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Materials and Methods
Clinical samples

Insulinomas were diagnosed by clinical hypoglycemia symptoms, blood insulin and
glucose levels (prolonged oral glucose tolerance test), computed tomography/positron
emission tomography computed tomography imaging of patients and pathological diagnosis of
surgical removal tumor, Cushing’s disease and ACTH-secreting pituitary adenomas subtypes,
pheochromocytoma and paraganglioma, aldosterone-producing adenomas were diagnosed
according to clinical features, drug history, hormones tests, CT/MRI imaging and
pathological diagnosis of surgical removal tumor. Genomic DNA was obtained from matched
frozen tumor and blood samples in the endocrine-related tumor bank of Shanghai Key
Laboratory for Endocrine Tumors. DNA was prepared with QIAGEN DNeasy Blood & Tissue
Kit. Informed consent was obtained from all study participants. All the protocols were
approved by the Rui-Jin Hospital Ethics Committee, Shanghai Jiao Tong University School

of Medicine.

Whole-exome sequencing (WES) and targeted deep sequencing (TDS)

The qualified genomic DNA from tumor and matched peripheral blood from tumors were
fragmented by Covaris technology, and then adapters were ligated to both ends of the
fragments. Extracted DNA was then amplified by ligation-mediated PCR, purified and
hybridized to human exome array for enrichment, non-hybridized fragments were then washed
out. Whole exome sequencing were performed for Insulinomas with NimbleGenEZ 44M Kit,
as pheochromocytomas, paraganglioma and pituitary adenomas with Agilent SureSelect
Human All Exon v4 (51 Mb) kit. Target deep sequencing were performed for aldosterone-

producing adenomas with NET panel of NimbleGen SeqCap EZ Designs.



Each captured library was then loaded on Hiseq2000 platform, and we performed high-
throughput sequencing for each captured library independently to ensure that each sample
meet the desired average fold-coverage. Raw image files were processed by Illumina base
calling Software 1.7 for base calling with default parameters and the sequences of each
individual were generated as 90 bp paired-end reads.

INSs, CDs and APAs were pooled and sequenced in Beijing Genomics Institute at

Shenzhen, as PCC/PGLs in CapitalBio Corporation (Beijing, China).

Reads Mapping and Variation Detection

After removing reads containing sequencing adapters and low-quality reads with more
than five unknown bases, high-quality reads were aligned to the NCBI human reference
genome (hgl9) using Burrows-Wheeler Aligner (v0.5.9)'' with default parameters. Picard
(v1.54)'* was employed to mark duplicates and followed by Genome Analysis Toolkit
(v1.0.6076, GATK IndelRealigner)" to improve alignment accuracy.

Somatic SNVs were detected by VarScan2.2.5" based on BWA align algorithm and high
confident somatic SNVs were called if the following criteria were met: (I) both the tumor
and normal samples should be covered sufficiently (> 10x) at the genomic position; (II) the
variants should be supported by at least 10% (5% for pituitary adenomas due to low purity)
of the total reads in the tumor while less than 2% in the normal; (III) the variants should be
supported by at least three reads in the tumor; (IV) distance between adjacent somatic SNVs
distance should be over 10 bp; (V) mapping qualities of reads supporting mutant allele in
tumor should be significantly higher than 30 (Wilcoxon rank sum test, P < 0.2); (VI) base
qualities of reads supporting mutant allele in tumor should be significantly higher than 20

(Wilcoxon rank sum test, P < 0.05); (VII) mutations should not be enriched within 5 bp 5’ or



3’ of read end (Wilcoxon rank sum test, P < 0.1); (VIII) mutant allele frequency changes
between tumor and blood should be statistically significant (Fisher’s exact test, P < 0.05).
High confident somatic insertions and deletions (InDels) were called using the following
steps: (I) candidate somatic InDels were predicted with GATK SomaticIndel Detector with
default parameters; (II) for each predicted somatic indel, local realignment was performed
with combined normal and tumor bam files; (III) frequent of variant reads less than 10%
were filtered out. (IV) high confident somatic InDels were defined after filtering germline

events.

Standardization and tracking of mutation data from 21 neuroendocrine tumors

10, 15-40
’ . To make our

In total, we collected mutations of 21 types of from 38 NGS projects
data analysis more reliable, we established our data collection criteria as follows: (1)
Metastasis samples were removed; (2) Tumor samples from same patients were removed; (3)
Familial samples were removed.

Finally, all mutations were re-annotated by in-house annotation software based on snpeff*!-,
To remove common sequencing artefacts or residual germline variation, each mutation was
subjected to dbSNP database*’, and a ‘Panel of Normal’ filtering process using a panel of over
600 BAM files from 600 whole-exome sequencing or whole-genome sequencing normal

samples at BGI-Shenzhen. Mutations observed in dbSNP or more than 1% in the panel of

normal were removed.

