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Materials and Methods 

Clinical samples 

Insulinomas were diagnosed by clinical hypoglycemia symptoms, blood insulin and 

glucose levels (prolonged oral glucose tolerance test), computed tomography/positron 

emission tomography computed tomography imaging of patients and pathological diagnosis of 

surgical removal tumor, Cushing’s disease and ACTH-secreting pituitary adenomas subtypes, 

pheochromocytoma and paraganglioma, aldosterone-producing adenomas were diagnosed 

according to clinical features, drug history, hormones tests, CT/MRI imaging and 

pathological diagnosis of surgical removal tumor. Genomic DNA was obtained from matched 

frozen tumor and blood samples in the endocrine-related tumor bank of Shanghai Key 

Laboratory for Endocrine Tumors. DNA was prepared with QIAGEN DNeasy Blood & Tissue 

Kit. Informed consent was obtained from all study participants. All the protocols were 

approved by the Rui-Jin Hospital Ethics Committee, Shanghai Jiao Tong University School 

of Medicine. 

 

Whole-exome sequencing (WES) and targeted deep sequencing (TDS) 

The qualified genomic DNA from tumor and matched peripheral blood from tumors were 

fragmented by Covaris technology, and then adapters were ligated to both ends of the 

fragments. Extracted DNA was then amplified by ligation-mediated PCR, purified and 

hybridized to human exome array for enrichment, non-hybridized fragments were then washed 

out. Whole exome sequencing were performed for Insulinomas with NimbleGenEZ 44M kit, 

as pheochromocytomas, paraganglioma and pituitary adenomas with Agilent SureSelect 

Human All Exon v4 (51 Mb) kit. Target deep sequencing were performed for aldosterone-

producing adenomas with NET panel of NimbleGen SeqCap EZ Designs. 



 

    Each captured library was then loaded on Hiseq2000 platform, and we performed high- 

throughput sequencing for each captured library independently to ensure that each sample 

meet the desired average fold-coverage. Raw image files were processed by Illumina base 

calling Software 1.7 for base calling with default parameters and the sequences of each 

individual were generated as 90 bp paired-end reads. 

    INSs, CDs and APAs were pooled and sequenced in Beijing Genomics Institute at 

Shenzhen, as PCC/PGLs in CapitalBio Corporation (Beijing, China). 

 

Reads Mapping and Variation Detection 

After removing reads containing sequencing adapters and low-quality reads with more 

than five unknown bases, high-quality reads were aligned to the NCBI human reference 

genome (hg19) using Burrows-Wheeler Aligner (v0.5.9)11 with default parameters. Picard 

(v1.54)12 was employed to mark duplicates and followed by Genome Analysis Toolkit 

(v1.0.6076, GATK IndelRealigner)13 to improve alignment accuracy. 

Somatic SNVs were detected by VarScan2.2.514 based on BWA align algorithm and high 

confident somatic SNVs were called if the following criteria were met: (I) both the tumor 

and normal samples should be covered sufficiently (≥ 10×) at the genomic position; (II) the 

variants should be supported by at least 10% (5% for pituitary adenomas due to low purity) 

of the total reads in the tumor while less than 2% in the normal; (III) the variants should be 

supported by at least three reads in the tumor; (IV) distance between adjacent somatic SNVs 

distance should be over 10 bp; (V) mapping qualities of reads supporting mutant allele in 

tumor should be significantly higher than 30 (Wilcoxon rank sum test, P < 0.2); (VI) base 

qualities of reads supporting mutant allele in tumor should be significantly higher than 20 

(Wilcoxon rank sum test, P < 0.05); (VII) mutations should not be enriched within 5 bp 5’ or 



 

3’ of read end (Wilcoxon rank sum test, P < 0.1); (VIII) mutant allele frequency changes 

between tumor and blood should be statistically significant (Fisher’s exact test, P < 0.05). 

High confident somatic insertions and deletions (InDels) were called using the following 

steps: (I) candidate somatic InDels were predicted with GATK SomaticIndel Detector with 

default parameters; (II) for each predicted somatic indel, local realignment was performed 

with combined normal and tumor bam files; (III) frequent of variant reads less than 10% 

were filtered out. (IV) high confident somatic InDels were defined after filtering germline 

events. 

