## **Supplementary Information**

# PHF20 Collaborates with PARP1 to Promote Stemness and Aggressiveness of Neuroblastoma Cells through Activation of *SOX2* and *OCT4*

Wenyong Long, Wei Zhao, Bo Ning, Jing Huang, Junjun Chu, Linfeng Li, Qianquan Ma, Changsheng Xing, Helen Y. Wang, Qing Liu, and Rong-Fu Wang

#### Contents

**Supplementary Methods** 

**Supplementary Figures S1-S6** 

**Supplementary Tables S1-S3** 

#### **Supplementary Methods**

#### **Real-time PCR analysis**

Complementary DNA was generated from total RNA of NB cells using SuperScript II Reverse Transcriptase (Invitrogen) with oligo (dT) primers. The primer sequences for the genes of interest were designed by using Primer BLAST software and are provided in **Supplementary Table S3**. Quantitative PCR was performed using QuantStudio 6 Flex Real-Time PCR System and Power SYBR Master Mix (Applied Biosystems, Foster City, CA) as per manufacturer's instructions. Relative mRNA expression level was calculated using the 2- $\Delta\Delta$ Ct method; Ct values were normalized to GAPDH as an endogenous control.

#### ChIP-PCR

SH-EP cells were grown to 80-90% confluence and chemically cross-linked by the addition of fresh formaldehyde solution (37%) to a final concentration of 1% for 10 min at room temperature. Cells were rinsed twice with cold PBS, followed by the addition of 2 M glycine to stop crosslinking, and collected using a silicone scraper. Cells were lysed and sonicated to solubilize and shear cross-linked DNA with a minor modification. Briefly, we used a Misonix ultrasonic liquid processor and sonicated at an amplification of 4 for 12 sets of 10 s pulses, with 30 s pause between pulses, at 4 °C. The resulting whole cell extract was pre-cleared with 50  $\mu$ l protein A/G agarose beads, 10  $\mu$ l IgG, 10  $\mu$ l 5% Bis(trimethylsilyl)acetamide (BSA), and 5  $\mu$ g of sheared salmon sperm DNA for each sample. After centrifugation, 20% of the supernatant was incubated overnight at 4 °C with 30  $\mu$ l of protein A/G agarose beads, 3  $\mu$ g of the

appropriate antibodies, 1 µl BSA (5%), and 25 µg of sheared salmon sperm DNA. Beads were washed four times with ChIP buffer [0.1% SDS, 1% Triton X-100, 2 mM EDTA (pH 8.0), 150 mM NaCl, and 20 mM Tris-HCl (pH 8.0)], and once with Tris-EDTA (TE) containing 1 mM dithiothreitol (DTT). Bound complexes were eluted from the beads, and crosslinking was reversed by overnight incubation at 65 °C in reverse crosslink buffer solution (1% SDS, 100 mM NaHCO3, 1 µg/mL RNase A, and 500 mM NaCl). Whole cell extract DNA was also treated for reverse crosslinking. Immunoprecipitated DNA and whole cell extract DNA were purified using the Zymoclean PCR purification kit (Zymo Research, Irvine, CA). The ChIP DNA were used for qPCR analysis. As eukaryotic promoters are within 2 kb upstream of the transcription start site, we designed 4-6 primer pairs, generally 500 bp in length, to cover the key locus. These were labeled as #1, #2, #3, and so forth. After three rounds of screening, we found that only pairs #1 and #2 associated with critical regions associated with transcriptional regulation by PHF20; therefore, we focused our analysis these sets only. The primers sequences for the ChIP-qPCR are provided in Supplementary Table S3.

#### Western blot, immunoprecipitation (IP), and mass spectrometry

For Western blot analysis, cells were lysed in either low salt lysis buffer or RIPA buffer containing protease inhibitors. Equal amounts of protein samples were separated electrophoretically by SDS-PAGE, and then transferred onto PVDF membranes (Roche, Mannheim, Germany). The membranes were blocked for 1 h in Tris-buffered saline-Tween 20 (TBST) with 5% bovine serum albumin (BSA) or 5% nonfat milk. Thereafter, Western blot analysis was performed using primary antibodies against PHF20, NANOG (1:1000; Cell Signaling Technology, Danvers, MA), SOX2 (1:1000; Millipore), OCT4,  $\beta$ -actin (1:1000; Abcam, Cambridge, MA), SSRP1 (1:1000; ThermoFisher Scientific, Sugarland, TX), and PARP1 (1:1000; Santa Cruz Biotechnology, Dallas, TX) in a blocking buffer containing either 5% BSA or 5% nonfat milk and 0.1% Tween 20 in TBS. The blots were then developed using Lumiglo substrate (KP Laboratories, Gaithersburg, MD) on BioMax LS film (Eastman Kodak, Rochester, NY).

For IP, cells were lysed in either low salt lysis buffer or RIPA buffer containing protease inhibitors. Samples were centrifuged at 10,000x g for 10 min. The supernatant was added to either a 10 l anti-Flag M2 affinity gel overnight at 4 °C or primary antibody at 4 °C for 2 h with rotation. After incubation with immobilized Protein A 16 (Replicen, Waltham, MA), samples were washed five time using low salt lysis buffer, and proteins were re-suspended in 4x SDS sample loading buffer and subjected to SDS/PAGE. The resolved proteins were either transferred to nitrocellulose membranes for immunoblotting or subjected to Coomassie Brilliant Blue staining and excised for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis.

#### The in vivo Tumor Formation Experiments

mice were divided into two groups of four mice each (one group for SH-EP cells and another group for SK-N-AS cells). Each mouse was injected subcutaneously in the right flank with 4 x 106 NB WT cells (with PHF20) diluted in 100 1 of 50% Hank's

balanced salt / 50% Matrigel. In addition, each mouse was injected subcutaneously in the left flank with 4 x 106 NB KO cells (PHF20 depleted) diluted in 100 1 of 50% Hank's balanced salt / 50% Matrigel. Every two days, tumor sizes were determined by measuring the length and width using calipers. Tumor volumes were calculated as per the formula: volume (mm3) = (length\*width\*width) / 2. Twenty-eight days after tumor cell injection, mice were sacrificed, tumor xenografts were removed, fixed in formalin, and stored at 4 °C.

#### **Limit Dilution Experiments**

mice were divided into three groups containing five mice each. Each group was injected subcutaneously in the right flank with either 1 x 106, 0.1 x 106, or 0.01 x 106 SH-EP WT cells (with PHF20) diluted in 100 L of 50% Hank's balanced salt / 50% Matrigel. Further, each group was injected subcutaneously in the left flank with either 1 x 106, 0.1 x 106, or 0.01x106 SH-EP KO cells (PHF20 depletion) diluted in 100 l of 50% Hank's balanced salt / 50% Matrigel. Tumor formation was determined 28 days after tumor cell injection.

#### Gene rescue experiment

For PHF20 gain-of-function experiments, human PHF20 (NM\_016436.4) cDNA sequence was cloned into pLV-lentiviral vector. The PHF20-overexpressing lentiviral vector was co-transfected with the VSVG and PAX2 lentiviral packaging vectors into 293T cells. Supernatants containing lentiviruses were collected on day 3 and concentrated by ultra-centrifugation. The concentrated lentiviruses were re-suspended in 1 mL of PBS. PHF20 KO SH-EP cells were infected with lentivirus harboring

PHF20, which was expressed ectopically. Similarly, for SOX2 and OCT4 rescue, PHF20 KO SH-EP cells were infected with lentivirus harboring either SOX2 or OCT4 individually or in combination; we then induced ectopic expression. For negative and positive controls, we transfected PHF20 KO SH-EP cells with empty vector or MYCN, respectively.

Mice were divided into six groups of eight or nine mice per group. WT SH-EP cells with an empty vector and PHF20 KO NB cells with MYCN overexpression were used as positive controls; the negative control was PHF20 KO NB cells. The experimental groups consisted of PHF20 KO NB cells ectopically expressing SOX2, OCT4 alone, or both. Each group was implanted with 4 x 106 cells. Every two days, tumor sizes were determined by measuring the length and width using calipers. Tumor volumes were calculated as described above. Twenty-eight days after tumor cell injection, mice were sacrificed, tumor xenografts were removed, fixed in formalin, and stored at 4 °C.

