
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

Dopamine neurons in the midbrain ventral tegmental area are believed to encode reward prediction 
error (RPE) – they fire phasically to signal the difference between predicted reward and the currently 
experienced reward. The RPE then play a critical role in driving reinforcement learning. In this study, 
Babayan and colleagues introduced the concept of belief state and asked how it could be used to 
improve the calculation of RPE. Specifically, the authors propose that the brief state b(s) is computed 
with Bayesian theorem: b(s) = P(r|s)*P(s) / P(r). This value corresponds to the probability of being in 
a potential state, given previous reward information. Further, the RPE δ is calculated as r - V(b), 
where r indicates received reward value and V(b) correspond to the expected reward value at the 
belief state of (b). 

Similar question was addressed recently by a study on monkeys working on a visual decision task 
(2017, Current Biology, Lak et. al). Here, the authors tested the concept of belief state by recording 
the activity of VTA dopamine neurons using fiber photometry from mice that had been trained in a 
task with two potential states defined by a large reward and a small reward. Their model predicts non-
monotonic RPE (in later trials) when a rare block of intermediate reward is randomly inserted between 
the blocks of large and small rewards. Their data fit quite well with the model for the first and second 
trials, but not for later trials. The authors conclude that state inference plays a critical role in 
reinforcement learning. 

Overall, I like the concept of “belief state” and the approach of combining computational modeling 
with recordings from VTA dopamine neurons in behaving mice. However, I have several major 
concerns that the authors should address before publication. 

Major Concerns: 
1) Experiments. The experiments seem a bit rushed. The authors recorded from 11 mice. The Ca2+
indicator GCaMP was expressed either by mouse crossing or AAV viral transgene. The Ca2+ signals
were recorded from either somata in the VTA or from the axonal terminals in the ventral striatum. The
authors claimed that there was no major difference among individual mice. At the same time, data
were normalized, largely because large variance. In addition, the inter-trial interval was only 4 s,
which was so short that neuronal responses most likely could be affected by the activity in the
previous trial. Both fiber photometry and classical conditioning behavior tests are very
straightforward. I don’t see any major difficulty in performing the experiments more rigorously.

2) How are Ca2+ signals related to neuronal spiking? Clearly, fiber photometry does not report basal
activity well, although the authors know perfectly from their previous recordings that VTA neurons fire
tonically at the basal state and phasically to reward-related signals. Therefore, the authors should at
least discuss how their experimental data and the RPE value in the model are related to neuronal
spiking.

3) I am pleased to see that the model fits well with the data for trials 1 and 2 following the rare
introduction of intermediate reward after alternating small and large reward training (Figure 3b).
However, the experimental data failed to obey RL model with belief states (Extended Data Figure 6),
indicating that the model performed very poorly for trials 3-5. What is wrong here? Bad experiments,
or bad theory? This must be resolved, otherwise the model seems to be quite limited.

4) In Fig 2, the authors show that the activity of dopamine neurons during the first two trials predicts
mouse licking behavior during trials 2 and 3. If the change in anticipatory licks in trial 3 is truly

Editorial Note: Parts of this peer review file have been redacted as indicated 
to maintain the confidentiality of unpublished data.



determined by dopamine response in trial 2, we should observe the following two phenomena: first, 
transient inhibition of dopamine neurons following 2 or 4 µL sucrose at trial 2 would decrease 
anticipatory licks in trial 3; second, transient activation of dopamine neurons following 6 or 8 µL 
sucrose at trial 2 would increase anticipatory licks at trial 3. It is unclear from the plot in Fig. 2f 
whether this is the case. The authors should also provide anticipatory lick data for trials 4 and 5, so 
that readers can better examine how the dopamine activity in the previous trial affects anticipatory 
licks in the following trial and how the behavior data fit with what is computed by the belief-state-
based RL.  
 
Minor Concerns:  
1) It would be nice if the author choose a better example for Figure 2d. According to the current 
example of Figure 2d, the activity of dopamine neurons responding to 10 µL sucrose was smaller than 
that to 2 or 4 µL sucrose and no larger than that to 6 or 8 µL sucrose, inconsistent with the non-
monotonic trend of grouped dopamine responses displayed in Figure 2e.  
 
2) In Extended Data Figure 1, the scale range of RPE (δ) should be adjusted within -0.5 to 0.5 for the 
last column.  
 
3) I am puzzled by the data that well-trained mice did not make anticipatorily lick during odor 
exposure in classic conditioning (Extended Data Figure 2a) but those mice trained with alternating 
blocks s1 and s2 showed robust anticipatory licking during odor presentation (Extended Data Figure 
3a). Why?  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
Babayan et al present a very elegant paper that suggests that dopamine (DA) release in the ventral 
striatum may be more complex than simply reflecting a RPE, predicted by traditional models of 
classical conditioning. The data indicate that DA activity is influenced by belief states and may signal 
reward values in non-linear manners.  
 
I think this is an excellent finding, is solid, and fits well in Nature Communications.  
 
I would like to ask the authors to revise the paper predominantly for clarity, to better relate their work 
to previous research of DA activity, and to reformat their paper to Nature Communications format 
(making it easier to read).  
 
Main suggestions  
 
-In the introduction, the authors state that the “states were sufficiently ambiguous”. I don’t 
understand why that is. If there is a reason, the authors need to clarify, if not, might they want to 
make this claim softer?. I agree that the main source of feedback about the “state” (or block) the 
mouse is in is the outcome size (e.g. the CS-odor only tells the timing of the outcome but not its size). 
However, after the first trial, for at least 5 trials (minimum block trial number) the mouse should not 
be confused about the state he is in, right? If this is wrong, what is a measure of ambiguity or what 
am I missing about the task design?  
 
-The properties of DA neurons described by the authors are not entirely consistent with simple 
“arousal” explanations of the non-linearity they observe (which is great), and at first sight could 
appear closer to the way some people conceptualize “surprise”. I suggest explicitly discussing this 



issue. On a related note, DA neurons that project to dorsal striatum may have different properties 
(and may be closer to arousal/salience/surprise carrying units; Matsumoto and Hikosaka, 2010, 
Nature). Is it worth discussing that the data collected here are specific to ventral-striatum DA circuit? 
If anything, it is more exciting and leads to new questions about other types of DA neurons.  
 
-I found the classical conditioning data more than just a form of verification. As the authors know, a 
large number of models of DA functions assume DA neurons display increases in activity that follow 
risky predictions which terminate at outcome time. These increases are theoretically selective for risk 
and have been only shown in one single paper which has been difficult to replicate. Models have been 
proposed to explain this (e.g. Dayan’s idea that Bergman’s trace conditioning tasks fail to show 
ramping due to slow learning rates in trace; etc). However, evidence is mounting that most or many 
DA neurons do not ramp to risky outcomes. It appears that the classical conditioning data here nicely 
replicates those impressions. I think it’s worth explicitly discussing this issue here because the authors 
have a clear “identified DA population signal” to ventral striatum.  
 
-A recent Takahashi paper (Neuron, September, 2017) shows that DA signals the sensory features of 
rewards. It is worth discussing the relationship of those findings to yours.  
 
-Would it be helpful to show block-start tone related responses of DA? I suspect there may be no 
difference in DA activation between start of small reward block and large reward block (though they 
alternate and mice should be able to predict which block he will be in?). Is that true? Have the authors 
considered the meanings of this type of finding (or other types of block-start effects)? A previous 
paper (Bromberg-Martin, 2010, Neuron) analyzed trial start activity and was able to show a more 
complex anticipatory role of DA neurons as animals (macaques) expected belief and value state 
changes (from long reward to long punishment states/blocks). Of note, those data seem highly 
relevant here.  
 
-I don’t have experience with fiber photometry. So, one question that may be easy to answer but that 
arose in my reading of your paper (and that I have no online experience with) is whether the baseline 
of DA activity changes as the trials continue in a given block? This may be in Supplemental, or 
elsewhere, but I missed it. I think that would be worth reporting and on a very related note, more 
details about how you “normalize” (e.g. min-max) would be helpful as well.  
 
Minor concerns addressing style and clarity  
 
-Figure 1 – the authors state “then intermediate rewards are introduced”. This is a totally vague 
description of the crucial manipulation and does not give the clever design any credit. Please elaborate 
and describe the task in great detail in the legend (within the word limits of Nat. Com).  
 
-Extended data Figures 2-3 are very important figures. I would suggest moving many of the panels 
from them to the main body of the manuscript.  
 
-Sentence on line 34 needs to be elaborated for clarity. It is a key point to the authors.  
 
-Line 55 of introduction – I would front load this so that the rest is easy and exciting to read. It may 
increase the “word count” but in Nature Communications this is less of an issue.  



We would like to thank the referees for their insightful and constructive comments.  We 
have performed additional analyses and addressed all concerns.  

In the following, the reviewers’ comments are in slab-serif font (Courier New), our
response appears in sans-serif font (Arial) and text from the revised manuscript and 
previous publications appear in italic. 

Reviewer #1 (Remarks to the Author) 
Dopamine neurons in the midbrain ventral tegmental area are 
believed to encode reward prediction error (RPE) – they fire 
phasically to signal the difference between predicted reward and 
the currently experienced reward. The RPE then play a critical 
role in driving reinforcement learning. In this study, Babayan 
and colleagues introduced the concept of belief state and asked 
how it could be used to improve the calculation of RPE. 
Specifically, the authors propose that the brief state b(s) is 
computed with Bayesian theorem: b(s) = P(r|s)*P(s) / P(r). This 
value corresponds to the probability of being in a potential 
state, given previous reward information. Further, the RPE δ is 
calculated as r - V(b), where r indicates received reward value 
and V(b) correspond to the expected reward value at the belief 
state of (b). 

Similar question was addressed recently by a study on monkeys 
working on a visual decision task (2017, Current Biology, Lak et. 
al). Here, the authors tested the concept of belief state by 
recording the activity of VTA dopamine neurons using fiber 
photometry from mice that had been trained in a task with two 
potential states defined by a large reward and a small reward. 
Their model predicts non-monotonic RPE (in later trials) when a 
rare block of intermediate reward is randomly inserted between 
the blocks of large and small rewards. Their data fit quite well 
with the model for the first and second trials, but not for 
later trials. The authors conclude that state inference plays a 
critical role in reinforcement learning. 

Overall, I like the concept of “belief state” and the approach 
of combining computational modeling with recordings from VTA 
dopamine neurons in behaving mice. However, I have several major 
concerns that the authors should address before publication.  