 

Standardization and tracking of mutation data from 21 neuroendocrine tumors 

In total, we collected mutations of 21 types of from 38 NGS projects10, 15-40. To make our 

data analysis more reliable, we established our data collection criteria as follows: (1) 

Metastasis samples were removed; (2) Tumor samples from same patients were removed; (3) 

Familial samples were removed. 

Finally, all mutations were re-annotated by in-house annotation software based on snpeff41-44. 

To remove common sequencing artefacts or residual germline variation, each mutation was 

subjected to dbSNP database45, and a ‘Panel of Normal’ filtering process using a panel of over 

600 BAM files from 600 whole-exome sequencing or whole-genome sequencing normal 

samples at BGI-Shenzhen. Mutations observed in dbSNP or more than 1% in the panel of 

normal were removed. 

 

Candidate driver genes analysis 

We divided 512 samples from 14 types of benign tumor as combined benign set and 591 

samples from 8 types of malignant tumors as combined malignant set in this project, 

because of the significant difference of mutation background between them. Candidate driver



 

genes of 21 NETs were identified in combined benign set, combined malignant set, combined 

organ set (adrenal, gastrointestinal, pituitary and thyroid) and individual tumor types. 

    Candidate driver genes were defined after two steps. In the first step, we selected genes 

that were significantly mutated than the background using MuSiC46 package (FDR <= 0.2, 

Likelihood Ratio Test) in combined benign set, combined malignant set and individual 

tumor types. Furthermore, we performed an independent significant analysis that was 

restricted to events in genes that presented in Cancer Gene Census47. In the second step, 

genes met conditions as follows were filtered: (1) Mutation number less than 1% in sets; (2) 

Deleterious mutation rate less than 50%, deleterious mutations included mutations that were 

predicted to be deleterious by either SIFT48 or PolyPhen-249, mutations in splicing region, 

and InDels in coding regions as well; (3) Genes that were low expressed or typically 

expressed in individual human tissue (log2 (RMA) > 5, from BioGPS50). Additionally, we 

manually added known driver genes from literature. 

 

GO enrichment analysis 

Significant molecular function GO term of 86 candidate driver genes were enriched 

using DAVID (https://david.ncifcrf.gov/). 

 

Tumor specificity analysis 

We calculate standard Z-score to make quantitative inferences as to the number of 

tumor types with which an individual gene or cellular process associates. The frequency of 

gene or cellular process was converted to a Z-score based on the descriptive statistics 

(mean and standard deviation) of the distribution in tumors. 

 

Mutation VAF analysis 



 

We computed the VAFs of somatic mutations in 86 candidate driver genes. Only 

mutation sites having > 100× coverage and candidate driver genes having at least 3 

mutations were included in downstream analyses. 

 

Protein-protein interaction networks 

Functional interpretation for protein-protein interaction network of SMGs is generated 

by InWeb IM51 (https://omictools.com/inweb-inbiomap-tool). 

 

Therapeutic targets analysis 

We grouped therapeutic agents within the categories in FDA approved, agents in 

cancer clinical trials, and agents in cancer pre-clinical ligands from target databases, 

literature, the drug’s FDA label (www.fda.gov), or ClinicalTrials.gov 

(http://clinicaltrials.gov/). Gene and therapeutic agents’ interactions were mainly retrieved 

from the TARGET database52, Cancer bioMarkers database 

(www.cancergenomeinterpreter.org/biomarkers) and Gene Drug Knowledge Database53. 

To find new direct targeting interactions missed by these databases, we retrieved 

information of protein-molecule direct interactions from ChEMBL54 (v20), a manually 

curated chemical database of bioactive molecules. We considered strong interactions, with a 

binding affinity more potent than 1 µM (pActivity > 6) described before55. We collected the 

following types of therapeutic agent: (1) FDA approved drug: interaction between an FDA 

approved drug and its targets, extracted by ChEMBL database and FDA label. (2) Drug in 

clinical trials: interactions between driver proteins and clinical trials molecules, with a binding 

affinity more potent than 1 µM (pActivity > 6), extracted by ClinicalTrials.gov. (3) Pre-

clinical ligands: interactions between a pre-clinical molecule and a protein with a binding 

affinity higher that 1 µM (pActivity > 6). Here we included all interacting molecules either 

recorded in www.fda.gov as FDA approved or found in ClinicalTrials.gov.      