## Supplemental Figure 1

| Gene symbol | Differentiation degree |
|-------------|------------------------|
| PHF20       | 3                      |
| FGFR2       | 3                      |
| MYD88       | 2                      |
| NOTCH1      | 2                      |
| TBL1XR1     | 2                      |
| TBX3        | 2                      |
| ING1        | 2                      |
| INPPL1      | 2                      |
| IDH2        | 2                      |
| ERCC2       | 2                      |
| PCBP1       | 2                      |
| CASP8       | 1                      |
| CHD4        | 1                      |
| CHD8        | 1                      |
| CHEK2       | 1                      |
| DNER        | 1                      |
| MET         | 1                      |
| MPO         | 1                      |
| NAV3        | 1                      |
| NCOR1       | 1                      |
| NFE2L3      | 1                      |
| ODAM        | 1                      |
| OMA1        | 1                      |
| PPP2R1A     | 1                      |
| PRDM1       | 1                      |
| RSBN1L      | 1                      |
| SF3B1       | 1                      |
| SLC4A5      | 1                      |
| TAF1        | 1                      |
| TNF         | 1                      |
| TP53        | 1                      |
| TP53BP1     | 1                      |
| TPX2        | 1                      |
| TSHZ3       | 1                      |
| U2AF1       | 1                      |
| XIRP2       | 1                      |
| ZNF471      | 1                      |
| MAP4K3      | 1                      |
| KEL         | 1                      |

Supplementary Figure S1. A candidate gene list generated from sgRNA library screening of SH-SY5Y cell differentiation analysis. Differentiation degree 1: 10-30%

differentiated SH-SY5Y cells; differentiation degree 2: 30-60% differentiated SH-SY5Y cells; differentiation degree 3: 60-90% differentiated SH-SY5Y cells. **Related to Figure 1**.

#### **Supplemental Figure 2**



Supplementary Figure S2. PHF20 is highly expressed in NB and correlates with the poor outcome of NB patients. (A) The expression of PHF20 in 117 NB samples was analyzed on Affymetrix U133A microarrays. (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE3446). (B) IHC staining of PHF20 in normal human tissues. (C) Using the Texas Children's Hospital (Houston, TX) dataset, the association between PHF20 expression in NB and tumor free survival time of selected patients was analyzed by Kaplan-Meier analysis. Related to Figure 2.



Supplementary Figure S3. PHF20 promotes migration of NB cells. Wound healing assay was conducted to evaluate the migration potential of NB cells after PHF20 depletion. The cell layers were wounded and monitored under a microscope every 24 h. Migration was determined by the rate at which the scratched area filled with cells (n=3). Related to Figure 4.



Supplementary Figure S4. PHF20 is required for upregulating stem cell core gene expression. Western blot analysis showed that ectopically expressing PHF20 in *PHF20* KO cells could rescue SOX2, OCT4, and NANOG expression. Related to Figure 5.

## **Supplemental Figure 5**



Supplementary Figure S5. PHF20 promotes emergence of stem cell-like behavior in NB by interacting with PARP1. (A) Gene ontology (GO) analysis of PHF20 binding proteins identified with mass spectrometry. The identified proteins were categorized into 19 classes by protein function. (B) An Ingenuity Pathway Analysis generated network of potential candidates identified through mass spectrometry. (C) Left, 293T cells were co-transfected with Flag-PHF20 and HA-H2AFY/HA-WDR5. Cell extracts were immunoprecipitated with anti-Flag beads, followed by immunoblotting with an anti-HA and anti-Flag antibody; Right, detection of endogenous interaction between PHF20 and WDR5 in SH-EP by IP with a PHF20 antibody, followed by IB with WDR5 antibodies. (D) The tumor sphere formation assay was used to assess the self-renewal capacity of control, SSRP1, and PARP1 KD SH-EP cells. SH-EP cells with non-specific sgRNA served as control. The sphere number was counted after 7 days. Five random wells were photographed. (E) Analysis of PARP1 and SSRP1 binding to the promoter regions of SOX2 and OCT4 in NB cells by ChIP-qPCR assay with PARP1 or SSRP1 specific antibody respectively. The data are presented as fold enrichment relative to input DNA. (F) ChIP-qPCR analysis of PHF20 binding to the SOX2, OCT4, and NANOG promoter in PARP1 KD or SSRP1 KD cells. Related to Figure 6.



Supplementary Figure S6. Schematic illustration of the working model by which PHF20 interacts with PARP1 for the activation of SOX2 and OCT4, and confers stem cell-like traits in NB cells. The PHF20 and PARP1 trigger *SOX2* and *OCT4* expression, which in turn activates expression of *NANOG* and EMT-related genes (*Vimentin, Slug,* and *N-cadherin*). Activation of multiple signaling pathways may lead to rapid proliferation and malignant stem cell-like phenotypes in NB.

Supplementary Table S1. Genes and sgRNA target sequences of a CRISPR/Cas9 library for SH-SY5Y cell differentiation screen.

| sgRNA number | Gene symbol | sgRNA target sequence |
|--------------|-------------|-----------------------|
| 1            | ACO1        | ATGACACGAGCAGGCTTAAA  |
| 2            | ACO1        | CGCACACCTTGCTGAGCCAT  |
| 3            | ACVR1B      | GAGCTGGTAGGCATCATCGC  |
| 4            | ACVR1B      | CCCCACATGGACGGGTGCTC  |
| 5            | ACVR2A      | ATCCCCGCAATTAACATAAG  |
| 6            | ACVR2A      | CGCTGTGTGACTTCCATCTC  |
| 7            | ACVR2B      | CGGCGCACAGCGATCCCCAG  |
| 8            | ACVR2B      | GTGTACTTCTGCTGCTGTGA  |
| 9            | ADNP        | TGCTCGTAAGTGCGCTTCAC  |
| 10           | ADNP        | TCCGGCTAAGCTGCCATGCA  |
| 11           | AJUBA       | TTTGAGGCGCCGCGCTACGA  |
| 12           | AJUBA       | GCCTTTGTTGCACTTGATAC  |
| 13           | AKT1        | GCGCCACAGAGAAGTTGTTG  |
| 14           | AKT1        | GCAGGATGTGGACCAACGTG  |
| 15           | ALK         | AATGGGACAGTCCTCCAGCT  |
| 16           | ALK         | TCAGGACCCTAAAGGATGCC  |
| 17           | ALKBH6      | ACAACCTGCTCCACTCTGAA  |
| 18           | ALKBH6      | AGCCCTGGAACCGTTCAGAG  |
| 19           | ALPK2       | GTGCTTCGCTGCATAATATC  |
| 20           | ALPK2       | AATAATGCCACTCCCATCGA  |
| 21           | ANK3        | GTCTCGGAGCGCGTTCTGCC  |
| 22           | ANK3        | TTATTCACGAAGCTCTAGAA  |
| 23           | APC         | GGATCTGTATCAAGCCGTTC  |
| 24           | APC         | GATTTATTAGAGCGTCTTAA  |
| 25           | APOL2       | GGGGCATACGCTCCTAACTG  |
| 26           | APOL2       | ACGAGCCCAAGCCCGCAACT  |