Major Concerns: 
1) Experiments. The experiments seem a bit rushed. The authors
recorded from 11 mice. The Ca2+ indicator GCaMP was expressed
either by mouse crossing or AAV viral transgene. The Ca2+
signals were recorded from either somata in the VTA or from the
axonal terminals in the ventral striatum. The authors claimed
that there was no major difference among individual mice. At the
same time, data were normalized, largely because large variance.
In addition, the inter-trial interval was only 4 s, which was so
short that neuronal responses most likely could be affected by
the activity in the previous trial. Both fiber photometry and
classical conditioning behavior tests are very straightforward.
I don’t see any major difficulty in performing the experiments
more rigorously.

Response: We apologize that the experiments seemed rushed. We would like to first 
mention that our experiments require significant amount of time and effort for each 
animal. Although mice can be trained in simple odor-outcome association paradigms in 
several days (e.g. our previous studies, Cohen et al., 2012; Menegas et al., 2017), we 
spent a significantly longer time to train mice in the present task (> 20 days of training 
on the reference small and big blocks) in order to ensure that each animal develops 
discrete belief states. Furthermore, our analysis relies on rare ‘probe’ trials consisting of 
the presentation of intermediate reward sizes. Thus, the data collection took more than 
20 days for each animal. This meant that we had to perform the behavioral training and 
experiment every day for more than 40 days for each mouse. We agree that fiber 
photometry is relatively straightforward. Nonetheless, this unique experimental design 
made the performance of the experiments very time-consuming. Because the data 
looked consistent across different experimental conditions (we discuss this below), we 
thought that pooling the data is well justified, and we decided that we can make 
conclusions based on the collected data, and that performing more experiments is not 
justified due to the costs with regard to the experimenter and a further sacrifice of 
animals. 

We apologize that our justification of pooling and normalization was not sufficient. To 
address these concerns, we now discuss these issues in Results (page X), and present 
the data from different conditions (Figure R1 below, now Supplementary Figure 5). We 
recorded from 11 mice that are divided into the following conditions: 

1. Mice expressing GCaMP6f transgenetically in DAT-positive neurons and
recorded from VTA cell bodies (n = 5)

2. Mice expressing GCaMP6f through a viral construct in DAT-positive neurons and
recorded from VTA cell bodies (n = 2)



3. Mice expressing GCaMP6f through a viral construct in DAT-positive neurons and
recorded from dopamine neuron terminals in the ventral striatum (n = 4).

In Figure R1, the upper row (a - c) shows the average across mice within each 
recording condition. The monotonicity and non-monotonicity of the responses in trials 1 
and 2, respectively, are observed in each recording condition (a - c). We used these 
data to justify pooling across recording conditions.  

In addition to the consistency, these plots also show that the amplitude of GCaMP 
signals varied across the different recording conditions. This is largely due to lower 
expression levels of GCaMP in transgenic mice compared to those with viral 
expression, resulting in the overall smaller signals in transgenic mice. There was also 
some variability in signal intensity across animals within each recording condition. This 
is likely due to different expression levels of GCaMP and fiber locations. Therefore, for 
illustration purposes, we chose to normalize the signals from each individual mouse to 
plot the summary data in one plot (as shown in Figures 2 and 3). The normalization we 
used was a min-max normalization (y = (x-min)/(max-min)) to rescale the GCaMP 
signals in the 0 to 1 range. In our original manuscript, we normalized the data for each 



trial condition separately. Following the Reviewer’s third point (detailed below), we now 
notice that this normalization was misleading since each trial was rescaled with 
reference to itself, hence masking any change of amplitude across trials. We now 
propose to normalize within mice using trial 1's response as reference for the minimum 
and maximum values for the min-max normalization (i.e. y = (x-mintrial1)/(maxtrial1-
mintrial1)).The lower row (d - f) shows the average after performing this normalization 
with each mouse's signal. We believe that this normalization corrects for the differences 
in amplitude across mice, while preserving the features observed in each recording 
condition, i.e. monotonicity in trial 1 and non-monotonicity in trial 2. It is also important to 
note that the models were not fit on the normalized data. We now explicitly explain 
these points in Results and Methods: 

Results section, page 7, lines 125-138: 

‘These monotonic and non-monotonic patterns on trials 1 and 2, respectively, were 
observed in our three different recording conditions: (1) in mice expressing GCaMP6f 
transgenetically in DAT-positive neurons and recorded from VTA cell bodies (n = 5), (2) 
in mice expressing GCaMP6f through a viral construct in DAT-positive neurons and 
recorded from VTA cell bodies (n = 2); (3) in mice expressing GCaMP6f through a viral 
construct in DAT-positive neurons and recorded from dopamine neuron terminals in the 
ventral striatum (n = 4) (Supplementary Fig. 5, a - c). Although these patterns were 
observed in each condition, the amplitude of the signal varied across the different 
recording conditions, largely due to lower expression levels of GCaMP in transgenic 
mice compared to those with viral expression and overall variability in signal intensity 
across animals within each recording condition. Therefore, for illustration purposes, we 
normalized the signals from each individual mouse using trial 1's response as reference 
for the minimum and maximum values for the min-max normalization (y = (x - 
mintrial1)/(maxtrial1 - mintrial1)) to rescale the GCaMP signals in the 0 to 1 range 
(Supplementary Fig. 5, d – f, Fig. 3, Fig. 4).’  

Methods section, page 19, line 388-395: 

‘Since the absolute level of fluorescence was variable across mice that expressed 
GCaMP6f through viral injection or transgenetically (Supplementary Figure 4), for 
illustration purposes to summarize the data in one plot, each mouse’s mean US response 
across rewards was normalized by min-max normalization when pooled together. The 
normalization was performed within each mouse, using the given mouse’s trial 1 
response as reference for the minimum and maximum values for the min-max 
normalization such that y = (x - mintrial1)/(maxtrial1 - mintrial1)). Of note, the models 
were not fit on the normalized data.’ 

One of the reasons that we recorded from these conditions is that because the present 
study was one of the first in our lab that used fiber photometry, we wanted to test 



whether we observe different signals between these recording conditions. Although we 
agree that these conditions could have been designed in a more systematic way, our 
initial data indicated that the main results were similar across these conditions. 
Furthermore, as mentioned above, our experimental design required us to perform >40 
days of daily behavioral training and data collection. Taking these into account, we 
decided that rather than comparing these recording conditions systematically (e.g. so 
that we can discuss potentially interesting differences with respect to signal sources), 
we rather pooled data to address our main question.  

Finally, we would like to clarify the inter-trial interval duration. It was on average 8.7 s, 
with a fixed initial period of 4 s and then an additional interval drawn from an 
exponential distribution of mean 4.7 s. The initial fixed period allowed no ITI to be 
shorter than 6.8 s to allow GCaMP signals to go back to baseline between trials and the 
flat hazard function ensured mice had constant expectation of when the next trial would 
begin. 

We have clarified this point in Methods (Page 16, Lines 322-326): 

‘Inter-trial intervals were on average 8.7s, composed of an initial fixed 4 s period, to 
ensure GCaMP signals went down to baseline between trials, followed by an interval 
drawn from an exponential distribution (mean: 4.7 s), resulting in a flat hazard function 
such that mice had constant expectation of when the next trial would begin. Mice did 30 
blocks per day (150 trials).’ 

2) How are Ca2+ signals related to neuronal spiking? Clearly,
fiber photometry does not report basal activity well, although
the authors know perfectly from their previous recordings that
VTA neurons fire tonically at the basal state and phasically to
reward-related signals. Therefore, the authors should at least
discuss how their experimental data and the RPE value in the
model are related to neuronal spiking.

Response: Thank you for pointing this out. We have explored the relationship between 
spikes and photometry signals in multiple ways. First, photometry signals that we 
obtained in a classical conditioning paradigm (e.g. Supplementary Fig. 2 and the data in 
Menegas et al., 2017) were similar to our electrophysiological recording data that we 
observed in similar task conditions (e.g. Cohen et al., 2012, Eshel et al., 2015, Tian et 
al., 2015). Second, in an unpublished work (Menegas et al., submitted), we have 
obtained a ‘dose-response’ curve of reward responses in dopamine terminals in ventral 
striatum using photometry. The result showed that reward response increases 



monotonically as a function of reward size (Figure R2, a and b), consistent with what we 
obtained in electrophysiological recording (Figure R2, c, reproduced from Eshel et al., 
2015). This result supports relatively linear relationship between spikes and photometry 
signals. Third, our previous results also indicated that our photometry system has the 
ability to monitor a transient decrease from the baseline activity (e.g. when an expected 
reward is omitted) (Menegas et al., 2017).  

As the reviewer pointed out, it is less clear whether we can monitor long-timescale 
changes in baseline activity due to technical limitations such as bleaching of the calcium 
indicator. In addition, a majority of previous work studying RPEs focused on phasic 
responses. Because of these reasons, the present study focused on phasic responses. 
Now we discuss this limitation and our motivation to focus on phasic responses in 
Results and Methods.  

Of note, although there are some studies that indicated changes in baseline firing (in 
particular, those that monitored activity in slice or anesthetized animals), there are fewer 
results in awake behaving animals. Our previous study (Cohen et al., 2016) showed that 
the baseline firing of VTA dopamine neurons was not altered according to the slow-
timescale overall value (blocks of reward trials versus air puff trials) in behaving mice.  

Results section, page 5, lines 76-82: 

‘We focused our analysis on the phasic responses. Indeed, calcium imaging limits our 
ability to monitor long-timescale changes in baseline due to technical limitations such as 
bleaching of the calcium indicator, moreover a majority of previous work studying 
dopamine neurons has shown reward prediction error-like signalling in the phasic 

[Redacted]

[Redacted]



responses1,3,11. Similarly to single cell recordings1,3,11, population activity of dopamine 
neurons measured by fiber photometry in the VTA19 (Supplementary Fig. 2) or in 
terminals of dopamine neurons projecting to the ventral striatum15,20 show canonical 
RPE coding in classical conditioning tasks.’ 

 
Methods section, page 18, line 366-369: 
 

‘For GCaMP activity, we focused our analysis on the phasic responses. Indeed, a 
majority of previous work has shown reward prediction error-like signaling in the phasic 
responses of dopamine neurons and technical limitations such as bleaching limit our 
ability to monitor long-timescale changes in baseline using calcium imaging. 
Fluorescence data was acquired at 1 kHz.’ 

 
Finally, the exact sources of calcium signals remain unclear. Most, if not all, of in vivo 
calcium imaging studies assume that large calcium influxes through voltage-gated 
calcium channels evoked by spikes dominate calcium signals that they measure. 
Nonetheless, this might not be true in some systems. With respect to the dopamine 
system, there are some unique points that need to be taken into account when we 
interpret calcium imaging data. First, dopamine neurons have a mechanism to maintain 
the baseline, pace-making activity which relies on calcium. Second, increasing evidence 
suggests that dopamine release is regulated at the level of axon terminals, through 
cholinergic and glutamatergic mechanisms (e.g. Threlfell et al., 2012). We now realize 
that our data using multiple recording conditions may speak to this issue: because our 
main results hold whether we monitored the activity from cell bodies or axons of 
dopamine neurons, these additional processes are unlikely to affect our main 
conclusions.  
 