Candidate driver genes analysis
We divided 512 samples from 14 types of benign tumor as combined benign set and 591
samples from 8 types of malignant tumors as combined malignant set in this project,

because of the significant difference of mutation background between them. Candidate driver



genes of 21 NETs were identified in combined benign set, combined malignant set, combined
organ set (adrenal, gastrointestinal, pituitary and thyroid) and individual tumor types.

Candidate driver genes were defined after two steps. In the first step, we selected genes
that were significantly mutated than the background using MuSiC*® package (FDR <= 0.2,
Likelihood Ratio Test) in combined benign set, combined malignant set and individual
tumor types. Furthermore, we performed an independent significant analysis that was
restricted to events in genes that presented in Cancer Gene Census®’. In the second step,
genes met conditions as follows were filtered: (1) Mutation number less than 1% in sets; (2)
Deleterious mutation rate less than 50%, deleterious mutations included mutations that were
predicted to be deleterious by either SIFT* or PolyPhen-2*’, mutations in splicing region,
and InDels in coding regions as well; (3) Genes that were low expressed or typically
expressed in individual human tissue (log2 (RMA) > 5, from BioGPS’). Additionally, we

manually added known driver genes from literature.

GO enrichment analysis
Significant molecular function GO term of 86 candidate driver genes were enriched

using DAVID (https://david.nciferf.gov/).

Tumor specificity analysis

We calculate standard Z-score to make quantitative inferences as to the number of
tumor types with which an individual gene or cellular process associates. The frequency of
gene or cellular process was converted to a Z-score based on the descriptive statistics

(mean and standard deviation) of the distribution in tumors.

Mutation VAF analysis



We computed the VAFs of somatic mutations in 86 candidate driver genes. Only
mutation sites having > 100x coverage and candidate driver genes having at least 3

mutations were included in downstream analyses.

Protein-protein interaction networks

Functional interpretation for protein-protein interaction network of SMGs is generated

by InWeb M>! (https://omictools.com/inweb-inbiomap-tool).

Therapeutic targets analysis

We grouped therapeutic agents within the categories in FDA approved, agents in
cancer clinical trials, and agents in cancer pre-clinical ligands from target databases,
literature, the  drug’s FDA  label (www.fda.gov), or  ClinicalTrials.gov
(http://clinicaltrials.gov/). Gene and therapeutic agents’ interactions were mainly retrieved

from the TARGET databasesz, Cancer bioMarkers database

(www.cancergenomeinterpreter.org/biomarkers) and Gene Drug Knowledge Database™.

To find new direct targeting interactions missed by these databases, we retrieved
information of protein-molecule direct interactions from ChEMBL> (v20), a manually
curated chemical database of bioactive molecules. We considered strong interactions, with a
binding affinity more potent than 1 uM (pActivity > 6) described before®®. We collected the
following types of therapeutic agent: (1) FDA approved drug: interaction between an FDA
approved drug and its targets, extracted by ChEMBL database and FDA label. (2) Drug in
clinical trials: interactions between driver proteins and clinical trials molecules, with a binding
affinity more potent than 1 uM (pActivity > 6), extracted by ClinicalTrials.gov. (3) Pre-
clinical ligands: interactions between a pre-clinical molecule and a protein with a binding
affinity higher that 1 uM (pActivity > 6). Here we included all interacting molecules either

recorded in www.fda.gov as FDA approved or found in ClinicalTrials.gov.



To find druggable mutations, we used a script to connect mutations in NETs to drug
responses using evidence from the [www.cancergenomeinterpreter.org/biomarkers], which is
available for research use under a Creative Commons dedication. Mutations in druggable
gene identified from ChEMBL were manually checked according to literature, www.fda.gov

or ClinicalTrials.gov.

Clinically relevant events analysis

We computationally sort a patient’s somatic variants with applying rules that rank
variants based on the clinical and biological relevance as the methods described previously™,
which uses the TARGET database, MSigDB’’, COSMIC and CGC. We added drugable
genes in NETs to these databases and then sorted somatic variants in each sample in NETs.
Level of targets were defined as follows: A, clinically actionable mutations of NETs,
actionable mutations were usually defined as known mutational hotspots, missense mutations
in protein kinase regions with directionality known to have clinical impact, such as RET
MO918T; B, mutations in actionable cancer genes of NETs including therapeutic targets genes
defined as earlier in the methods and genes with directionality known to have clinical
impact; C, COSMIC mutations in CGC genes; D, mutations in genes that affected
drugable linked pathway; E, mutations in genes that affected cancer related pathway; F,

mutations in COSMIC; G, unknown mutations.
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Figure S1 Fold coverage of exonic regions for the pairs of CD, INS and PCC/PGL
tumors. The average sequencing depth was 172x, and 96.8% (93.5%-98.5%) of the target
regions were covered at least 10x. (a) The box plots show the distribution of average
sequencing depth of exonic regions obtained from 40 pituitary Cushing’s disease samples
whole-exome sequencing data. The bold lines in boxes represent the medians and the

lines outside the boxes represent the first or third quartiles of fold coverage.