| 27 | AR       | CATTTCCGAAGACGACAAGA |
|----|----------|----------------------|
| 28 | AR       | GGGTGGAAAGTAATAGTCAA |
| 29 | ARHGAP35 | AAGGCATCTACCGGGTCAGC |
| 30 | ARHGAP35 | CAGACTTGTTCCCGCTGACC |
| 31 | ARID1A   | GCGGTACCCGATGACCATGC |
| 32 | ARID1A   | GAGCTATCTCAAGATTCATT |
| 33 | ARID2    | GAACTTTCTCGTACTTTTCT |
| 34 | ARID2    | AGGTTTCTGAGAAGAATCAG |
| 35 | ARID5B   | GCTATGCAAATCGGATCCTT |
| 36 | ARID5B   | GAATGACCGTACCTTGGCAA |
| 37 | ASXL1    | TGTCCGCCTCACCAGGCGCG |
| 38 | ASXL1    | TCGCCATCCAGCTACAGTGG |
| 39 | ATM      | TGATAGAGCTACAGAACGAA |
| 40 | ATM      | ATCATTAAGTACTAGACTCA |
| 41 | ATP5B    | AATGACCGCCACGATGCGCC |
| 42 | ATP5B    | GCGGCGCCTGCTTTTGGCGA |
| 43 | ATR      | GTATTTTAGTGCCACACCAG |
| 44 | ATR      | GGATCATGGAAGCCAGCTCC |
| 45 | ATRX     | TCGTGACGATCCTGAAGACT |
| 46 | ATRX     | TTTTGATTCATTGCAAGTCG |
| 47 | AXIN2    | ACCGTCTTGATCGCCCAATA |
| 48 | AXIN2    | GCGTGGATACCTTAGACTTC |
| 49 | AZGP1    | TGAAGACGTCCCCGCGTTTC |
| 50 | AZGP1    | TTCAGGGTCTCACGTATTGC |
| 51 | B2M      | ACCCAGACACATAGCAATTC |
| 52 | B2M      | TCACGTCATCCAGCAGAGAA |
| 53 | BAP1     | TACCGAAATCTTCCACGAGC |
| 54 | BAP1     | CGACCTTCAGAGCAAATGTC |
| 55 | BCLAF1   | TACCTGTTAGAATCATCAAG |

| 56 | BCLAF1  | ATTCTAGAAAGAAGCGATAC   |
|----|---------|------------------------|
| 57 | BCOR    | TGTGTGGGGGGGGAGCGAAGAC |
| 58 | BCOR    | TCTTACCACGTTGTGGTTCA   |
| 59 | BHMT2   | ATATCATGCATGTCTCCCTC   |
| 60 | BHMT2   | AAAAGAATCAGATAGACCCG   |
| 61 | BRAF    | GAGGCCCTATTGGACAAATT   |
| 62 | BRAF    | CTTACCTCCAGATATATTGA   |
| 63 | BRCA1   | TGCTAGTCTGGAGTTGATCA   |
| 64 | BRCA1   | AAATCTTAGAGTGTCCCATC   |
| 65 | BRCA2   | ATGTAGCACGCATTCACATA   |
| 66 | BRCA2   | CTGTCTACCTGACCAATCGA   |
| 67 | BRE     | ATTCGGTTCAAGGCCACTTC   |
| 68 | BRE     | CTCCCCTTTCATATCTAGCG   |
| 69 | C3orf70 | CAGATAGACAGCCCGTCGCA   |
| 70 | C3orf70 | CCCGACTTCCAGCCGTGCGA   |
| 71 | CAP2    | GGAACGAGCTGTCAGCCGCC   |
| 72 | CAP2    | GGGAACTGCGGGGGAAGTCAA  |
| 73 | CARD11  | GCCCTACCTGCGTCAGTGTA   |
| 74 | CARD11  | CCATCCAAGATCAACCGAGC   |
| 75 | CASP8   | GGGTCGATCATCTATTAATA   |
| 76 | CASP8   | TCCTTTGCGGAATGTAGTCC   |
| 77 | CBFB    | GCCGACTTACGATTTCCGAG   |
| 78 | CBFB    | TTCCAGAACGCCTGCCGCGA   |
| 79 | CCDC120 | CCACCGACCTGGGGGCATTGA  |
| 80 | CCDC120 | TCTCCTACCTTCAATGCCCC   |
| 81 | CCDC6   | GCTCTCCAGAAAATTGATGC   |
| 82 | CCDC6   | ATTTACCTGCATCAATTTTC   |
| 83 | CCND1   | GTTCGTGGCCTCTAAGATGA   |
| 84 | CCND1   | TTTTCACGGGCTCCAGCGAC   |

| 85  | CD1D   | CAGGCTTGGGGGAAGCGCTGA |
|-----|--------|-----------------------|
| 86  | CD1D   | CTTCAGCGCTTCCCCAAGCC  |
| 87  | CD70   | CAGCTACGTATCCATCGTGA  |
| 88  | CD70   | GAGCTGCAGCTGAATCACAC  |
| 89  | CD79B  | GCAGCAACGCCACCATCCAG  |
| 90  | CD79B  | CACAGGAGACAACGCCAGCC  |
| 91  | CDC27  | GCAGAACGCCTTTATGCAGA  |
| 92  | CDC27  | ATTTCAAACCTTCTGCATAA  |
| 93  | CDH1   | CGCCGAGAGCTACACGTTCA  |
| 94  | CDH1   | GAGTTTCCCTACGTATACCC  |
| 95  | CDK12  | GGCTCTATAACTCTGAAGAG  |
| 96  | CDK12  | GGGGGAGACAGATCTCCACC  |
| 97  | CDK4   | GTGCCACATCCCGAACTGAC  |
| 98  | CDK4   | CTTGCCAGCCGAAACGATCA  |
| 99  | CDKN1A | CCGCGACTGTGATGCGCTAA  |
| 100 | CDKN1A | AGATCAGCCGGCGTTTGGAG  |
| 101 | CDKN1B | ATTGCTCCGCTAACCCCGTC  |
| 102 | CDKN1B | TCAAACGTGCGAGTGTCTAA  |
| 103 | CDKN2A | GGCCGCACGCGCGCCGAATC  |
| 104 | CDKN2A | TCTTGGTGACCCTCCGGATT  |
| 105 | CEBPA  | TGACTACCCGGGCGCGCCCG  |
| 106 | CEBPA  | GAGCCCCTGTACGAGCGCGT  |
| 107 | CEP76  | ATCAAAGCCCTTAGACGTCG  |
| 108 | CEP76  | CAATGATTCCTCGACGTCTA  |
| 109 | CHD4   | TCGAACCCTCACCAACTACA  |
| 110 | CHD4   | GAGCGGAAGGGGATGGCGTC  |
| 111 | CHD8   | TGAATCGAAACGCATCACCC  |
| 112 | CHD8   | GGACATCGGCATGTTGTGCT  |
| 113 | CHEK2  | AAGAAGCCTTAAGACACCCG  |

| 114 | CHEK2  | TGAATCCACAGCTCTACCCC |
|-----|--------|----------------------|
| 115 | CNBD1  | ACCTGTGTTGTCCTCTAATG |
| 116 | CNBD1  | ATGTGAGACAAAATAGCTGC |
| 117 | CNKSR1 | AAGCTGACGCCCTCCTCTTC |
| 118 | CNKSR1 | GGACTATGCTCTGGAAGTCA |
| 119 | COL5A1 | GCATGGACGTCCATACCCGC |
| 120 | COL5A1 | GCGCCCTTACCTGCGCGGCT |
| 121 | COL5A3 | ATTGGCTGGCTGTCCCCGCA |
| 122 | COL5A3 | CCCCGCTTCATCAGCATAGC |
| 123 | CREBBP | AGCGGCTCTAGTATCAACCC |
| 124 | CREBBP | CCCGCGTGACCAGTCATTTG |
| 125 | CRIPAK | TCTGCACCTCGAGATAACGT |
| 126 | CRIPAK | AATATTCCTACGTTATCTCG |
| 127 | CTCF   | CGATCCAAATTTGAACGCCG |
| 128 | CTCF   | CGTCACATTCGCTCTCATAC |
| 129 | CTNNB1 | GAAACAGCTCGTTGTACCGC |
| 130 | CTNNB1 | AAAATGGCAGTGCGTTTAGC |
| 131 | CUL4B  | CGGATGATGTCACAGTCATC |
| 132 | CUL4B  | ATTCAATGCTACCCTCCATT |
| 133 | CUX1   | AGAACTCGATGCCACCGCAA |
| 134 | CUX1   | CCTTGGAAACTCTTCAGCAG |
| 135 | DDX3X  | AACTCTTCAGATAATCAGAG |
| 136 | DDX3X  | TCTGATTATCTGAAGAGTTC |
| 137 | DDX5   | AGGTTTGGTGCACCTCGATT |
| 138 | DDX5   | GCCCTACTTCCTCCAAATCG |
| 139 | DIAPH1 | ATCTTGCAATGACTGTGCTG |
| 140 | DIAPH1 | CCTTGGAGGTGTACAAGTAT |
| 141 | DIS3   | TTAGACTTACAAGTGAAAGC |
| 142 | DIS3   | TTATGAAGATAACTTGCAGC |