We now discuss these points in the discussion (page 12, lines 251-262): 
 

‘The exact sources of calcium signals remain unclear. Most, if not all, of in vivo calcium 
imaging studies assume that large calcium influxes through voltage-gated calcium 
channels evoked by spikes dominate calcium signals that they measure. Nonetheless, this 
might not be true in some systems. With respect to the dopamine system, there are some 
unique points that need to be taken into account when we interpret calcium imaging data. 
First, dopamine neurons have a mechanism to maintain the baseline, pace-making 
activity which relies on calcium34. Second, increasing evidence suggests that dopamine 
release is regulated at the level of axon terminals, through cholinergic and glutamatergic 
mechanisms35-37. Furthermore, cholinergic interneurons in the dorsomedial striatum have 
been shown to track beliefs about current state38. However, because our main results 
hold whether we monitored the activity from cell bodies or axons of dopamine neurons, 



these additional processes are unlikely to affect our observation of state inference 
modulation of dopamine neuron activity.’ 

 
 
3) I am pleased to see that the model fits well with the data 
for trials 1 and 2 following the rare introduction of 
intermediate reward after alternating small and large reward 
training (Figure 3b). However, the experimental data failed to 
obey RL model with belief states (Extended Data Figure 6), 
indicating that the model performed very poorly for trials 3-5. 
What is wrong here? Bad experiments, or bad theory? This must be 
resolved, otherwise the model seems to be quite limited. 
 
Response: Thank you for pointing this out. Indeed, Supplementary Figure 7c 
(previously Extended Data Figure 6) appears to indicate that the model fits get worse in 
trials 3-5. However, this is, at least in part, due to our normalization procedure: in the 
original manuscript, we normalized the data for each trial condition separately. We now 
notice that this normalization was misleading. In our original manuscript, normalizing the 
data for each trial separately resulted in each trial being rescaled with reference to itself, 
hence masking any change of amplitude across trials. We now propose to normalize 
within mice using trial 1's response as reference for the minimum and maximum values 
for the min-max normalization (i.e. y = (x-mintrial1)/(maxtrial1-mintrial1)). This normalization 
results in the following updated panel c for Supplementary Figure 7: 
 

 
 
Using the same normalization across trials (Trial 1 – 5) shows shallower responses in 
later trials. The reinforcement learning model with belief state also predicts a flattening 
of the non-monotonic reward prediction error pattern with increasing exposure to the 
same reward. In Figure R3a, we generated reward prediction errors across trials using 
the average parameters obtained across mice (Supplementary Table 1) to illustrate how 
these signals change across trials for the two reinforcement learning models, without 
and with belief state. In panel b of Figure R3, we computed the sum of squared errors 



between both simulations for all trials. It was maximal for Trial 2. That is, the two models 
made most different predictions in Trial 2. This is why we focused our analysis on trial 2.  
 

 
 
The dopamine data presented in Supplementary Figure 7a show shallower non-
monotonicity across trials. It is, however, interesting to note that different mice show the 
non-monotonic reward response modulation at varying degrees on distinct trials. For 
example, in Figure R4, Mouse 4 shows a strong non-monotonic pattern on trial 2, which 
then becomes shallower on the following trials, whereas Mouse 9 shows a more 
sustained non-monotonic pattern across trials 2 to 5.  
 

 
 
While we focused the main results on trial 2, which is the trial with a strongest belief 
state modulation (Figure R3), the non-monotonic pattern is not necessarily restricted to 
it. For this reason, we fitted the models to all trials (1 to 5) for each mouse individually, 



accounting for potentially different learning rates or different sensory variances across 
mice, which could affect the dynamics of reward prediction error across trials. The 
quality of fit comparisons in Supplementary Table 1 is for all trials. Across all trials, the 
reinforcement learning model with belief state explains the data better.  
We would like to thank the reviewer. We believe that the current normalization greatly 
improved our presentation the result (model fit). We believe that this now shows that our 
model is not very limited. Here, we aimed at providing the most parsimonious 
explanation for all of our data, using a minimal number of parameters and of a priori 
assumptions in the model. This approach may appear to produce fits that are not 
perfectly capturing our recording data, yet we do believe that it addresses our question 
of an influence of state inference of dopaminergic RPE, since even a more enhanced 
standard reinforcement learning (as here with values depending on block history) 
cannot account for the pattern we measure across all trials, in all mice. 
 
In the manuscript, we have made clearer the prediction of the evolution of the RPE 
across trials in the results section, and have expanded Supplementary Figure 7 for it to 
include Figures R3 and R4. 
 
Results section, page 8, lines 141-152: 
 

‘The non-monotonic pattern observed on trial 2 was consistent with our hypothesis of 
belief state influence on dopamine reward RPE (Fig. 1d). We focused our analysis on 
trial 2 since, according to our model, that is the most likely trial to show an effect of state 
inference with the strongest difference from standard RL reward prediction errors 
(Supplementary Fig. 6a, b). Both reinforcement learning models predict weaker 
prediction error modulation with increasing exposure to the same reward and we 
observed weaker versions of this non-monotonic pattern in later trials (Supplementary 
Fig. 7c and Supplementary Fig. 8a). It is however interesting to note that different mice 
showed a non-monotonic reward response modulation at varying degrees on distinct 
trials. For example, Mouse 4 showed a strong non-monotonic pattern on trial 2, which 
then became shallower on the following trials, whereas Mouse 9 showed a more 
sustained non-monotonic pattern across trials 2 to 5 (Supplementary Fig. 7d).’ 

 
Corrected and expanded Supplementary Figure 7: 
 



 
 
4) In Fig 2, the authors show that the activity of dopamine 
neurons during the first two trials predicts mouse licking 
behavior during trials 2 and 3. If the change in anticipatory 
licks in trial 3 is truly determined by dopamine response in 
trial 2, we should observe the following two phenomena: first, 
transient inhibition of dopamine neurons following 2 or 4 µL 



sucrose at trial 2 would decrease anticipatory licks in trial 3; 
second, transient activation of dopamine neurons following 6 or 
8 µL sucrose at trial 2 would increase anticipatory licks at 
trial 3. It is unclear from the plot in Fig. 2f whether this is 
the case. The authors should also provide anticipatory lick data 
for trials 4 and 5, so that readers can better examine how the 
dopamine activity in the previous trial affects anticipatory 
licks in the following trial and how the behavior data fit with 
what is computed by the belief-state-based RL. 
 
Response: The Reviewer’s intuition about the relation between dopamine response 
and the subsequent change in anticipatory licking is correct. As mentioned in the 
manuscript, and illustrated on the first plot of the figure below, there is a weak but 
significant positive correlation between dopamine activity and lick change on the 
following trial across all trials (Pearson’s r = 0.12, P = 1.0 × 10−37 , Figure R5, left). 
When splitting the data for each trial type, the relationship still holds, with inhibition or 
lower activations of dopamine neurons often followed by a decrease in anticipatory 
licking whereas transient activations of dopamine neurons tended to be followed by 
increased anticipatory licking (Figure R5, right). 
 

 
 
Although at the individual trial level, significant positive correlations exist between 
dopamine activity and subsequent change in licking rate, the average change in 
anticipatory licking for all trial transitions across mice visibly follows the pattern of 
dopamine activity for the first two transitions (Figure R6).  
 



 
 
In the manuscript, we have made the relationship between differential anticipatory 
licking and dopamine responses clearer and have included an additional Supplementary 
Figure (Supp. Fig. 9) including Figures R6 and R7. 
 
Results section, page 8, lines 160-174: 
 

‘From trial 1 to trial 2, mice changed their anticipatory licking proportionally to the 
volume (Fig. 3d) but showed a non-monotonic change from trial 2 to trial 3 (Fig. 3h; 
highest adjusted r2 for a cubic polynomial fit, Supplementary Fig. 6d). Fits of linear and 
polynomial functions to the change in anticipatory licking revealed highest adjusted r2 
for cubic polynomial fits for both transitions from trial 1 and 2 (Supplementary Fig. 6c), 
although the linear fit still provided a decent fit (adjusted r2 = 0.94). Thus, dopamine 
activity and change in anticipatory licking both showed modulation according to our 
prediction of the influence of belief state on RPE (Fig. 1d). Although the average change 
in anticipatory licking for transitions from trial 3 to 5 did not seem to visibly follow the 
pattern of dopamine activity (Supplementary Fig. 9a), a trial-by-trial basis showed that 
dopamine responses on reward presentation were significantly correlated with a change 
of licking on following trial for all trial transitions within blocks (trial 1 to 5, Pearson’s 
r, p < 2.5 × 10−3 , Supplementary Fig. 9b), suggesting that inhibition or lower 



activations of dopamine neurons were more often followed by a decrease in anticipatory 
licking whereas transient activations of dopamine neurons tended to be followed by 
increased anticipatory licking.’ 

 
Corrected and expanded Supplementary Figure 9: 
 

 
 
 
 



Minor Concerns: 
1) It would be nice if the author choose a better example for 
Figure 2d. According to the current example of Figure 2d, the 
activity of dopamine neurons responding to 10 µL sucrose was 
smaller than that to 2 or 4 µL sucrose and no larger than that 
to 6 or 8 µL sucrose, inconsistent with the non-monotonic trend 
of grouped dopamine responses displayed in Figure 2e. 
 
Response: We agree that the presented figures are counter-intuitive, at least, at a 
glance. Contrary to the reviewer’s suggestion, however, the data in Figure 3d produces 
a non-monotonic change in the photometry data (reproduced in Figure R7). This is 
because GCaMP responses display complex patterns to reward, with a specific 
combination of peak activity and response dynamic. For example, in the data presented 
in Figure 3 (and reproduced below, Fig. R7), a presentation of 1 µL reward in Trial 1 
triggers a biphasic response with an initial peak and then a dip below baseline. Because 
of these dynamics, we chose to quantify GCaMP responses as the average activity over 
1 second following reward presentation (equivalent to the area under the curve; 
indicated by the horizontal black bar). This quantification shows that in the example 
mouse shown in Figure 3, the response to 10 µL is smaller than that to 2 or 4 µL and 
larger than that to 6 or 8 µL. This result, thus, shows a representative pattern consistent 
with the population average.  

 
 
Because the relationship between the example and the population is likely to be 
counter-intuitive, we now include the plot of dF/F plotted against reward sizes from the 
example animal in the main figure (Figure 3).  
 