 

To find druggable mutations, we used a script to connect mutations in NETs to drug 

responses using evidence from the [www.cancergenomeinterpreter.org/biomarkers], which is 

available for research use under a Creative Commons dedication. Mutations in druggable 

gene identified from ChEMBL were manually checked according to literature, www.fda.gov 

or ClinicalTrials.gov. 

 

Clinically relevant events analysis 

We computationally sort a patient’s somatic variants with applying rules that rank 

variants based on the clinical and biological relevance as the methods described previously56, 

which uses the TARGET database, MSigDB57, COSMIC and CGC. We added drugable 

genes in NETs to these databases and then sorted somatic variants in each sample in NETs. 

Level of targets were defined as follows: A, clinically actionable mutations of NETs, 

actionable mutations were usually defined as known mutational hotspots, missense mutations 

in protein kinase regions with directionality known to have clinical impact, such as RET 

M918T; B, mutations in actionable cancer genes of NETs including therapeutic targets genes 

defined as earlier in the methods and genes with directionality known to have clinical 

impact; C, COSMIC mutations in CGC genes; D, mutations in genes that affected 

drugable linked pathway; E, mutations in genes that affected cancer related pathway; F, 

mutations in COSMIC; G, unknown mutations. 
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Figure S1 Fold coverage of exonic regions for the pairs of CD, INS and PCC/PGL 

tumors. The average sequencing depth was 172×, and 96.8% (93.5%-98.5%) of the target 

regions were covered at least 10×. (a) The box plots show the distribution of average 

sequencing depth of exonic regions obtained from 40 pituitary Cushing’s disease samples 

whole-exome sequencing data. The bold lines in boxes represent  the medians and the 

lines outside the boxes represent the first or third quartiles of fold coverage.



 

(b) The box plots show the fraction of target bases covered by at least 1 reads, 4 reads, 10 

reads and 20 reads across the 40 pituitary Cushing’s disease samples. The bold lines in 

boxes show the medians and the lines outside the boxes show the first or third quartiles of 

fraction of target bases covered by reads. (c) The box plots show the distribution of average 

sequencing depth of exonic regions obtained from 76 insulinomas samples whole-exome 

sequencing data. The bold lines in boxes represent the medians and the lines outside the 

boxes represent the first or third quartiles of fold coverage. (d) The box plots show the 

fraction of target bases covered by at least 1 reads, 4 reads, 10 reads and 20 reads across the 

76 insulinomas samples. The bold lines in boxes show the medians and the lines outside the 

boxes show the first or third quartiles of fraction of target bases covered by reads. (e) The 

box plots show the distribution of average sequencing depth of exonic regions obtained 

from 22 pheochromocytomas samples whole-exome sequencing data. The bold lines in boxes 

represent the medians and the lines outside the boxes represent the first or third quartiles of 

fold coverage. (f) The box plots show the fraction of target bases covered by at least 1 

reads, 4 reads, 10 reads and 20 reads across the 22 pheochromocytomas. The bold lines in 

boxes show the medians and the lines outside the boxes show the first or third quartiles of 

fraction of target bases covered by reads. 
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Figure S2 Mutation frequencies between benign and malignant tumors. The NETs mutation 

dataset included a total of 16905 somatic mutations, consisting of 14039 missense, 1150 

nonsense, 20 non-stop, 43 start lost, 478 splice-site and 1175 indels, including 960 frameshift 

and 215 inframeshift. The number of mutations per tumor varied between 1 and 1528. Student’s 

t-test (one-sided) was applied to test significant difference. 
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Figure S3 Mutation rate and spectrum across 21 NET types. (a) Distribution of mutation 

frequencies across 21 NETs. Tumors are clustered and presented with short lines in each 

tumor type, the length of the short lines in a bean plot indicates the number of times that 

tumors contain mutations. Solid white lines refer to the median for each NET type and 

dashed grey refers to the average across 21 NETs. TSHPA and GHPA has the lowest 

(median: 2; range 1-3), whereas ACC has the highest (median: 20; range 1-1528) median 

mutation frequency. PC has the lowest (median: 7; range 1-25) mutation frequency in 

malignant NETs, which is consistent with the nature of low-grade malignant tumors with 

benign behaviors6. (b) Mutation spectrum of transversion and transition categories for each 