| 143 | DNAH12 | CTTACAGTTTGAGGATAATC  |
|-----|--------|-----------------------|
| 144 | DNAH12 | ACCAGTGAAATGAAAAAAAA  |
| 145 | DNER   | GATCTCCGGCGCCAACTGCC  |
| 146 | DNER   | GTGCACCTCGCGCCCTGAGC  |
| 147 | DNMT3A | CGATGACGAGCCAGAGTACG  |
| 148 | DNMT3A | CCGCTCCGCAGCAGAGCTGC  |
| 149 | EGFR   | TGAGCTTGTTACTCGTGCCT  |
| 150 | EGFR   | ATCATAATTCCTCTGCACAT  |
| 151 | EIF2S2 | CGCAGCCATGTCTGGGGACG  |
| 152 | EIF2S2 | CCTCACCTCGTCCCCAGACA  |
| 153 | EIF4A2 | TCTTACCTCGATGACACCAT  |
| 154 | EIF4A2 | AGATTTGATCCTTAAAACCA  |
| 155 | ELF3   | CGAAGACGCAGGTTCTGGAC  |
| 156 | ELF3   | CCTGCGTCTTCGACCAGAAC  |
| 157 | EP300  | GAACCGTTCATGACTTGATT  |
| 158 | EP300  | TAGTTCCCCTAACCTCAATA  |
| 159 | EPHA2  | GAAGCGCGGCATGGAGCTCC  |
| 160 | EPHA2  | CGAAGCAGGCGCGGGGCTGCC |
| 161 | EPHB6  | GCTCTTCAATGTCGTGTGCA  |
| 162 | EPHB6  | TGCACACGACATTGAAGAGC  |
| 163 | ERBB2  | TTTCTGCCGGAGAGCTTTGA  |
| 164 | ERBB2  | CTTAGACAACTACCTTTCTA  |
| 165 | ERBB3  | CAGCATCGCCGGTCACACTC  |
| 166 | ERBB3  | CACTGTACAAGCTCTACGAG  |
| 167 | ERBB4  | GTTTTCATAGTACTTGCGCA  |
| 168 | ERBB4  | GCTTTACCCGCAGGAAGGAG  |
| 169 | ERCC2  | TTATCGGCAGGCATATCCGC  |
| 170 | ERCC2  | TCTTGAGCAGTAGATGAGTT  |
| 171 | EZH1   | ACAGGCTTCATTGACTGAAC  |

| 172 | EZH1    | GCTTTGCTAGGCTTTGTATG |
|-----|---------|----------------------|
| 173 | EZH2    | ACACGCTTCCGCCAACAAAC |
| 174 | EZH2    | TGCGACTGAGACAGCTCAAG |
| 175 | EZR     | CAATGTCCGAGTTACCACCA |
| 176 | EZR     | GCAATCCAGCCAAATACAAC |
| 177 | FAM166A | TGTAGGGCTCCGTCAGGTCT |
| 178 | FAM166A | GAAACACGATCTCTTCACGC |
| 179 | FAM46C  | TTTGCACGGACACTGACCGC |
| 180 | FAM46C  | TTGTTCCGCCAGCACGCA   |
| 181 | FAT1    | TGAGTACGTCACGTGTCCGT |
| 182 | FAT1    | GTCTCATCACAACTACGTCA |
| 183 | FBXW7   | CTGATGTATGCACTTTTCCA |
| 184 | FBXW7   | AGCACAGAATTGATACTAAC |
| 185 | FGFBP1  | CTAGTCAGCTCCACTCTATT |
| 186 | FGFBP1  | ACGTGTCCTGCACTATGCTG |
| 187 | FGFR2   | GTACCGTAACCATGGTCAGC |
| 188 | FGFR2   | GCCCTCCTTCAGTTTAGTTG |
| 189 | FGFR3   | GACGCGCTGCTCCGTCCCCA |
| 190 | FGFR3   | GGGGACGGAGCAGCGCGTCG |
| 191 | FLG     | CCAAAAGATGTCTACTCTCC |
| 192 | FLG     | ATTGAGTAAAAAAGAGCTGA |
| 193 | FLT3    | CCTTACCGAGCAGCGGCAGC |
| 194 | FLT3    | TCCGGAGGCCATGCCGGCGT |
| 195 | FOXA1   | CAGCTACTACGCAGACACGC |
| 196 | FOXA1   | GTAGTAGCTGTTCCAGTCGC |
| 197 | FOXQ1   | CCCGCGCCGTACGCGCAGAG |
| 198 | FOXQ1   | TTCGTCCCTCGCGCGGCCCA |
| 199 | FRMD7   | CCATCTAAATCTTGCTGAAA |
| 200 | FRMD7   | CAGGTTAAACAATGCCTTCC |

| 201 | GATA3    | GTACTGCGCCGCGTCCATGT |
|-----|----------|----------------------|
| 202 | GATA3    | TACGTGCCCGAGTACAGCTC |
| 203 | GNA13    | CCAGTTGAAATTCTCGACGC |
| 204 | GNA13    | AGATGATGTCGTTTGATACC |
| 205 | GNB1     | TGAGTGAGCTTGACCAGTTA |
| 206 | GNB1     | AATCTGGTTCTTAAGTTGCT |
| 207 | GNPTAB   | GTAAACAACGTCAATCGGCA |
| 208 | GNPTAB   | GTAGTTGAAGATGCCCACTC |
| 209 | GOT1     | ACATTCGGTCCTATCGCTAC |
| 210 | GOT1     | AGAAGATCGTGCGGATTACT |
| 211 | GPS2     | GCTGCACCGGCACATTATGA |
| 212 | GPS2     | CTTGGGGCGCTCCAGGAGTG |
| 213 | GUSB     | GTGGTCATCGATGAGTGTCC |
| 214 | GUSB     | GTGGCTGGTACGGAAAGCGT |
| 215 | H3F3C    | GCGATGAGGCTTCACCCCGC |
| 216 | H3F3C    | AAAAGCACCCCCTCTACCTG |
| 217 | HGF      | TGTTCTTACCTGTGTTCGTG |
| 218 | HGF      | CCCTTCAATAGCATGTCAAG |
| 219 | HIST1H1E | GGCCGCTCTCAAGAAAGCGC |
| 220 | HIST1H1E | ACCCGACGCGCCGGTGCCCT |
| 221 | HIST1H3B | CTCGTACTAAACAGACAGCT |
| 222 | HIST1H3B | AAAGCCTCACCGTTACCGCC |
| 223 | HIST1H4E | GTGTTGGTCATGTCTGGTCG |
| 224 | HLA-A    | ACAGCGACGCCGCGAGCCAG |
| 225 | HLA-A    | CCAGTCACAGACTGACCGAG |
| 226 | HLA-B    | CGCTGTCGAACCTCACGAAC |
| 227 | HLA-B    | GGTTCTATCTCCTGCTGGTC |
| 228 | HRAS     | CATCCTGGATACCGCCGGCC |
| 229 | HRAS     | TGATGGGGAGACGTGCCTGT |