We have also corrected the figure legend to explain the quantification method: 
 



‘On trial 1, dopamine neurons show a monotonically increasing response to increasing 
rewards (a, individual example), quantified as the mean response after reward 
presentation (0–1 s, indicated by a solid black line in a) in the individual example (b) and 
across mice (c).’ 

 
Corrected Figure 3: 

 
 
2) In Extended Data Figure 1, the scale range of RPE (δ) should 
be adjusted within -0.5 to 0.5 for the last column. 
  
Response: Thank you for pointing this out. In Supplementary Figure 1, the 4th column 
shows the theoretical RPE, which is centered around 0 and within the -0.5 to 0.5 range. 
The last column shows the theoretical RPE fitted to the GCaMP responses through 
linear regression. This regression accounted for the fact that in our task most reward 



responses were positive. This is likely due to temporal uncertainty (Fiorillo et al., 2008; 
Kobayashi and Schultz, 2008) and has been observed universally in our previous work 
(e.g. Cohen et al., 2012; Eshel et al., 2015). Hence the range of these fitted RPEs is not 
centered around 0, but rather vary between 0 and 1. We have clarified this point in the 
legend: 
 

‘Supplementary Figure 1. RL models tested. RL models tested. Six model variants 
were tested. For each model, from left to right, the model's state space is represented, 
followed by the delivered reward (r), which is compared to the expectation (value V of 
the state or belief state) to compute the RPE (δ) (a-f). The 4th column shows the 
theoretical RPE, which is centered around 0. The last column shows the theoretical RPE 
fitted to the GCaMP responses through linear regression. The main distinction between 
the standard RL models and the belief state models is the state representation, with a 
single state in the case of the standard RL model due to the ambiguity of the odor. The 
last two columns (g-l) show the theoretical value and RPE on trial 2, obtained by fitting 
each model's RPE to the GCaMP responses using linear regression. This regression 
accounted for the fact that in our task most reward responses were positive, which is 
likely due to temporal uncertainty (Fiorillo et al., 2008; Kobayashi and Schultz, 2008).’ 

 
 
3) I am puzzled by the data that well-trained mice did not make 
anticipatorily lick during odor exposure in classic conditioning 
(Extended Data Figure 2a) but those mice trained with 
alternating blocks s1 and s2 showed robust anticipatory licking 
during odor presentation (Extended Data Figure 3a). Why? 
 
Response: Supplementary Figure 2a shows the presentation of an unpredicted reward. 
Since no odor or any other cue predicted the delivery of water, the mouse started licking 
only when it detected the water. On the other hand, Panels b and c show anticipatory 
licks for odors predicting 90% and 50% reward probabilities, which is in line with the 
data from the mice trained on the belief state task presented in Figure 2 (previously 
Extended Data Figure 3a). 
 
We clarified this point in the legend: 
 

‘We presented 3 odours, which predicted the delivery of water one second later with 
either 90% (red), 50% (green) or 0% (black) probability. Unpredicted water was 
delivered on 10% of trials. On unpredicted water delivery trials, the mouse licked on 
water delivery (a). For odours predicting reward with 90% or 50% probability, the 
mouse showed anticipatory licking after odor presentation proportional to the probability 
of reward delivery (b, c).’ 



 
Reviewer #2 (Remarks to the Author): 
 
Babayan et al present a very elegant paper that suggests that 
dopamine (DA) release in the ventral striatum may be more 
complex than simply reflecting a RPE, predicted by traditional 
models of classical conditioning. The data indicate that DA 
activity is influenced by belief states and may signal reward 
values in non-linear manners.  
 
I think this is an excellent finding, is solid, and fits well in 
Nature Communications.  
 
I would like to ask the authors to revise the paper 
predominantly for clarity, to better relate their work to 
previous research of DA activity, and to reformat their paper to 
Nature Communications format (making it easier to read). 
 
Response: We thank the reviewer for the kind remark. We have reformatted the paper 
following the Nature Communications format (e.g. adding section headings, expanding 
the introduction) and follow up with detailed responses to the suggestions. 
 
Main suggestions 
 
-In the introduction, the authors state that the “states were 
sufficiently ambiguous”. I don’t understand why that is. If 
there is a reason, the authors need to clarify, if not, might 
they want to make this claim softer?. I agree that the main 
source of feedback about the “state” (or block) the mouse is in 
is the outcome size (e.g. the CS-odor only tells the timing of 
the outcome but not its size). However, after the first trial, 
for at least 5 trials (minimum block trial number) the mouse 
should not be confused about the state he is in, right? If this 
is wrong, what is a measure of ambiguity or what am I missing 
about the task design? 
 
Response: Blocks are structured such that they all begin with a two seconds long 
sound, followed by five identical trials, each starting with the presentation of a unique 
odor followed by reward one second later. Indeed, only reward amount distinguishes the 
blocks, and this amount is stable within a block. Thus, as mentioned by the Reviewer, 
the task is designed such that within blocks, this ambiguity is lifted after the first trial. 



The purpose of the twenty days of training on the reference blocks (s1 and s2) is for 
mice to learn the underlying structure of the task. We believe that mice do learn this 
structure since for the reference blocks (s1 and s2), both anticipatory licking and 
dopamine activity are stable from trials 2 to 5 (see Fig. 2 and figure R8 below). It is thus 
likely that within the reference blocks, the ambiguity disappears. However for the 
intermediate rewards, both anticipatory licking and dopamine activity continue changing 
across trials (see figure below). This continued change could indicate uncertainty in the 
amount of expected reward, even after trials 1 and 2. Indeed, when considering the 
mice’s overall experience (with reference blocks and intermediate reward size blocks), 
the sound and the odor are associated with distinct reward sizes. They themselves are 
thus insufficiently informative of the block identity, making them inherently ambiguous. 
This ambiguity, maximal on trial 1, is gradually resolved within each block, seemingly at 
different rates for the reference and intermediate reward blocks. 
 

 
 
This inherent ambiguity is what we referred to as ‘sufficiently ambiguous’. We have 
corrected that part of the manuscript to make our reasoning clearer. 
 
Results section, Page 3, Lines 45-54:  
 

‘We designed a task that allowed us to test distinct theoretical hypotheses about 
dopamine responses with or without state inference. We trained 11 mice on a Pavlovian 
conditioning task with two “states” distinguished only by their rewards: an identical 
odor cue predicted the delivery of either a small (s1) or a big (s2) reward (10% sucrose 
water) (Fig. 1a). The different trial types were presented in randomly alternating blocks 
of five identical trials, and a tone indicated block start. Only one odor and one sound cue 
were used for all blocks, making the two states perceptually similar prior to reward 
delivery. This task feature resulted in ambiguous sound and odor cues, since they were 



themselves insufficiently informative of the block identity, rendering the two states 
ambiguous with respect to their identity. This feature increased the likelihood of mice 
relying on probabilistic state inference.’ 

 
 
-The properties of DA neurons described by the authors are not 
entirely consistent with simple “arousal” explanations of the 
non-linearity they observe (which is great), and at first sight 
could appear closer to the way some people conceptualize 
“surprise”. I suggest explicitly discussing this issue. On a 
related note, DA neurons that project to dorsal striatum may 
have different properties (and may be closer to 
arousal/salience/surprise carrying units; Matsumoto and Hikosaka, 
2010, Nature). Is it worth discussing that the data collected 
here are specific to ventral-striatum DA circuit? If anything, 
it is more exciting and leads to new questions about other types 
of DA neurons. 
 
Response: We appreciate the Reviewer’s suggestion for providing interesting 
speculations regarding the nature of the dopamine signals we observed. In general, a 
‘prediction error’ signal can be seen as a ‘surprise’ signal in the sense that it represents 
the deviation from expectation. One way to distinguish different surprise signals is to 
consider along what axis a surprise signal manifests. A reward prediction error is 
computed along the axis of value, and this is what we are considering in the present 
study.  
 
As the Reviewer pointed out, increasing evidence suggests that dopamine neurons that 
project to the dorsal striatum signal different types of ‘surprise’ signal. In addition to the 
seminal work by Matsumoto and Hikosaka (2010), recent work from our lab (Menegas 
et al., 2017) and other labs (Lerner et al., 2016) indicated that dopamine neurons 
projecting to specific regions of the dorsal striatum are activated by both rewarding and 
aversive stimuli, consistent with the coding of ‘salience’. Following the Reviewers’ 
comment, we now discuss that (1) we have recorded from the canonical dopamine 
system that encode value prediction errors, and (2) the dorsal striatum may receive 
different types of dopamine signals, which warrant future investigations.  
 
Discussion section, Page 12, Lines 243-249:  
 

‘Increasing evidence suggests that dopamine neurons that project to the dorsal striatum 
signal different types of signals. Indeed dopamine neurons projecting to specific regions 
of the dorsal striatum have been shown to be activated by rewarding, aversive and novel 



stimuli15,30,31. Here we recorded from the canonical dopamine system, involving VTA to 
ventral striatum loops, which encode value prediction errors. Whether other dopamine 
inputs projecting to other areas of the dorsal striatum and broadcasting different types of 
signals can also be modulated by inferred states remains to be addressed.’ 

 
 
-I found the classical conditioning data more than just a form 
of verification. As the authors know, a large number of models 
of DA functions assume DA neurons display increases in activity 
that follow risky predictions which terminate at outcome time. 
These increases are theoretically selective for risk and have 
been only shown in one single paper which has been difficult to 
replicate. Models have been proposed to explain this (e.g. 
Dayan’s idea that Bergman’s trace conditioning tasks fail to 
show ramping due to slow learning rates in trace; etc). However, 
evidence is mounting that most or many DA neurons do not ramp to 
risky outcomes. It appears that the classical conditioning data 
here nicely replicates those impressions. I think it’s worth 
explicitly discussing this issue here because the authors have a 
clear “identified DA population signal” to ventral striatum. 

 
Response: Thank you very much for appreciating the control data. We agree that 
whether dopamine neurons exhibit ‘ramping’ activity according to uncertainty is a 
controversial issue. Indeed, ramping signals have not been observed in our previous 
studies using electrophysiological recording from optogenetically-identified dopamine 
neurons (Tian et al., 2015). Fiber photometry data further extend these results, and will 
be important as it provides a population level result with a defined cell type and 
projection target. Although we very much agree that this line of research should be 
highlighted, we feel that this is out of the scope of the present study. We are planning to 
pursue this question more thoroughly in the future with a systematic investigation of 
different projection targets.  
 
 
-A recent Takahashi paper (Neuron, September, 2017) shows that 
DA signals the sensory features of rewards. It is worth 
discussing the relationship of those findings to yours. 
 