NET type. C->T transversion is the predominant substitution in most tumor types. 
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Figure S4 Mutation spectrum in 21 neuroendocrine tumors. Spectrum of non-silent SNVs 

observed in exon regions in 21 neuroendocrine tumors. Tumors with hypermutations were 

excluded. 
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Figure S5 Background mutation rates for benign and malignant tumors. (a) The 

background mutation rates (BMR) of non-silent mutations in whole exonic genes are plotted. 

Seven mutational mechanism categories are defined by MuSiC. The overall BMR is also 

plotted, combining all types of mutations. The BMR between benign and malignant tumors 

is different with P = 0.029 (t-test, one-sided). (b) The BMR of all non-silent mutations in 

genes from Cancer Gene Census for all seven mutational mechanism categories are plotted. 

The BMR between benign and malignant tumors is different with P = 0.058 (t-test, one-

sided). 
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Figure S6 Method of candidate driver gene analysis. We divided 512 samples from 14 types 

of benign tumor as combined benign set and 591 samples from 8 types of malignant tumors 

as combined malignant set. Candidate driver genes were identified in combined benign set, 

combined malignant set, combined organ set (adrenal, gastrointestinal, pituitary and thyroid) 

and individual tumors. 
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Figure S7 The significance of 86 candidate driver genes identified from 21 NETs. (a) All 

candidate driver genes are plotted by the q value (FDR) in the most significant of the 

individual 21 NETs (x axis) and the q value more significant among the combined benign 

tumors, combined malignant tumors and 4 organ cohorts (y axis). Color of gene names is as 

follows: red, only significant in malignant tumors; blue, only significant in benign tumors; 

orange, significant in both malignant and benign tumors. (b) Genes of Cancer Gene Census 

are plotted by the q value (FDR) in the most significant of the 21 NETs (x axis) and the q value 

more significant between the combined tumors, combined malignant tumors and 4 organ sets 

(y axis). The gene colors are marked as follows: red, only significant in malignant tumors; 

blue, only significant in benign tumors; orange, significant in both malignant and benign tumors. 
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Figure S8 The candidate driver genes identified in 21 NETs. (a) Distribution of frequencies 

of candidate driver genes in in each type of 21 NETs. The distribution of the 86 genes in 

21 NETs revealed that malignant NETs have higher driver mutant events comparing with 

benign tumors. Tumor-specific driver genes, such as PRKACA in ACAs and KCNJ5 in APA, 

have been reported15-21,26. (b) Boxplot of candidate driver genes across 21 NETs, only 

samples contain mutations in candidate driver genes are plotted. Mutations in 40 of these 52 

genes occur frequently in other types of NETs in our integrated cohort; 34 novel SMGs are 

identified in NETs, including AHNAK, ARRDC3, ASH1L, ASXL3, BMS1, CNTNAP5, ELK4, 

PHF2, SUGP2, ZNF292 and 24 genes in Cancer Gene Census (CGC). 
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Figure S9 The mutated sample frequency of 86 candidate driver genes identified from 

21 NETs. All candidate driver genes are plotted by the highest frequency in the benign (x 

axis) and malignant (y axis) tumor types. Genes marked with the color of the highest 

frequency tumor type as in Figure 1. MEN1 and RET mutations, which are responsible for 

multiple endocrine neoplasia type 1 and type 2 syndromes respectively, are well-known 

drivers in multiple NET types. Mutations of 3 novel SMGs (PRUNE2, ASH1L and ATM) and 

6 known candidate driver genes (GNAS, CREBBP, KMT2A, TP53, SMARCA4 and TSC2) are 

identified in as least 5 NET types. 
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Figure S10 The 86 candidate driver genes classified to 20 cellular processes in NETs. 

