated form: pH 10

 $\Phi_{\rm ON}/\Phi_{\rm OFF}$

N/A

Φ

0.09

0.014

Dynamic

Intensity

N/A

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

NHFmoc

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Left: Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated. Right: Fluorescence intensities of the probe (5 μ M) to a range of metal ions in a MOPS buffer (MOPS 30 mM, KCl 100 mM, pH 7.2). The concentration of cations is 10^{-3} M.

HR-PN₃ Dextran 40,000 conjugate

Left: Dependence of absorption on pH in a MOPS buffered aqueous solution. Right: Dependence of fluorescence intensity on pH in a MOPS buffered aqueous solution. Excitation at 535 nm.

Dependence of fluorescence enhancement on pH. Curve fitting was based on a modified Hill equation from which pK_a values were calculated.