Response: Thank you for pointing this out. This is an important study. However, the 
present study does not address the issue of sensory features. We now discuss the 
distinction from our study in the discussion section, page 13. 
 



‘A recent study found that dopamine neurons alter their responses based on changes in 
sensory features of reward50. In the present study, we focused on reward prediction 
errors based on reward sizes. It is interesting to extend the present study using different 
sensory features (e.g. taste or smell of reward) that may define ‘states’ in multiple 
dimensions, which may in turn recruit distinct partners for computing beliefs regarding 
their identity.’ 

 
 
-Would it be helpful to show block-start tone related responses 
of DA? I suspect there may be no difference in DA activation 
between start of small reward block and large reward block 
(though they alternate and mice should be able to predict which 
block he will be in?). Is that true? Have the authors considered 
the meanings of this type of finding (or other types of block-
start effects)? A previous paper (Bromberg-Martin, 2010, Neuron) 
analyzed trial start activity and was able to show a more 
complex anticipatory role of DA neurons as animals (macaques) 
expected belief and value state changes (from long reward to 
long punishment states/blocks). Of note, those data seem highly 
relevant here.  
 
Response: We thank the Reviewer for this suggestion. We analyzed anticipatory licking 
and dopamine activity on sound presentation (Figure R9). Both showed some predictive 
change in block contingency: 
 

1) Mice tended to increase licking after the sound came on following a small block; 
2) At sound presentation, dopamine activity increased slightly following a small block 

and decreased following a big block. 
 
This activity on sound presentation (i.e. block start) suggests that mice expected a 
switch in contingency, however, when the odor came on for the first trial, they licked and 
their dopamine neurons fired as if that switch was not (or less) expected.  
 
This intricate pattern is indeed reminiscent of Ethan Bromberg-Martin and collaborators 
work in macaque monkeys, and is in line with what the Reviewer suggests as a more 
complex anticipatory role of dopamine neurons as animals expected belief and value 
state changes. 
 



 
 
We have added figure R8 as Supplementary Figure 3, and have made the following 
changes to the manuscript to refer to this block start activity: 
 
Results section, Page 6, Lines 96-106:  
 

‘Analysing the licking and dopamine activity at block start, when the sound comes on, 
mice appeared to increase licking following the small block s1 between sound offset and 
trial 1’s odor onset (during a fixed period of 3 seconds) (Supplementary Fig. 3 a, b). 
Although this was not sufficient to actually reverse the licking pattern on trial start, it 
likely contributed to the observed change in licking between trial 5 and 1 (Fig. 2b).  
Dopamine activity showed the opposite tendency, with decreasing activity following 
blocks s2 (Supplementary Fig. 3 c, d). This activity on block start indicated that mice 
partially predicted a change in contingency, following the task’s initial training structure 
(deterministic switch between blocks during the first 10 days). However this predictive 
activity did not override the effect of the previous block on dopamine activity on cue 



presentation as it was most similar to the activity on the preceding block’s last trial (Fig. 
2e).’ 
 

Discussion section, Page 12, Lines 237-241:  
 
‘Interestingly, both anticipatory licking and dopamine activity appeared to predict a 
switch in contingency upon block start. Although the amplitude of these pre-emptive 
changes were relatively small compared to responses to the odor cue and reward 
presentations, it indicated that the task structure influenced both behavior and dopamine 
activity, as had been previously shown in macaques29.’ 

 
-I don’t have experience with fiber photometry. So, one question 
that may be easy to answer but that arose in my reading of your 
paper (and that I have no online experience with) is whether the 
baseline of DA activity changes as the trials continue in a 
given block? This may be in Supplemental, or elsewhere, but I 
missed it. I think that would be worth reporting and on a very 
related note, more details about how you “normalize” (e.g. min-
max) would be helpful as well.  

 
Response: Thank you for pointing out the issue of baseline. Measuring baseline activity 
is not very easy with photometry due to technical limitations such as bleaching of 
calcium indicators. Therefore, it is difficult to make strong conclusions about the 
baseline firing across trials, and we prefer not to make inferences based on baseline 
signals in the present study. On the other hand, it is important to show that our main 
results are not affected by our estimates of baseline. To address this issue, we have 
tested 3 methods of baseline corrections: 
 
1) In the current manuscript (reproduced in Figure R9a), GCaMP activity is presented 
as the relative change in fluorescence, dF/F = (F-F0)/F0, where the baseline F0 is the 
mean fluorescence during a 1 s period before the odor presentation. With this correction, 
the fluorescence measured at each time point within a trial is corrected by the average 
fluorescence during a 1 sec period before odor presentation for that given trial. This is 
the activity illustrated in Figure 2d (notice how dF/F is at 0% over the first second before 
odor onset).  
 
2) We additionally tested baseline correction in which F0 is obtained from the 1 second 
period before block start, i.e. before odor onset (Figure R9b). With this correction, the 
fluorescence measured at each time point within a trial is corrected by the average 
fluorescence during a 1 sec period before sound presentation for that given block (i.e. 
over 5 consecutive trials). 



 
3) Finally, we tested a baseline correction in which F0 is defined as the median over a 
60 sec window (Figure R9c). With this correction, the fluorescence measured at each 
time point is corrected by the median fluorescence over a 60 sec period centred around 
the given time point. 
 
Two further normalizations were performed on the data, regardless of the baseline 
correction used: 
 
1) First, when analyzing the reward (US) response, since the CS response did not 
always go back to baseline before reward presentation, US responses were baseline-
corrected by subtracting the mean dF/F over the 100 ms period centered around US 
onset. This provided the measure for the actual change in activity at reward 
presentation. 
 
2) Second, because the amplitude of GCaMP signals varied across the different 
recording conditions (mostly between mice expressing GCaMP under transgenic vs viral 
construct, see Figure R1, upper panels), the data were further corrected through min-
max normalization for illustration purposes when plotting the summary data. We chose 
to normalize the signals from each individual mouse using trial 1's response as 
reference for the minimum and maximum values for the min-max normalization (y = (x-
mintrial1)/(maxtrial1-mintrial1)). This normalization corrects for the differences in amplitude 
across mice, while preserving the features observed in each recording condition, i.e. 
monotonicity in trial 1 and non-monotonicity in trial 2 (see Figure R1, lower panels). 
 



 
We observe the same patterns across baseline correction methods, supporting the fact 
that overall, our main conclusions are robust to distinct baseline correction methods, as 
well as normalization methods.  
 
Although we believe that photometry is limited in its ability to estimate baseline activity, 
we used the running median obtained from the third baseline correction method as a 
proxy to address whether there was a change in baseline across block types. Within 
each recording session, we analysed the difference between the mean median in small 
and big blocks (Figure R10). Over mice, we did not see a significant difference between 
the blocks median fluorescence activity, suggesting that baseline activity did not 
significantly differ across blocks. 



 
 
We now discuss the issues related to baseline analysis limitation in Methods and 
clarified the normalization applied. We also added Figure R9 as Supplementary Figure 
8. 
 
Methods section, Page 18, Line 366-395 : 
 

 ‘For GCaMP activity, we focused our analysis on the phasic responses. Indeed, a 
majority of previous work has shown reward prediction error-like signaling in the phasic 
responses of dopamine neurons and technical limitations such as bleaching limit our 
ability to monitor long-timescale changes in baseline using calcium imaging. 
Fluorescence data was acquired at 1 kHz. For each trial, the relative change in 
fluorescence, dF/F = (F-F0)/F0, was calculated by taking F0 to be the mean 
fluorescence during a 1 s period before the odor presentation, such that the fluorescence 
measured at each time point within a trial is corrected by the average fluorescence 
during the 1 sec period before odor presentation for that given trial. We further tested 
two additional baseline normalizations to verify that our conclusions were robust with 
regards to the baseline normalization method (Supplementary Figure 8): (1) using as F0 
the 1 second period before block start, i.e. before sound onset, such that the fluorescence 
measured at each time point within a trial is corrected by the average fluorescence 
during the 1 sec period before sound presentation for that given block (i.e. over 5 



consecutive trials); (2) using as F0 the median over a 60 sec window, such that the 
fluorescence measured at each time point is corrected by the median fluorescence over a 
60 sec period centred around that given time point. 
 Mean GCaMP activity during odor (CS) and reward (US) presentations was calculated 
for each trial as the mean activity during the 1 s period after event onset. Two further 
normalization were performed on the data, regardless of the baseline correction used: 
1) When analysing the reward (US) response, since the CS response did not always go 
back to baseline before reward presentation, US responses were baseline-corrected by 
subtracting the mean dF/F over the 100 ms period centred around US onset. This 
provided a measure for the actual change in activity at reward presentation. 
2) Since the absolute level of fluorescence was variable across mice that expressed 
GCaMP6f through viral injection or transgenetically (Supplementary Figure 4), for 
illustration purposes to summarize the data in one plot, each mouse’s mean US response 
across rewards was normalized by min-max normalization when pooled together. The 
normalization was performed within each mouse, using the given mouse’s trial 1 
response as reference for the minimum and maximum values for the min-max 
normalization such that y = (x - mintrial1)/(maxtrial1 - mintrial1)) (Fig. 2 b and e, 
Supplementary Fig. 5, Supplementary Fig. 6, Supplementary Fig. 7). Of note, the models 
were not fit on the normalized data. ’ 

 
Results section, Page 8, Lines 152-154:  
 

‘Lastly, the pattern of dopamine responses was observed independently of the baseline 
correction method we used, whether it was pre-trial, pre-block or using a running 
median as baseline (Supplementary Fig. 8).’ 

 
Minor concerns addressing style and clarity  
 
-Figure 1 – the authors state “then intermediate rewards are 
introduced”. This is a totally vague description of the crucial 
manipulation and does not give the clever design any credit. 
Please elaborate and describe the task in great detail in the 
legend (within the word limits of Nat. Com). 
 
Response: We thank the Reviewer for the kind remark regarding the design. We have 
corrected the legend: 
 

‘Figure 1. Task design to test the modulation of dopaminergic RPEs by state inference. 
a Mice are trained on two perceptually similar states only distinguished by their 
rewards: small (s1) or big (s2). The different trial types, each starting by the onset of a 
unique odor (conditioned stimulus, CS) predicting the delivery of sucrose (unconditioned 



stimulus, US), were presented in randomly alternating blocks of five identical trials. A 
tone indicated block start. Only one odor and one sound cue were used for all blocks, 
making the two states perceptually similar prior to reward delivery. To test for state 
inference influence on dopaminergic neuron signalling, we then introduced rare blocks 
with intermediate-sized rewards. b RPE across varying rewards computed using 
standard reinforcement learning (RL). Because the same odor preceded both reward 
sizes, a standard RL model with a single state would produce RPEs that increase linearly 
with reward magnitude. c Belief state b across varying rewards defined as the probability 
of being in s1 given the received reward. d RPE across varying rewards computed using 
the value of the belief state b. A non-monotonic pattern across increasing rewards is 
predicted when computing the prediction error on the belief state b.’ 