Frequencies of candidate driver genes in individual tumor types are shown. The higher the 

frequency of each gene in 21 NETs, the deeper the color. Mutations of EIF1AX, which 

encodes  an  essential  eukaryotic  translation  initiation  factor  (eIF1A)  that  promotes  the 

formation of the 43S complex, were reported in PC, papillary thyroid carcinoma and 

anaplastic thyroid carcinoma6, 58, 59. EIF1AX and SF3B1 mutations were also identified in 

uveal melanomas60. Wnt/β-catenin signaling is activated in various NET types by mutation- 

mediated blockage of β-catenin degradation. Activating CTNNB1 and inactivating APC 

mutations are common in adrenal NETs. In addition, mutations activating PKA signaling and 

inactive MEN1 mutations can promote Wnt/β-catenin signaling in adrenal and pancreatic 

NETs61, 62, separately. WNT negative regulators CDC73 (HRPT2), RNF43 and its homolog 

ZNRF3 are SMGs in ACC63-65. CDC73 is also frequently mutated in PTC66. 
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Figure S11 Clustering of cellular processes in NETs. A cellular process matrix was 

constructed for 317 tumors with non-silent mutations in candidate driver genes. Genes 

were selected with frequency more than 1% of 21 NETs. Tumors having no mutation in 

these genes were excluded. The tumor types are marked with the color as in Figure 1. 
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Figure S12 Comparison of 86 candidate driver genes in NETs with cancer-related genes 

in other cancer types. (a) Non-silent mutation rate distribution of neuroendocrine tumors, 12 

cancers described by Kandoth et al. and small cell of lung cancer (SCLC) described by 

George et al. and Rudin et al. The mutation frequency of benign and malignant NETs is lower 

compared to other cancer types. (b) Clustering tumors with candidate driver genes in 21 NETs 

and significant mutated genes in 12 cancers and SCLC. A gene frequency to each tumor 

type matrix was constructed. NETs shared 24 driver genes (28%) with other cancers. (c) Bar 

plot of candidate driver genes in NETs and other cancers. Malignant NETs contain more 

shared candidate driver gene with other types of cancer than benign NETs (P value = 0.013, 

student’s t-test, one-sided). Comparison of the 86 genes, 127 driver genes of main cancer 

types and 556 cancer related genes in each NET type showed that 7 benign types of NETs are 

excluded with driver 127 genes2, 67. 
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Figure S13 Mutated genes related to chromatin remodeling and histone modification in 

21 NETs. Chromatin remodeling genes: ARID1A, ARID2, ATRX, SMARCA2, SMARCA4; 

chromatin-associated adapter proteins: MEN1, DAXX, PSIP1, ASXL3; histone H3 

methyltransferase: ASH1L, DOT1L, NSD1, SETD2, KMT2A, KMT2C, KMT2D; histone H3 

histone demethylase: PHF2; histone acetyltransferases: CREBBP; DNA methyltransferase 

DNMT3A; active DNA demethylation: TET2; SWI/SNF family: ARID1A, ATRX, SMARCA2, 

SMARCA4. Ten chromatin modification and remodeling genes are identified as novel 

SMGs, including the SWI/SNF complex gene ARID2, histone H3 methyltransferase ASH1L, 

NSD1 and SETD2, the DOT1L complex component MLLT1, histone H3 demethylase PHF2, 

DNA methyltransferase DNMT3A and TET2, histone H2A phosphorylation factor ATM and 

chromatin-associated adapter protein ASXL3. These SMGs were previously identified in other 

cancer types, suggesting shared etiologies between NETs and other cancers. KMT2A, 

DNMT3A, SETD2, TET2   and   ASXL3   are   significantly   mutated   in   hematological 