| 230 | HSP90AB1 | CTCACACCTTGACTGCCAAG |
|-----|----------|----------------------|
| 231 | HSP90AB1 | CATACTCACATAAAGGGTGA |
| 232 | IDH1     | GCATGACGACCTATGATGAT |
| 233 | IDH1     | GCCACCCAGAATATTTCGTA |
| 234 | IDH2     | CCATAGGTTTGCCCAGATGC |
| 235 | IDH2     | ACGTGTCCAGGCAAAGATGC |
| 236 | IL7R     | ATTCTCATGCTATAGCCAGT |
| 237 | IL7R     | AGATGTCAACATCACCAATC |
| 238 | ING1     | GAGATCGACGCGAAATACCA |
| 239 | ING1     | TATAAATCCGCGCCCGAAAG |
| 240 | INPPL1   | TCCGCAGCCATCCACACGTA |
| 241 | INPPL1   | ATGTACCTCAAAGGCCTGCA |
| 242 | INTS12   | CAAGGTCCTCACAACTGAAA |
| 243 | INTS12   | TATTTTGGGCTCTTGCTTAA |
| 244 | IPO7     | CCTGATCGAGAAACAGCACC |
| 245 | IPO7     | AATACATACCTGATGAGCTC |
| 246 | IRF4     | CAAGCAGGACTACAACCGCG |
| 247 | IRF4     | GGTACTTGCCGCTGTCGATC |
| 248 | IRF6     | CTGGGTTAATGATCGAGCCC |
| 249 | IRF6     | CCTTGGTGCCATCATACATC |
| 250 | ITGB7    | AGCGGGTCCGGGTCACGCTG |
| 251 | ITGB7    | TGAGCAGAACTTCACCGCGT |
| 252 | ITPKB    | CCTTCAAGAAGAAGTACCCC |
| 253 | ITPKB    | ATCCAGCTGGCAGGACACGC |
| 254 | KDM5C    | GGGCTACCCGAGCCCACCGA |
| 255 | KDM5C    | CAGCGCCTCAACTATCCACC |
| 256 | KDM6A    | TTGGATAATCTTCCAATAAG |
| 257 | KDM6A    | TTATTGGAAGATTATCCAAA |
| 258 | KEAP1    | AGCCGCCCGCGGTGTAGATC |

| 259 | KEAP1    | AGCGTGCCCCGTAACCGCAT |
|-----|----------|----------------------|
| 260 | KEL      | GATAGCTGTCAGCACCCGCC |
| 261 | KEL      | GCTTACGAGGGCCACAGTTC |
| 262 | KIT      | ACCGCGATGAGAGGCGCTCG |
| 263 | KIT      | CTTGTTGACCGCTCCTTGTA |
| 264 | KLHL8    | AACAGATCCTCAATTAGTGA |
| 265 | KLHL8    | ACTCTGTGATGTCACACTCA |
| 266 | KRAS     | CAATGAGGGACCAGTACATG |
| 267 | KRAS     | AACATCAGCAAAGACAAGAC |
| 268 | LCTL     | GACCTTGTAGTAGCCGTCAC |
| 269 | LCTL     | TAGCTCACCTCGGATGCCTG |
| 270 | LIFR     | TATGTTTGAAACGACCATCC |
| 271 | LIFR     | TAAATGTTGATAACAGCCAC |
| 272 | LRRK2    | GAGAGTCGCGAGTGTGCAGC |
| 273 | LRRK2    | CACACTCGCGACTCTCATAT |
| 274 | MAP2K1   | CCATACTTACTCCGCAGAGC |
| 275 | MAP2K1   | CCCGACGGCTCTGCAGTTAA |
| 276 | MAP2K4   | ACAGCCAGCATCTCTTGTCT |
| 277 | MAP2K4   | TTTGTAAAACTTATCAAACG |
| 278 | MAP3K1   | CAAGATGGATGATCGTCCAG |
| 279 | MAP3K1   | CCCGCATCACTTTGTTAACA |
| 280 | MAP4K3   | CCAAATATTGTTGCTTATTT |
| 281 | MAP4K3   | CCAAAATAAGCAACAATATT |
| 282 | MAPK8IP1 | TTGCCCTTACCCGTAAGGAC |
| 283 | MAPK8IP1 | ACTCATCAGTGATCTCCGAG |
| 284 | MBD1     | AGCCAAGACTCGGAAACGTC |
| 285 | MBD1     | GGCCCCGAGGGATGAGACCA |
| 286 | MECOM    | TGGTACTAACCGTGGATATC |
| 287 | MECOM    | CTCAAGTACATTAGATTCGC |

| 288 | MED12   | CGTCAGCTTCAATCCTGCCA  |
|-----|---------|-----------------------|
| 289 | MED12   | AGGATTGAAGCTGACGTTCT  |
| 290 | MED23   | ACTGCAGAGCATTTTCGAAG  |
| 291 | MED23   | GAAAACGGAAGTTATAGAAG  |
| 292 | MET     | CACATGGCAGATCGATCCAT  |
| 293 | MET     | GGGTGTTTCCGCGGTGAAGT  |
| 294 | MGA     | CTATGCATCGTTACCTGCCG  |
| 295 | MGA     | CCCTCGATAACAATAGTATG  |
| 296 | MICALCL | ACGGCTCGCCTCCGAAAGTT  |
| 297 | MICALCL | GACCTCTCGAGACTTGCGAG  |
| 298 | MLL     | TCAGAGTGCGAAGTCCCACA  |
| 299 | MLL     | CGTACCTGAAGGAGACCTTG  |
| 300 | MLL2    | CAGAGAGCACAACGCCGCAC  |
| 301 | MLL2    | ACAGAGACCTCTCCCACATG  |
| 302 | MLL3    | TTTTCTGTAGACCTCGAAGT  |
| 303 | MLL3    | GGGGAAGCGCCATCTTTGCG  |
| 304 | MLL4    | CAACGGGGGCCGAAAGAGTGC |
| 305 | MLL4    | CAGAGCTACCCGCACTCTTT  |
| 306 | MORC4   | GCGACCCTTCAGTGCCATCG  |
| 307 | MORC4   | CTCACCTAGCAGCTCCGCGA  |
| 308 | МРО     | ACGAGGTGTCCACCTCCCCC  |
| 309 | МРО     | CCTACAAGGAGCGGCGGGAA  |
| 310 | MTOR    | AAGCACCTCTCGGAGTTCCA  |
| 311 | MTOR    | GCTCCAGCACTATGTCACCA  |
| 312 | MUC17   | GACGGTTCAAGACGTCCCCT  |
| 313 | MUC17   | TAACGTGCTGAGACAGCTGC  |
| 314 | MXRA5   | AAAGCTCCATCGGGGATGCT  |
| 315 | MXRA5   | GAGATCCCAAGCATCCCCGA  |
| 316 | MYB     | CAAGTCTGGAAAGCGTCACT  |

| 317 | MYB     | CAGCATATATAGCAGTGACG |
|-----|---------|----------------------|
| 318 | MYCN    | CGAGTGCGTGGATCCCGCCG |
| 319 | MYCN    | GACCAGCGGCGGCGACCACA |
| 320 | MYD88   | CACCACACTTGATGACCCCC |
| 321 | MYD88   | TCTACAGCGGCCACCTGTAA |
| 322 | MYOCD   | GAACTTGCTCCTAATCAGCA |
| 323 | MYOCD   | GAAAAAATTGCTCTACGACC |
| 324 | NAV3    | ATCGGAAGAGCAGTATGCAC |
| 325 | NAV3    | GACCCAGTAGTGCCAAGATT |
| 326 | NCOR1   | TCCCAACACCCGCCACCAGC |
| 327 | NCOR1   | AATGTATACTGGACAGAGTG |
| 328 | NF1     | GTTGTGCTCAGTACTGACTT |
| 329 | NF1     | ACACTGGAAAAATGTCTTGC |
| 330 | NFE2L2  | CCCGTTTGTAGATGACAATG |
| 331 | NFE2L2  | ACAGCTCATCATGATGGACT |
| 332 | NFE2L3  | ATTACCTCCAGTGAATTTTC |
| 333 | NFE2L3  | GACCACTGAATCTAGAAATG |
| 334 | NOTCH1  | CACGCAGGCCTCCGTGCCAT |
| 335 | NOTCH1  | TCACCGGGCTGGGAGCATCG |
| 336 | NRAS    | CTTCGCCTGTCCTCATGTAT |
| 337 | NRAS    | CCATGAGAGACCAATACATG |
| 338 | NSD1    | GATTCCAGTACCAGTACATT |
| 339 | NSD1    | AAAGGGCTGTCCTTGTCTTC |
| 340 | NTN4    | ACTAACTGCTCCGCTACATT |
| 341 | NTN4    | TTAGTCGCAAAGTACTTATA |
| 342 | NUP210L | CTACCCTTCGGCCGAGAGCC |
| 343 | NUP210L | TCATCAAGACGCCGAGGCTT |
| 344 | ODAM    | AGGCGGTGTTTGAAGCTGTA |
| 345 | ODAM    | TTTACCTGTCCTTGCTCTTG |