 
-Extended data Figures 2-3 are very important figures. I would 
suggest moving many of the panels from them to the main body of 
the manuscript.  
 
Response: Regarding Supplementary Figure 2, as mentioned above, we appreciate the 
interest for our control data, which was obtained in one mouse, replicating previous 
published data from our lab using electrophysiological recording from optogenetically-
identified dopamine neurons (Tian et al., 2015). Although fiber photometry data further 
extend these results, we feel that this is out of the scope of the present study and not 
sufficiently supported in terms of subject number to be in the main body of the 
manuscript. 
 
On the other hand, we agree that former Supplementary Figure 3 (the training data) can 
be part of the main manuscript and is now inserted in Figure 2.  
 
-Sentence on line 34 needs to be elaborated for clarity. It is a 
key point to the authors.  
-Line 55 of introduction – I would front load this so that the 
rest is easy and exciting to read. It may increase the “word 
count” but in Nature Communications this is less of an issue.  
 
Response: Thank you for these two suggestions. We have modified the introduction 
accordingly: 
 
Introduction section, Page 3, Line 30-42 :  
 

‘Normative theories propose that animals represent their state uncertainty as a 
probability distribution or “belief state”1–4 providing a probabilistic estimate of the true 
state of the environment based on the current sensory information. Specifically, optimal 



state inference as stipulated by Bayes’ rule computes a probability distribution over 
states (the belief state) conditional on the available sensory information. Such 
probabilistic beliefs about the current’s state identity can be used to compute reward 
predictions by averaging the state-specific reward predictions weighted by the 
corresponding probabilities. Similarly to the way reinforcement learning (RL) algorithms 
update values of observable states using reward prediction errors, state-specific 
predictions of ambiguous states can also be updated by distributing the prediction error 
across states in proportion to their probability. This leads to the hypothesis that 
dopamine activity should reflect prediction errors computed on belief states. However, 
direct evidence for this hypothesis remains elusive. Here we examined how dopamine 
RPEs and subsequent learning are regulated under state uncertainty.’ 

 
 



Reviewers' comments:  
 
Reviewer #1 (Remarks to the Author):  
 
The authors tried to address my concerns through data reanalysis and clarification. Now their model 
matches better with the experimental data using the new normalization method. By clarification, the 
authors also resolved some of my prior minor concerns (e.g., minor concerns 2 & 3). However, most 
of my prior main concerns have not been satisfactorily addressed.  
 
I had noted that the authors pooled data from 11 mice with different GCaMP expression levels 
(transgenic mice or viral expression) and recording sites (the VTA or the striatum). The response 
amplitudes were very variable between soma recordings and terminal recordings and even within the 
two terminal recording experiments. Moreover, the authors did not carry out necessary GFP control. 
Because the entire argument was based on this thin set of experimental data, I had asked the authors 
to “perform the experiments more rigorously”. The authors responded by stating that the experiments 
would take too long, although it is clear that all experiments had been feasible from their initial 
submission and new recordings would have been done within the revision period.  
 
Similarly, in the revision the authors used data from other studies to examine the relation between 
Ca2+ signals and neuronal spiking. They concluded that these data “support relatively linear 
relationship between spikes and photometry signals”. The data quality shown in Figure R2a and R2b 
(others data) are much higher than what the authors presented in their own study. Therefore, their 
argument is not very convincing unless they provide data of similar quality. Overall, I feel very 
uncomfortable to do deep data analysis and model fitting without proper quality control of the 
experimental data.  
 
Minor concerns.  
(1) I am pleased to see that the model fits better with the re-normalized data for all trials (from 1 to 
5). However, I am quite confused by the statement “Of note, the models were not fit on the 
normalized data.”  
 
(2) The authors “chose to quantify GCaMP responses as the average activity over 1 second following 
reward presentation (equivalent to the area under the curve)”. They focused their “analysis on the 
phasic responses”, although it remains unclear whether the average activity accurately reports the 
phasic response. The peak GCaMP6 response amplitude may reflect the phasic response more 
accurately than the average activity. I recommend the authors to reanalyze their data using peak 
responses, investigate whether the model fits or not, and compare the difference between the two 
different analysis methods.  
 
 
 
Reviewer #2 (Remarks to the Author):  
 
The authors did a fantastic job responding to my comments. I now believe this paper should be 
published in Nature Communications.  
I do believe that with time and appropriate studies, such as this, we will come to an important "point" 
in research, at which we will have to speak to the following issue: many different neuromodulatory 
neurons signal "RPE-like" signals, have common projections, and also signal other parameters related 
to beliefs and sensory events (such as rewards, which also modulate value estimates). What really are 
differences and similarities between modulatory systems? What do they do at the synaptic level? etc.  
I think this paper will sit nicely in this evolution and provide important information.  



Point-by-point response 
 
In the following, the reviewers’ comments are in slab-serif font (Courier 
New), our response appears in sans-serif font (Arial) and text from the revised 
manuscript and previous publications appear in italic. 
 
 
Reviewer #1 (Remarks to the Author): 
The authors tried to address my concerns through data 
reanalysis and clarification. Now their model matches 
better with the experimental data using the new 
normalization method. By clarification, the authors also 
resolved some of my prior minor concerns (e.g., minor 
concerns 2 & 3).  
 
Response: We thank the Reviewer for these comments. 
 
However, most of my prior main concerns have not been 
satisfactorily addressed.  
 
I had noted that the authors pooled data from 11 mice 
with different GCaMP expression levels (transgenic mice 
or viral expression) and recording sites (the VTA or the 
striatum). The response amplitudes were very variable 
between soma recordings and terminal recordings and even 
within the two terminal recording experiments. Moreover, 
the authors did not carry out necessary GFP control. 
Because the entire argument was based on this thin set of 
experimental data, I had asked the authors to “perform 
the experiments more rigorously”. The authors responded 
by stating that the experiments would take too long, 
although it is clear that all experiments had been 
feasible from their initial submission and new recordings 
would have been done within the revision period.  
 
Response: The reviewer here brings up two points: (1) pooling data from 
mice with different recording strategies and (2) GFP controls. 
 
Regarding point (1), we wish to clarify that our main conclusions are based on 
two data sets (n = 5 and n = 4 mice). We additionally obtained another data 
set from 2 animals. The imaging methods differed slightly between these 
three data sets, yet similar results were obtained in each condition except 
for fully expected differences in signal intensity (Supplementary Figure 5, e.g. 
transgenic vs virus expression levels). Each animal performed many trials 
(1650 ± 235 trials) over several experimental sessions, and 170 ± 25 trials of 
probe trials were obtained from each animal. In this type of experiment, given 
that we are measuring calcium signals in many trials per animal, sample sizes 
of 4 and 5 animals are not small. Importantly, these three recording conditions 
exhibited the same response patterns, both at the group level (see 



Supplementary Figure 5, reproduced below) and, most importantly, at the 
individual level (see Supplementary Figure 7d, reproduced below).  
 
Note that in all cases we used the same calcium reporter, GCaMP6f (Chen 
et al. 2013). Regarding the difference in expression strategy, the direct 
consequence is a difference in signal intensity: transgenic expression levels 
are lower than with viral vectors. Regarding the difference in recording site 
(cell body vs terminals), we have previously published that distinct 
dopaminergic neurons encode prediction errors differently based on their 
projection site (Menegas et al, 2017). In this paper, our aim was to record 
from the population, which signals the canonical reward prediction error, i.e. 
the medial VTA population projecting to the ventral striatum. We here targeted 
the same or highly overlapping population, either recording the cell bodies or 
the terminals. It was thus expected that we would observe the same pattern. 
By performing the recordings at these two sites, we were able to verify this 
hypothesis, as well as reject the hypothesis about potential differential 
modulation of activity at cell bodies versus terminals in our task.  
 
We recognize that, to the best of our knowledge, no study has performed 
recordings in different settings with the final aim of pooling the data, since this 
strategy is usually pursued in studies aiming at unravelling functional 
differences (e.g. Lerner et al. 2015, Parker et al. 2016, Menegas et al. 2017). 
In our case we interpret this as a sign of robustness of the modulation of 
canonical dopaminergic prediction error by belief states. 
 
Importantly, our model fitting, which allows us to test the hypothesis of belief 
state modulation of the dopaminergic activity, was performed on each mouse 
individually (point further addressed in Reviewer 1’s first minor comment). 
Hence no pooling across recording conditions was involved in the model 
fitting. Although we do not believe the pooling of the data would affect the 
model fits given that the non-monotonic pattern is observed across all mice, 
this concern here is unwarranted since models were fit individually. 
 
We thus have in total 11 animals, which exhibit the same pattern, 
whether we record from viral or transgenic expression or cell bodies or 
terminals. 11 is more than a standard sample size in similar experiments 
(Lerner et al. 2015, Parker et al. 2016, Matias et al., 2017) and we believe the 
existing data sufficiently supports our conclusions.  Please note also that all of 
our main conclusions are supported by statistical analyses. 
 
 



 
 
Supplementary Figure 5. Dopamine responses on trials 1 and 2 plotted separately 
based on recording conditions. a, d Dopamine responses in mice expressing 
transgenetically GCaMP6f in DAT-positive neurons and recorded from VTA cell 
bodies (n = 5). b, e Dopamine responses in mice expressing GCaMP6f through a 
viral construct in DAT-positive neurons and recorded from VTA cell bodies (n = 2). c, 
f Dopamine responses in mice expressing GCaMP6f through a viral construct in 
DAT-positive neurons and recorded from dopamine neuron terminals in the ventral 
striatum (n = 4). The upper row (a - c) shows the average across mice, while the 
lower row (d - f) shows the same average after normalizing within mice through min-
max normalization using trial 1's response as reference for the minimum and 
maximum values. This normalization corrects for the different amplitudes in GCaMP 
signals across the different recording conditions, but preserves the features observed 
in each recording condition. Note that the monotonicity and non-monotonicity of the 
responses in trials 1 and 2, respectively, are observed in each recording condition (a 
- c). Data represents mean ± s.e.m. 
 

 
Supplementary Figure 7. d Examples of individual dopamine responses across 
trials. Data represents mean ± s.e.m. 
 