 

malignancies68-71. Inactivating mutations of ARID2 are relatively common in hepatocellular 

carcinoma72. Frequent mutations of ASH1L were reported in esophageal squamous cell 

cancer and lung cancers73, 74. 
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Figure S14 Protein-protein interaction network for the functional relationship of 

chromatin remodeling and histone modification genes in SMGs. 
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Figure S15 Variant allele frequency distribution of SMGs. (a) Variant allele frequency (VAF) 

distribution of mutations in candidate driver genes across tumors. Only mutation sites with 

more than 100× coverage were used for analysis and plotting. Candidate driver genes with 

at least 3 data points were included in the plot. The VAFs of mutations in ZNRF2 (P = 

1.72e-05), MEN1 (P = 1.20e-04), RB1 (P = 1.83e-03) are significantly higher than average 

among candidate driver genes. Significant levels were calculated using student’s t-test, one-

sided. The MEN1, ZNRF3 mutations are associated with LOH as reported18, 75. (b) LOH of 



 

MEN1 in INS. Depth and B allele frequency (higher frequency allele) of whole exonic SNP 

site in case INS36. The whole chromosome 11 which includes MEN1 was identified as LOH. 
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Figure S16 Gels for 21 NETs with clinical actionable mutations. Each patient’s clinical 

actionable somatic mutations were systematically analyzed according to druggable targets in 

NETs, additional biologically significant pathways and gene sets, and then ranked them by 

applying a series of rules on the basis of clinical and biological relevance. Level of mutations 

were defined as follows: A, clinically actionable mutations of NETs; B, mutations in 

actionable cancer genes of NETs; C, COSMIC mutations in CGC genes; D, mutations in 

genes that affected drugable linked pathway; E, mutations in genes that affected cancer 

related pathway; F, mutations in COSMIC; G, unknown mutations. Defined levels of 

potential targets in tumors revealed that most of the NET types (17/21) contained level A 

druggable mutated genes (predictive for FDA-approved therapies and in clinical trial 

therapies). 
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Figure S17 Fold coverage of target regions for the pairs of APAs. (a) The box plots show 

the distribution of average sequencing depth of exonic regions obtained from APA samples 

target deep sequencing data. The bold lines in boxes represent the medians and the lines 

outside the boxes represent the first or third quartiles of fold coverage. (b) The box plots 

show the fraction of target bases covered by at least 1 reads, 4 reads, 10 reads and 20 reads 

across the target deep sequencing of APA samples. The bold lines in boxes show the medians 

and the lines outside the boxes show the first or third quartiles of fraction of target bases 

covered by reads. 
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Figure S18 Somatic mutations in KCNJ5, ATP2B3, DNMT3A, YY1, ATP1A1, CACNA1D 

and CTNNB1. Mutations annotated with red are identified as new mutations in APAs. The 

types and relative positions of somatic mutations are shown in the transcripts of genes using 

the following symbols: yellow bullets, missense mutations; green triangles, InDels. Colored 

regions represent domains in genes, YY1: red, Asp/Glu-rich (acidic); purple, Gly-rich; light 

green, Gly/Ser-rich; green, C2H2-type zinc fingers (ZnF_C2H2); ATP1A1: purple, cation 

transporter/ATPase, N-terminus (Cation_ATPase_N); light green, E1-E2 ATPase (E1- 

E2_ATPase); red, cation transport ATPase (Cation_ATPase); green, cation transporting 

ATPase, C-terminus (Cation_ATPase_C); CACNA1D: light green, ion transport protein 

(Ion_trans); purple, voltage-dependent L-type calcium channel, IQ-associated (GPHH); green, 

voltage-dependent L-type calcium channel, IQ-associated (Ca_chan_IQ); red, voltage-gated 

calcium channel subunit alpha, C-term (CAC1F_C); CTNNB1: green: HEAT repeats 

(HEAT_2); red: Armadillo/beta-catenin-like repeat (Arm). 
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Figure S19 Hotspot mutations of candidate driver genes in 21 NETs between functional 

and non-functional tumors. The angular space is compartmentalized into the 21 NETs. 

The distance from the center represents the total mutation frequency in tumor types. The 

activating hotspots mutations in SMGs, including YY1, GNAS, PRKACA, KCNJ5, USP8 

and RET, are more frequent in functional NETs, indicating their dual roles in hormone 

production and tumorigenesis. 
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