| 346 | OMA1   | CTGGAAGTAAGTCCAATCAC  |
|-----|--------|-----------------------|
| 347 | OMA1   | GGCACTTCCTCCTAACAAGA  |
| 348 | OR4A16 | CTGTACAGTCTACCAATCTG  |
| 349 | OR4A16 | CAATAGTAGTCACCCAAATG  |
| 350 | OR52N1 | GTACCTCATCTACTGTGATG  |
| 351 | OR52N1 | ATGACGTTGCCCTTGCAGTA  |
| 352 | OTUD7A | CGACTATGAGCAGCTCCGCC  |
| 353 | OTUD7A | AGACCTGAGCGTGTACAGCG  |
| 354 | PAPD5  | CCCGGTGCTGAGCGTGGACG  |
| 355 | PAPD5  | GCGCGCGCCTCAGAAGCTCC  |
| 356 | PBRM1  | TAATACCATCCGAGACTATA  |
| 357 | PBRM1  | CAATGCAAAGTCCTATTATA  |
| 358 | PCBP1  | GTCGGTTAAGAGGATCCGCG  |
| 359 | PDAP1  | CTGTTCTAGCAAAAGCGCAA  |
| 360 | PDAP1  | CAGCCGGGCCAGGTCAGCCT  |
| 361 | PDCD2L | CATGGCGGCCGTTCTGAAGC  |
| 362 | PDCD2L | CCTGTGGGGGCTGCCGTGCAC |
| 363 | PDGFRA | AGCTATGGGGACTTCCCATC  |
| 364 | PDGFRA | GTCTTAGGCTGTCTTCTCAC  |
| 365 | PDSS2  | GGGGGCTTGTACATGACAGC  |
| 366 | PDSS2  | ACATGAAGTGTTCACGCTGC  |
| 367 | PHF6   | GGCAGCGCACCATAAGTGCA  |
| 368 | PHF6   | CCTACAAGACAGCGCAAATG  |
| 369 | PHF20  | CAGCTGTCGACCTAGACCAT  |
| 370 | PHF20  | ACCCAGTGTGCTTCTTCCAC  |
| 371 | PIK3CA | CTCACCTTATACTGACTCAG  |
| 372 | PIK3CA | GCTTCAGCAATTACTTGTTC  |
| 373 | PIK3CG | TTGGGTAAAGTCGTGCAGCA  |
| 374 | PIK3CG | GCCAGATTTCTGCTGAAGCG  |

| 375 | PIK3R1  | CGCTTTCAAACGCTATCTCC  |
|-----|---------|-----------------------|
| 376 | PIK3R1  | AATGATCGATGTGCACGTTT  |
| 377 | PLCG2   | TTTTGCTCGCTCGAAATCTT  |
| 378 | PLCG2   | TGGACGCATTCATCGCTTCC  |
| 379 | POLE    | CCGTCCACTGACTCCGTTCC  |
| 380 | POLE    | GATAAGATGGATTTGCGGTT  |
| 381 | POLQ    | AGCTTGTCTCTTTCGTAGTC  |
| 382 | POLQ    | CGAAAGAGACAAGCTACTAT  |
| 383 | POU2AF1 | ACTCTCACCGCCGTAGGTGC  |
| 384 | POU2AF1 | ATACCAGGGCGTCCGTGTGA  |
| 385 | POU2F2  | GACTCCCCATCAGAGCACAC  |
| 386 | POU2F2  | GGAGTCCAGACCTTGCTTCT  |
| 387 | PPM1D   | GCCCCGAATGATGACCACAC  |
| 388 | PPM1D   | GGAAGACCCGTCATAGTCTT  |
| 389 | PPP2R1A | TGCCAATGTCCGCTTCAATG  |
| 390 | PPP2R1A | CCCTATCTTCTGCAGAGACT  |
| 391 | PPP6C   | ATATCTCCACACACTGTTAC  |
| 392 | PPP6C   | TCAACACCAGTAACAGTGTG  |
| 393 | PRDM1   | AAAACGTGTGGGGTACGACCT |
| 394 | PRDM1   | TCAGATGTTGGATATTTGCT  |
| 395 | PRX     | TACGTTGATGCCGCTGACCC  |
| 396 | PRX     | GGGCACTCACCTCGGCACTC  |
| 397 | PTEN    | ACCGCCAAATTTAATTGCAG  |
| 398 | PTEN    | TTATCCAAACATTATTGCTA  |
| 399 | PTPN11  | GAGACTTCACACTTTCCGTT  |
| 400 | PTPN11  | GTTACTGACCTTTCAGAGGT  |
| 401 | QKI     | CTGTAAGTCCTCTAGGTCCA  |
| 402 | QKI     | TTCTCTTGTAACTGAACAAT  |
| 403 | RAB40A  | TGTAGTCGATCCCCCGAGA   |

| 404 | RAC1   | ATTTGAAAATGTCCGTGCAA   |
|-----|--------|------------------------|
| 405 | RAD21  | CTTCATTACAGTCTGCAAGA   |
| 406 | RAD21  | CATAGGTGAAAATGGCATTA   |
| 407 | RASA1  | CGATAGCAGAAGAACGCCTC   |
| 408 | RASA1  | ATCTTATAAGAGAGAGTGAT   |
| 409 | RB1    | ATATGGTTCTTTGAGCAACA   |
| 410 | RB1    | TTCAGGGGAAGTATTACAAA   |
| 411 | RBM10  | CGTTCATATCCTCGCGAGTA   |
| 412 | RBM10  | AGGACATGGAGTATGAAAGA   |
| 413 | RHEB   | CTTCAACTTGTAGACACAGC   |
| 414 | RHEB   | ACAATACTTACTGTTTTCTA   |
| 415 | RHOA   | ATCGACAGCCCTGATAGTTT   |
| 416 | RHOA   | GGCCACTCACCTAAACTATC   |
| 417 | RIT1   | GATTCTGGAACTCGCCCAGT   |
| 418 | RIT1   | GGAGTACAAACTAGTGATGC   |
| 419 | RPL5   | AAACAGAGATATCATTTGTC   |
| 420 | RPS15  | ACTAGGACATGTCCAGCAGC   |
| 421 | RPS15  | CTTCAACCAGGTGGAGATCA   |
| 422 | RPS2   | CGACGCGTACCTTAATAGGC   |
| 423 | RPS2   | GTACCTTGAACCTGGTGCGC   |
| 424 | RSBN1L | CATATAGAGCACCAGCCTAA   |
| 425 | RSBN1L | AATGAGATCAAGAAAGAGAA   |
| 426 | RUNX1  | TCACCTCTCATGAAGCACTG   |
| 427 | RUNX1  | TACCCACAGTGCTTCATGAG   |
| 428 | RXRA   | CGGGCCCATGCCGTTGATGG   |
| 429 | RXRA   | CTCGGTCATCAGCTCCCCCA   |
| 430 | SACS   | ACTCATTTACCTGTTCTCCT   |
| 431 | SACS   | AGAAGTGATCATGGAGACCA   |
| 432 | SELP   | CTAAGTCTGTGTGTAGCGATTC |