(2) With respect to GFP controls, we have previously reported that motion 
artefacts are almost none and negligible in our experimental conditions using 



head-fixed preparations in mice (Menegas et al., 2017). Indeed using a set-up 
with 473 nm and 561 nm lasers to deliver light to excite respectively GFP and 
tdTomato reporters, we observed large responses to unpredicted reward in 
GCaMP, but not tdTomato, signals (Menegas et al., 2017). Because the 
present study uses essentially the same head-fixation, task, and imaging 
system, we do not expect that this is an issue. Furthermore, it is not trivial to 
obtain the non-monotonic response functions observed in the present study. 
Indeed, the main cause of motion artefact in head-fixed settings, licking, tends 
to monotonically increase as a function of presented reward sizes, rather than 
exhibiting a non-monotonic (s-shaped) modulation (see Figure R1).  
 

 
 
Similarly, in the revision the authors used data from 
other studies to examine the relation between Ca2+ 
signals and neuronal spiking. They concluded that these 
data “support relatively linear relationship between 
spikes and photometry signals”. The data quality shown in 
Figure R2a and R2b (others data) are much higher than 
what the authors presented in their own study. Therefore, 
their argument is not very convincing unless they provide 
data of similar quality. Overall, I feel very 



uncomfortable to do deep data analysis and model fitting 
without proper quality control of the experimental data.  
 
Response: The linearity of photometry signals is justified using our 
unpublished data in the rebuttal (Figure R3). Importantly, even in the low dF/F 
regime, firing rate and photometry signals show a similar trend. This data is 
from a different manuscript, which is currently under review in a different 
journal. We therefore cannot use this data set in the current manuscript.  
 
[Redacted] 
 
Yet Reviewer 1 states that ‘the data quality shown in Figure R2a and R2b 
(others data) are much higher than what the authors presented in their own 
study’. However, this claim is not justified. The smaller signal intensity in the 
present study was mainly because the data shown in the rebuttal figures is 
from unexpected reward responses. In the present study, we plotted the 
reward responses when the reward was expected. Therefore, the magnitudes 
of reward responses are expected to be small compared to unexpected 
reward – the very characteristic of reward prediction error responses.  
 
Nonetheless, addressing the Reviewer’s concern about data quality, we can 
compare responses obtained in mice from this current study to the data 
presented in the Figure R3, comparing the activity in similar conditions, i.e. 
ventral striatum dopamine neuron terminals with viral expression responses to 
unexpected delivery of similar sized reward. Note that the absolute intensity of 
signals varies by various factors not related to signal-to-noise ratio. To 
emphasize the reliability of signals, we here plotted the data from the two 
studies using z-scores. We observe a similar pattern (Figure R4), indicating 
the similar signal reliabilities across the studies. Therefore, there is no reason 
to believe that the data in the current study is noisier or less reliable. 
 

 
Minor concerns.  
(1) I am pleased to see that the model fits better with 
the re-normalized data for all trials (from 1 to 5). 



However, I am quite confused by the statement “Of note, 
the models were not fit on the normalized data.” 
 
Response: Reviewer 1 refers to the Methods section, where we detailed the 
min-max normalization we employed (copied below). As mentioned in the 
methods section, this min-max normalization’s sole use is for illustration 
purposes to summarize the data across mice in one plot. Following Reviewer 
1’s initial suggestion, we indeed modified this normalization by using trial 1's 
response as reference for the minimum and maximum values (i.e. y = (x-
mintrial1)/(maxtrial1-mintrial1)), instead of our originally misguided normalization 
performed independently for each trial, which prevented us from visualizing 
amplitude changes across trials. Yet, since the models are fit on each mouse 
individually, there is no need to min-max normalize the data since the GCaMP 
activity within mice is constant. We pointed out at the end of the Methods 
section on normalization that “the models were not fit on the normalized data.” 
to clearly specify want data was used for the model fitting. We wish to keep 
this sentence but acknowledge it may have been confusing. The following 
correction will hopefully make this point clearer: ‘Of note, the models were not fit 
on the min-max normalized data but directly on mice’s individual baseline-
corrected GCaMP activity. ’ 
 

Since the absolute level of fluorescence was variable across mice that 
expressed GCaMP6f through viral injection or transgenetically 
(Supplementary Figure 4), for illustration purposes to summarize the data 
in one plot, each mouse’s mean US response across rewards was normalized 
by min-max normalization when pooled together. The normalization was 
performed within each mouse, using the given mouse’s trial 1 response as 
reference for the minimum and maximum values for the min-max 
normalization such that y = (x - mintrial1)/(maxtrial1 - mintrial1)) (Fig. 2 b and 
e, Supplementary Fig. 5, Supplementary Fig. 6, Supplementary Fig. 7). Of 
note, the models were not fit on the min-max normalized data but directly 
on mice’s individual baseline-corrected GCaMP activity. ’ 

 
 
 
(2) The authors “chose to quantify GCaMP responses as the 
average activity over 1 second following reward 
presentation (equivalent to the area under the curve)”. 
They focused their “analysis on the phasic responses”, 
although it remains unclear whether the average activity 
accurately reports the phasic response. The peak GCaMP6 
response amplitude may reflect the phasic response more 
accurately than the average activity. I recommend the 
authors to reanalyze their data using peak responses, 
investigate whether the model fits or not, and compare 
the difference between the two different analysis methods. 
 



Response: We reproduced our data analysis and model fitting to the peak 
GCaMP response and verified that the results obtained were similar (Figure 
R5 and Table R1). We now include this analysis in our manuscript as 
Supplementary Figure 6 and Supplementary Table 2, and modified the results 
sections to include references to this analysis. 
 

‘Similar results were obtained when measuring the peak response following 
reward presentation instead of the average activity over 1 second 
(Supplementary Fig. 6, a - g).’ 
 
‘Bayesian information criterion (BIC) and random-effects model 
selection21,22 computed on each of the six models fit to individual mice’s 
dopamine activity both favoured the RL model with belief states with two 
initial free priors over other models, in particular over the standard RL 
model with two free initial values (Supplementary Table 1; Supplementary 
Fig. 8c). Similar results were obtained when fitting the peak GCaMP 
response after reward presentation (Supplementary Table 2; 
Supplementary Fig. 6h).’ 



 
 



Table R1. Best-fitting parameter estimates shown as mean across mice and 
model comparison on peak GCaMP response. Bayesian information criterion 
(BIC) and exceedance probabilities (Stephan et al. 2009; Rigoux et al., 2014) both 
favoured the RL model with belief states with two initial free priors over other 
models. The best values are highlighted in bold.  

Reviewer #2 (Remarks to the Author): 
The authors did a fantastic job responding to my comments. 
I now believe this paper should be published in Nature 
Communications.  

I do believe that with time and appropriate studies, such 
as this, we will come to an important "point" in research, 
at which we will have to speak to the following issue: 
many different neuromodulatory neurons signal "RPE-like" 
signals, have common projections, and also signal other 
parameters related to beliefs and sensory events (such as 
rewards, which also modulate value estimates). What 
really are differences and similarities between 
modulatory systems? What do they do at the synaptic 
level? etc. 



 
I think this paper will sit nicely in this evolution and 
provide important information. 
 
We thank the Reviewer for their comment and appreciation of the contribution 
of our work to the field. 



Reviewers' comments:  
 
Reviewer #4 (Remarks to the Author):  
 
This paper measures how RPE represented by DA neurons varies as a function of reward size, in a 
paradigm where the mouse is trained to expect some rewards (1 or 10 uL), but not others (values in 
between 1 and 10uL). The general aim is then to infer from the shape of this function whether the DA 
signal reflect “prediction error computed on belief states.  
 
I found this general aim conceptually interesting, though somewhat semantic (is it really important to 
distinguish between “prediction” and “belief” ? These terms seem synonymous. No strong case is 
made in the paper why it is important to make this distinction, either for the animal or for artificial RL 
agents). 
 
The techniques used were also appropriate for addressing this aim.  
 
Major:  
The author’s main argument seems to be largely based on this assumption:  
“Because the same odor preceded both reward sizes, a  
standard RL model with a single state would produce RPEs that increase linearly with reward 
magnitude”  
I do not understand how this assumption (illustrated in fig. 1b) is justified:  
It seems that the authors train the mice to expect, in response to oder cue, EITHER 1 uL OR 10 uL. 
The classic RL theory would then predict that the RPE for either of these rewards should be low.  
Then the intermediate-sized rewards should produce an RPE that is mostly higher than the latter (1 or 
10 uL) RPE. This is largely what the authors find in Fig. 3g. So the results are not substantially 
different from simple predictions of classic RL theory, and thus it is not clear if the authors found 
anything new.  
Unless the authors better explain/justify fig. 1b, i.e. why they expect one expected reward (1uL) to 
have a lower RPE than another equally expected reward (10 uL), the logic of the paper makes no 
sense to me.  
 
Minor:  
The experimental data do not really resemble the authors' prediction in fig. 1d: the DA signal in Fig. 3 
never dips below 0 (but 1d does). So the data do not really match the prediction, except in the trivial 
(“non-monotonic”) sense. This should be better discussed.  



Point-by-point response 
 

We would like to thank Reviewer #4 for her/his comments, which we address 
below by point-by-point response as well as in the accompanying manuscript. 
In the following, the reviewer’s comments are in slab-serif font (Courier 
New), our response appears in sans-serif font (Arial) and text from the revised 
manuscript appear in italic. 
 
Reviewer #4 (Remarks to the Author) 
This paper measures how RPE represented by DA neurons 
varies as a function of reward size, in a paradigm where 
the mouse is trained to expect some rewards (1 or 10 uL), 
but not others (values in between 1 and 10uL). The 
general aim is then to infer from the shape of this 
function whether the DA signal reflect “prediction error 
computed on belief states. 
I found this general aim conceptually interesting, though 
somewhat semantic (is it really important to distinguish 
between “prediction” and “belief”? These terms seem 
synonymous. No strong case is made in the paper why it is 
important to make this distinction, either for the animal 
or for artificial RL agents). 
 
Response:  

Thank you for pointing this out. We here wish to clarify what we mean 
by ‘prediction’ and ‘belief’.  

 
(1) We use the terms, 'reward prediction' and 'belief state’ as 

commonly used in the reinforcement learning field. The former refers to 
estimating a reward (in our case, reward size specifically), which can be done 
from any given state. The latter refers to inferring the likelihood of being in a 
certain state based on ambiguous stimuli.  

The difference between belief and prediction is thus not semantic. They 
formally refer to two distinct non-overlapping processes: learning an accurate 
state representation (in this case either a standard RL sensory-defined state 
or a Bayesian belief state), then using the state representation to predict 
rewards.   
 

(2) As the reviewer indicates, in our paradigm, because reward amount 
defines states, reward prediction and belief state are correlated. However, we 
can still make meaningful theoretical distinctions. Indeed we explored and 
tested several different models, which made qualitatively different predictions, 
and we provide clear support for one of them only. 