| 433 | SELP      | GAATCGCTACACAGACTTAG |
|-----|-----------|----------------------|
| 434 | 12-Sep    | GAACAGCGTGTTCACCATCG |
| 435 | 12-Sep    | TCATAGCCTTGATCTTCAGC |
| 436 | SERPINB13 | GACGAAGAGCTCAAGAATAA |
| 437 | SERPINB13 | ATGAACTGAACATAACCAAC |
| 438 | SETBP1    | CTTGCAGCCAGTGACCTCAA |
| 439 | SETBP1    | CCTGTGGCTGAAATCCTTTG |
| 440 | SETD2     | AACTTACGAAGGAAGGTCTT |
| 441 | SETD2     | AGTTCTTCTCGGTGTCCAAA |
| 442 | SETDB1    | AACTCTTTGATGATGCATCC |
| 443 | SETDB1    | TGGATGCATCATCAAAGAGT |
| 444 | SF3B1     | TCATCATCTACGAGTTTGCT |
| 445 | SF3B1     | AAGATCGCCAAGACTCACGA |
| 446 | SGK1      | GCACATTGCAGGTACGAAGG |
| 447 | SGK1      | CACAAGGAAGACTCGAAGTC |
| 448 | SIN3A     | AATTCCCGTAGCTGACTGCA |
| 449 | SIN3A     | GGGCTGGATGAGCATGACTC |
| 450 | SIRT4     | TCCCCGAAGAAAACGACATC |
| 451 | SIRT4     | AACGCTCTTGCAGCACCCCC |
| 452 | SLC1A3    | AGTGTTTACCTGTTTAAAGC |
| 453 | SLC1A3    | GAACATGTTCCCTCCAAATC |
| 454 | SLC26A3   | GGGATTGTGGCCGTACTACA |
| 455 | SLC26A3   | CAGCATACCGGCTTAAAGAA |
| 456 | SLC44A3   | GACGAAAGGATGGGATGATC |
| 457 | SLC44A3   | GCAAAACGCACTGAAAGAAC |
| 458 | SLC4A5    | GAATGCCCTCCTATCCACAT |
| 459 | SLC4A5    | TAACCACAGGAGGAGATTTC |
| 460 | SMAD2     | CTCCAGGTATCCCATCGAAA |
| 461 | SMAD2     | CTAAATGTGTTACCATACCA |

| 462 | SMAD4   | AATACACTTACCAGGATGAT |
|-----|---------|----------------------|
| 463 | SMAD4   | GGATTAACACTGCAGAGTAA |
| 464 | SMARCA4 | GGATCCCTACCTTGTGCATC |
| 465 | SMARCA4 | TTGTCCTGAGGGTACCCTCC |
| 466 | SMARCB1 | AACTACCTCCGTATGTTCCG |
| 467 | SMARCB1 | TGTGACCCTGTTAAAAGCCT |
| 468 | SMC1A   | GTATCAGATTGCTGTAACCA |
| 469 | SMC1A   | GAATCCACACCTTGTGGCGC |
| 470 | SMC1A   | GGACTGTATTCAGTATATCA |
| 471 | SMC1A   | GGCCTCCAAAGGCAATGCGG |
| 472 | SMC3    | CTCTGTAACTTCGAAAACCC |
| 473 | SMC3    | CACATTATGTTTTGAACTGA |
| 474 | SNX25   | CACCTATGCCCCCTCTTACG |
| 475 | SNX25   | ATGGATAAAGCTCTGAAAGA |
| 476 | SOS1    | CCGAAGTGCTTCAGATGTAG |
| 477 | SOS1    | CCTCTACATCTGAAGCACTT |
| 478 | SOX17   | GCCGGCGAACAGCGGAGCAC |
| 479 | SOX17   | GGCTCAGCGACTCGGCCCAG |
| 480 | SOX9    | CGTGTTCTCGGTGTCCGAGC |
| 481 | SOX9    | CGACTCACCCGAGTGCTCGC |
| 482 | SPEN    | CGTTATGAGCGGAGACTTGA |
| 483 | SPEN    | CCGTCACTTCATGCACGAGA |
| 484 | SPOP    | CAAGCTTACCCTCTTCTGCG |
| 485 | SPOP    | CCAGTAACAGGTAAAGTGAC |
| 486 | STAG2   | CTTCAGTCGTAGAGATCCAG |
| 487 | STAG2   | AGTCCCACATGCTATCCACA |
| 488 | STK11   | TCTACCAGCCGCGCGCAAG  |
| 489 | STK11   | CCACCGCATCGACTCCACCG |
| 490 | STK19   | GTTCCCGGTACTTTGCCTTC |

| 491 | STK19   | AGCTGGTGGCTAGCTGTGCC |
|-----|---------|----------------------|
| 492 | STX2    | CCGCTCACCGCCGTCAGGTC |
| 493 | STX2    | TAGTGTAGGAAGAATGATGA |
| 494 | TAF1    | CCGAAGATACCAGCAGACGA |
| 495 | TAF1    | TTGCAGCCCCTTTGCCACTC |
| 496 | TAP1    | GGTGCGAGGCCTATGTCTCT |
| 497 | TAP1    | GCATGATCCCCAAGAGACAT |
| 498 | TBC1D12 | TCAGTTGTCCATAGTGCTCC |
| 499 | TBC1D12 | TTACCAAATAATTTCCAACC |
| 500 | TBL1XR1 | ACCATCTTTAGTCCATATTC |
| 501 | TBL1XR1 | GATATGGCTTTCTATACCAA |
| 502 | TBX3    | CCGACCCCGAAATGCCAAAG |
| 503 | TBX3    | CACAGCGATGAATTCAGTTT |
| 504 | TCEB1   | CTTACCTGGGCCACTCAACA |
| 505 | TCEB1   | AGGTCCTTCACAGCCACCAT |
| 506 | TCF7L2  | TCTCGGAAACTTTCGGAGCG |
| 507 | TCF7L2  | GCAAGCGAAATACTACGAGC |
| 508 | TCP11L2 | TGAATCCAAGACGTCCCAGA |
| 509 | TCP11L2 | CCCCCAGGTTACCTCTTTTC |
| 510 | TDRD10  | CAACTCTCTGATAAACTGTT |
| 511 | TDRD10  | CAAACAGTTTATCAGAGAGT |
| 512 | TET2    | TACCGTTCAGAGCTGCCACC |
| 513 | TET2    | GATTCCGCTTGGTGAAAACG |
| 514 | TGFBR2  | CTCCATCTGTGAGAAGCCAC |
| 515 | TGFBR2  | ATGATAGTCACTGACAACAA |
| 516 | TIMM17A | TCTTAGCCCATGGCGAATTG |
| 517 | TIMM17A | GGTATCTTTCAAGCAATCAA |
| 518 | TLR4    | GATGATGTCTGCCTCGCGCC |
| 519 | TLR4    | TATAGCTGCCTAAATGCCTC |

| 520 | TNF      | TGGTGGCGCCTGCCACGATC |
|-----|----------|----------------------|
| 521 | TNF      | CCAGAGGGCTGATTAGAGAG |
| 522 | TNFRSF14 | TACTCGTCCTCCTTGCAGGA |
| 523 | TNFRSF14 | GCACCTACCTGGACTGCACT |
| 524 | TP53     | CTTACCAGAACGTTGTTTTC |
| 525 | TP53     | ACTTCCTGAAAACAACGTTC |
| 526 | TP53BP1  | GAACGAGGAGACGGTAATAG |
| 527 | TP53BP1  | CAGAATCATCCTCTAGAACC |
| 528 | TPX2     | TTATTCCTATGATGCCCCCT |
| 529 | TPX2     | AGTATCTCCTTCATCATCCA |
| 530 | TRAF3    | AGCCCGAAGCAGACCGAGTG |
| 531 | TRAF3    | CCGCTTCTGCGAGAGCTGCA |
| 532 | TRIM23   | GATCGACAAGTAACAGACCT |
| 533 | TRIM23   | GTTCCCCGTCTTTTGCTTTG |
| 534 | TSC1     | CGAGATAGACTTCCGCCACG |
| 535 | TSC1     | ACCTTCGAGGGTCCAGTTCA |
| 536 | TSHZ2    | GGTATTAGACCCGTTAGCAG |
| 537 | TSHZ2    | GCTGCGTTGCTCCATTATAC |
| 538 | TSHZ3    | CACGACTGTGTCGGATAGCC |
| 539 | TSHZ3    | GGAGAAGCATCATGCCGAGG |
| 540 | TTLL9    | CACCTAATGGCAGTTGTGCC |
| 541 | TTLL9    | CGTCCATGAGTGTGTTCATG |
| 542 | TXNDC8   | AACCACTGCGAGTTTGTGTC |
| 543 | TXNDC8   | GTTGTACTCACATGGAAAAC |
| 544 | U2AF1    | GTCTTTTCAGTTTCGCCGTG |
| 545 | U2AF1    | GGTGGGGAACGTGTACGTCA |
| 546 | USP9X    | AACTTTTAGGCCTCGATGGG |
| 547 | USP9X    | AGTTGCCGGGGAATTTTCAT |
| 548 | VEZF1    | AGAGCTTGTGTCGATTGAGA |