 



(3) Importantly, the main point of our work is not to distinguish neural 
correlates of prediction versus belief. As further detailed in our response to 
the major point, the main distinction between conventional and novel classes 
of models is the following: the conventional model does not have distinct 
states corresponding to the small and large reward states, and reward 
prediction is based on the cached value learned directly from experienced 
reward, whereas the belief state model has distinct states corresponding to 
the small and large reward states. In the latter case, the animal or agent uses 
ambiguous information to infer which state it is in, and predicts reward based 
on this inferred state (the belief state).   
 
To clarify these points, we have revised the manuscript.  
  
Introduction section, page 3, line 26-44: 

 
‘Dopamine neurons are thought to report a reward prediction error (RPE, 
or the discrepancy between observed and predicted reward) that drives 
updating of predictions1–5. In reinforcement learning (RL) theories, future 
reward is predicted based on the current state of the environment6. 
Although many studies have assumed that the animal has a perfect 
knowledge about the current state, in many situations the information 
needed to determine what state the animal occupies is not directly 
available. […] Similarly to the way RL algorithms update values of 
observable states using reward prediction errors, state-specific predictions 
of ambiguous states can also be updated by distributing the prediction error 
across states in proportion to their probability. Simply put, standard RL 
algorithms compute reward prediction on observable states, but under state 
uncertainty reward predictions should normatively be computed on belief 
states, which correspond to the probability of being in a given state. This 
leads to the hypothesis that dopamine activity should reflect prediction 
errors computed on belief states.’ 
 

Results section, page 5, line 84-92: 
 
In our paradigm, because reward amount defines states, reward prediction 
and belief state are closely related. Yet with the same reward amount, 
standard RL and belief state RL make qualitatively different predictions 
(Fig. 1b vs Fig. 1d). The main distinction between both classes of models is 
the following: the standard RL model does not have distinct states 
corresponding to the small and large reward states, and reward prediction 
is based on the cached value learned directly from experienced reward, 
whereas the belief state model has distinct states corresponding to the small 
and large reward states (Supplementary Fig. 1, left column). In the latter 



case, the animal or agent uses ambiguous information to infer which state it 
is in, and predicts reward based on this inferred state (i.e. belief state).   

 
The techniques used were also appropriate for addressing 
this aim. 
 
Major: 
The author’s main argument seems to be largely based on 
this assumption: “Because the same odor preceded both 
reward sizes, a standard RL model with a single state 
would produce RPEs that increase linearly with reward 
magnitude” 
I do not understand how this assumption (illustrated in 
fig. 1b) is justified: It seems that the authors train 
the mice to expect, in response to oder cue, EITHER 1 uL 
OR 10 uL. The classic RL theory would then predict that 
the RPE for either of these rewards should be low. Then 
the intermediate-sized rewards should produce an RPE that 
is mostly higher than the latter (1 or 10 uL) RPE. This 
is largely what the authors find in Fig. 3g. So the 
results are not substantially different from simple 
predictions of classic RL theory, and thus it is not 
clear if the authors found anything new. Unless the 
authors better explain/justify fig. 1b, i.e. why they 
expect one expected reward (1uL) to have a lower RPE than 
another equally expected reward (10 uL), the logic of the 
paper makes no sense to me. 
 
Response:  

What we are calling “standard RL” corresponds to the assumption that 
the state corresponds to the cue, which is the same for all trials. As noted by 
the reviewer, we trained the mice to expect either 1 μL or 10 μL, following an 
odor cue. Crucially, we only present one odor to the mice. Thus, at each trial 
start, the set of sensory inputs is identical, regardless of the amount of reward 
delivered. Under the ‘cue = state’ assumption (standard in the RL 
neuroscience literature), separate values cannot be learned for different 
reward amounts. Therefore, depending on the recent history, the value of the 
state will be either low or high. Importantly, this state value will be used as a 
reference point when mice are presented with an intermediate reward. The 
comparison between any intermediate reward and a unique value of the state 
will result in a monotonically increasing RPE. Keep in mind that these are 
signed prediction errors, so some will be negative and some will be positive, 
but the function will always be monotonic in reward. In other words, the actual 



value of the state will affect the intercept of the linear RPE response, but not 
its monotonicity.  

In Fig. 1b and Supp. Fig 1a, we illustrated our prediction with a state of 
average value 0.5 (on a scale between 0 and 1, this would be equivalent to 
4.5 μL).  

Since we noticed that mice pre-emptively anticipated a switch in reward 
size at block transition (Fig. 2b, a feature likely resulting from the early 
reversal training regime), we additionally considered a situation where the 
state may rapidly update its value at block start based on the previous block. 
In practice, we implemented this by allowing a different initial value for the 
state at block start depending on the previous block. This also illustrates the 
effect of the state’s value on the intercept. Importantly, it also results in a 
monotonically increasing RPE, since, here again, all intermediate rewards are 
being compared to one value. 

 
Now our critical theoretical development here is to introduce belief 

states. Since the sensory inputs are identical, and do not allow distinguishing 
the small reward from the big one upon odor presentation, a proposed 
strategy to solve the uncertainty inherently tied to the unique odor is by 
computing a belief about the current state’s identity. Following the Bayesian 
framework, this belief is proportional to the product of the likelihood of the 
current sensory inputs ( ) by the prior about the likelihood of the 

occurrence of a given state ( ). This model explicitly assumed the 
existence of multiple states distinguished by their reward distributions, since 
the likelihood 

 
was defined as a normal distribution over 

rewards r, centred on the average reward normally obtained in either the 
small or the big state ( ), with a sensory noise variance . Thus, in spite of 
identical sensory inputs, prior experience allows probabilistically distinguishing 
several states (one associated to 1 μL and one to 10 μL). If mice or agents 
rely on a multi-state representation, they now have two reference points to 
compare the intermediate rewards to, leading to a non-monotonic reward 
prediction error pattern (Fig. 1d and Supplementary Fig. 1 c-e). Indeed, 
intermediate rewards closer to the small reward are more likely to be 
compared to it, whereas intermediate rewards closer to the big one are more 
likely to be compared to it. 

 Note that this non-monotocity also holds if we allow for an additional 
belief state (Supplementary Fig. 1f).  

 
RPE monotonicity is a consequence of a unique state representation, 

whereas RPE non-monotonicity results from a multi-state representation. 
Crucially, our use of a unique odor cue is what allows distinguishing 



predictions from a standard RL theory from a belief-state based RL. Our 
results are thus different from simple predictions of standard RL theory. 
 
Results section, page 4-5, line 65-77: 
 

To test for state inference influence on dopaminergic neuron signalling, we 
then introduced rare blocks with intermediate-sized rewards. Because the 
same odor preceded both reward sizes, a standard RL model with a single 
state (corresponding to the odor) would produce RPEs that increase 
linearly with reward magnitude (Fig. 1b, Supplementary Fig. 1a)10,11. This 
prediction follows from the fact that the single state’s value will reflect the 
average reward across blocks, and RPEs are equal to the observed reward 
relative to this average reward value. The actual value of the state will 
affect the intercept of the linear RPE response, but not its monotonicity. In 
Fig. 1b and Supp. Fig 1a, we illustrated our prediction with a state st of 
average value 0.5 (on a scale between 0 and 1, which would be equivalent to 
4.5 μL).  
 
A strikingly different pattern is predicted by an RL model that uses state 
inference to compute reward expectations. Optimal state inference is 
stipulated by Bayes’ rule, which computes a probability distribution over 
states (the belief state) conditional on the available sensory information. 
This model explicitly assumes the existence of multiple states distinguished 
by their reward distributions (see methods). Thus, in spite of identical 
sensory inputs, prior experience allows to probabilistically distinguish 
several states (one associated to 1 μL and one to 10 μL). If mice rely on a 
multi-state representation, they now have two reference points to compare 
the intermediate rewards to. Upon the introduction of new intermediate 
rewards, the probability of being in the state s1 would be high for small 
water amounts and low for large water amounts (Fig. 1c). The subsequent 
reward expectation would then be a probability-weighted combination of 
the expectations for s1 and s2. Consequently, smaller intermediate rewards 
would be better than the expected small reward (a positive prediction 
error) and bigger intermediate rewards would be worse than the expected 
big reward (a negative prediction error), resulting in a non-monotonic 
pattern of RPEs across intermediate rewards (Fig. 1d, Supplementary Fig. 
1c).  

 
Minor: 
The experimental data do not really resemble the authors' 
prediction in fig. 1d: the DA signal in Fig. 3 never dips 
below 0 (but 1d does). So the data do not really match 



the prediction, except in the trivial (“non-monotonic”) 
sense. This should be better discussed. 
 
Response:  

Theoretically, a fully expected reward does not elicit a prediction error. 
Correspondingly, in 1997, Schultz and colleagues showed no change in 
dopamine neuron firing when their monkeys fully expected reward 1 second 
after the onset of the presentation of the predicting cue. Yet following studies 
in monkeys by Schultz and collaborators have repeatedly shown a response 
to expected reward when the reward was delivered over 2 seconds after cue 
onset (e.g. Fiorillo et al. 1998. Note that here we also have 2 seconds). 
Moreover, studies performed in mice in the Uchida lab and other labs 
(Geoffrey Schoenbaum, Ilana Wittten) also show this persistent positive 
response. Additionally to the effect of longer inter-stimulus interval (ISI), 
rodent studies using odors as timing onset cues do not allow a tight control 
between the onset of the sensory response to the cue, since it depends on 
when the first sniff occurs after odor onset. This small jitter in timing limits the 
full predictability of the reward delivery timing.  

Because of these two factors (long ISI and sniff related timing jitter), we 
expected our dopamine reward responses to be generally shifted above 0 
(note however that some responses did drop below 0 in some mice, see for 
example Supplementary Figure 8d, Mouse 4’s trial 2). This was accounted for 
in our modelling by fitting a coefficient , which mapped theoretical prediction 
errors linearly to the measured dopamine response (i.e., the GCaMP signal) 
(Methods section line 457). Importantly, this does not change our prediction, 
which critically relies on the non-monotonicity of the dopamine response 
across increasing rewards. 

 
Methods section, page 23, line 479-484: 
 

All belief state models had a minimum of three free parameters: the 
learning rate , the sensory noise variance , and a coefficient , which 
mapped theoretical prediction errors linearly to the measured dopamine 
response (i.e., the GCaMP signal). Indeed, because of a relatively long delay 
between odor onset and reward delivery (2 seconds), as well as timing jitter 
resulting from when mice first sniff after odor onset, we expected our 
dopamine reward responses to be generally shifted above 03,4,55. This was 
accounted for by fitting . 
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