| 549 | VEZF1  | TTCTTGACAGACTGGGTCAC |
|-----|--------|----------------------|
| 550 | VHL    | CGCGCGTCGTGCTGCCCGTA |
| 551 | VHL    | TGTCCGTCAACATTGAGAGA |
| 552 | WASF3  | TTGAGCCCCGGCACTTGTGC |
| 553 | WASF3  | CTTCCACTGTTGAATCCAGC |
| 554 | WT1    | TTCGACGGGACGCCCAGCTA |
| 555 | WT1    | GTAGCTGGGCGTCCCGTCGA |
| 556 | XIRP2  | GGAGCGGATGGCGAGGTACC |
| 557 | XIRP2  | TTACATTAGCAGAGAAGCTG |
| 558 | XIRP2  | ATCTGTTCTGATGTTGATAT |
| 559 | XPO1   | GCTAACATTGTCATAATTGC |
| 560 | XPO1   | ATTTTGACAGAGACTTTCGC |
| 561 | ZFHX3  | CGTCGTGAACTTGTTGCAGA |
| 562 | ZFHX3  | CGTCTGCAACAAGTTCACGA |
| 563 | ZNF180 | TGTCCGATGCGCGCATGCGC |
| 564 | ZNF180 | GACCCTGCGCATGCGCGCAT |
| 565 | ZNF471 | AGTAGTAAAAGTCATGCCCC |
| 566 | ZNF471 | ATCTCACTCGTCATCTCCCA |
| 567 | ZNF483 | GTCTCAAAAAGCTCCCGACT |
| 568 | ZNF483 | ACAGTAGAATCTTGAGAGAC |
| 569 | ZNF620 | GGATAGCCCTATGCTTGGAC |
| 570 | ZNF620 | GAATCTTCCACACCAGCTGA |
| 571 | ZNF750 | TCTAACCTGCCGATTCCTTA |
| 572 | ZNF750 | GAACTCGACGTGTTTTCTGT |
| 573 | ZRANB3 | AGCTTTGCTCTTAGTCTGTC |

| Gene     | MW [kDa] | Score  |
|----------|----------|--------|
| PHF20    | 115.30   | 524.71 |
| PARP1    | 113.00   | 466.65 |
| H2AFY    | 39.60    | 396.46 |
| NPM1     | 32.50    | 330.01 |
| SSRP1    | 80.80    | 311.65 |
| ILF3     | 95.30    | 225.72 |
| PTBP1    | 57.20    | 182.45 |
| HMGA2    | 11.80    | 119.59 |
| PSIP1    | 59.70    | 100.79 |
| HNRNPAB  | 36.20    | 94.43  |
| RSL1D1   | 54.90    | 92.77  |
| XRCC6    | 69.80    | 91.86  |
| SYNCRIP  | 69.60    | 78.78  |
| TOR1AIP1 | 66.20    | 72.52  |
| CDC5L    | 92.20    | 70.83  |
| RUVBL1   | 50.20    | 61.23  |
| NOP2     | 89.20    | 60.62  |
| SRSF2    | 25.50    | 54.86  |
| SRSF1    | 27.70    | 54.13  |
| RAI14    | 110.00   | 51.18  |
| HNRNPL   | 64.10    | 50.58  |
| PDCD11   | 208.60   | 49.72  |
| HNRNPF   | 45.70    | 46.58  |
| SURF6    | 41.40    | 43.01  |
| SMU1     | 57.50    | 42.78  |
| NAT10    | 115.30   | 40.60  |
| ZHX3     | 103.70   | 40.49  |
| RBM34    | 48.50    | 37.46  |
| G3BP1    | 52.10    | 37.01  |
| WTAP     | 44.20    | 29.62  |
| NIFK     | 34.20    | 23.06  |
| WDR5     | 36.60    | 21.98  |

Supplementary Table S2. Hits with the highest scores in mass spectrometry analyses of proteins from pull-down assay with PHF20 specific antibodies.

## Supplementary Table S3. Primers used for this study.

# Real-time PCR primers

| human PHF20-forward      | ACCCGGCTCCCCAAAGGTGA |
|--------------------------|----------------------|
| human PHF20-reverse      | CTGCCACTGGTGCTGGGAGC |
|                          |                      |
| human Oct4-forward       | GAAGCCTTTCCCCCTGTCTC |
| human Oct4-reverse       | ATCCCAAAAACCCTGGCACA |
|                          |                      |
| human Sox2-forward       | GCCCTGCAGTACAACTCCAT |
| human Sox2-reverse       | GACTTGACCACCGAACCCAT |
|                          |                      |
| human Nanog-forward      | CTGCAGAGAAGAGTGTCGCA |
| human Nanog-reverse      | ATCTGCTGGAGGCTGAGGTA |
|                          |                      |
| human MYCN-forward       | TCCCTACGTGGAGAGTGAGG |
| human MYCN-reverse       | CTGAGCGTGAGAAAGCTGGA |
|                          |                      |
| human EGFR-forward       | AAACCGGACTGAAGGAGCTG |
| human EGFR-reverse       | CCCATTGGGACAGCTTGGAT |
|                          |                      |
| human Wnt3a-forward      | TGCTGGACAAAGCTACCAGG |
| human Wnt3a-reverse      | CGAGACACCATCCCACCAAA |
|                          |                      |
| human Bmi1-forward       | TCTTGTTTGCCTAGCCCCAG |
| human Bmi1-reverse       | GGCTGTTGCTGGTTCCATTC |
|                          |                      |
| human N-cadherin-forward | AGCAGTGAGCCTGCAGATTT |
| human N-cadherin-reverse | GCCACTTGCCACTTTTCCTG |
|                          |                      |

| human E-cadherin-forward | TGGATGTGAATGAAGCCCCC  |
|--------------------------|-----------------------|
| human E-cadherin-reverse | TTAGGGCTGTGTACGTGCTG  |
|                          |                       |
| human Vimentin-forward   | GGACCAGCTAACCAACGACA  |
| human Vimentin-reverse   | AAGGTCAAGACGTGCCAGAG  |
|                          |                       |
| human Slug-forward       | CATCTTTGGGGGCGAGTGAGT |
| human Slug-reverse       | ATGGCATGGGGGGTCTGAAAG |
|                          |                       |
| human GAPDH-forward      | GTCAAGGCTGAGAACGGGAA  |
| human GAPDH-reverse      | AAATGAGCCCCAGCCTTCTC  |

# ChIP qPCR primers

| human Sox2-pro-1-F  | GAGTTGGACAGGGAGATGGC  |
|---------------------|-----------------------|
| human Sox2-pro-1-R  | CAACACTCTCTCACGCCCTT  |
|                     |                       |
| human Sox2-pro-2-F  | AAGGGCGTGAGAGAGTGTTG  |
| human Sox2-pro-2-R  | TTGTTCTCCCGCTCATCCAC  |
|                     |                       |
| human Oct4-pro-1-F  | TCAAGCACTAGACCAGCAGC  |
| human Oct4-pro-1-R  | GGCAGATTGAGGGATGTGCT  |
|                     |                       |
| human Oct4-pro-2-F  | GTGTGAGGGGGATTGGGACTG |
| human Oct4-pro-2-R  | CTCAACCCTTGAATGGGCCT  |
|                     |                       |
| human Nanog-pro-1-F | TCAGGTTCTGTTGCTCGGTT  |
| human Nanog-pro-1-R | TCCCGTCTACCAGTCTCACC  |
|                     |                       |
| human Nanog-pro-2-F | GAGGGGTGGGTCTAAGGTGA  |
| human Nanog-pro-2-R | ATGAGGCAACCAGCTCAGTC  |