(b) The box plots show the fraction of target bases covered by at least 1 reads, 4 reads, 10
reads and 20 reads across the 40 pituitary Cushing’s disease samples. The bold lines in
boxes show the medians and the lines outside the boxes show the first or third quartiles of
fraction of target bases covered by reads. (¢) The box plots show the distribution of average
sequencing depth of exonic regions obtained from 76 insulinomas samples whole-exome
sequencing data. The bold lines in boxes represent the medians and the lines outside the
boxes represent the first or third quartiles of fold coverage. (d) The box plots show the
fraction of target bases covered by at least 1 reads, 4 reads, 10 reads and 20 reads across the
76 insulinomas samples. The bold lines in boxes show the medians and the lines outside the
boxes show the first or third quartiles of fraction of target bases covered by reads. (e) The
box plots show the distribution of average sequencing depth of exonic regions obtained
from 22 pheochromocytomas samples whole-exome sequencing data. The bold lines in boxes
represent the medians and the lines outside the boxes represent the first or third quartiles of
fold coverage. (f) The box plots show the fraction of target bases covered by at least 1
reads, 4 reads, 10 reads and 20 reads across the 22 pheochromocytomas. The bold lines in
boxes show the medians and the lines outside the boxes show the first or third quartiles of

fraction of target bases covered by reads.
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Figure S2 Mutation frequencies between benign and malignant tumors. The NETs mutation
dataset included a total of 16905 somatic mutations, consisting of 14039 missense, 1150
nonsense, 20 non-stop, 43 start lost, 478 splice-site and 1175 indels, including 960 frameshift
and 215 inframeshift. The number of mutations per tumor varied between 1 and 1528. Student’s

t-test (one-sided) was applied to test significant difference.
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Figure S3 Mutation rate and spectrum across 21 NET types. (a) Distribution of mutation

Percentage
of mutation

frequencies across 21 NETs. Tumors are clustered and presented with short lines in each
tumor type, the length of the short lines in a bean plot indicates the number of times that
tumors contain mutations. Solid white lines refer to the median for each NET type and
dashed grey refers to the average across 21 NETs. TSHPA and GHPA has the lowest
(median: 2; range 1-3), whereas ACC has the highest (median: 20; range 1-1528) median
mutation frequency. PC has the lowest (median: 7; range 1-25) mutation frequency in
malignant NETs, which is consistent with the nature of low-grade malignant tumors with
benign behaviors®. (b) Mutation spectrum of transversion and transition categories for each

NET type. C->T transversion is the predominant substitution in most tumor types.
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Figure S4 Mutation spectrum in 21 neuroendocrine tumors. Spectrum of non-silent SNVs
observed in exon regions in 21 neuroendocrine tumors. Tumors with hypermutations were

excluded.
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Figure S5 Background mutation rates for benign and malignant tumors. (a) The
background mutation rates (BMR) of non-silent mutations in whole exonic genes are plotted.
Seven mutational mechanism categories are defined by MuSiC. The overall BMR is also
plotted, combining all types of mutations. The BMR between benign and malignant tumors
is different with P = 0.029 (#-test, one-sided). (b) The BMR of all non-silent mutations in
genes from Cancer Gene Census for all seven mutational mechanism categories are plotted.
The BMR between benign and malignant tumors is different with P = 0.058 (#-test, one-

sided).
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Reported driver genes

Figure S6 Method of candidate driver gene analysis. We divided 512 samples from 14 types
of benign tumor as combined benign set and 591 samples from 8 types of malignant tumors
as combined malignant set. Candidate driver genes were identified in combined benign set,
combined malignant set, combined organ set (adrenal, gastrointestinal, pituitary and thyroid)

and individual tumors.
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Figure S7 The significance of 86 candidate driver genes identified from 21 NETs. (a) All
candidate driver genes are plotted by the g value (FDR) in the most significant of the
individual 21 NETs (x axis) and the g value more significant among the combined benign
tumors, combined malignant tumors and 4 organ cohorts (y axis). Color of gene names is as
follows: red, only significant in malignant tumors; blue, only significant in benign tumors;
orange, significant in both malignant and benign tumors. (b) Genes of Cancer Gene Census
are plotted by the g value (FDR) in the most significant of the 21 NETs (x axis) and the g value
more significant between the combined tumors, combined malignant tumors and 4 organ sets
(y axis). The gene colors are marked as follows: red, only significant in malignant tumors;

blue, only significant in benign tumors; orange, significant in both malignant and benign tumors.
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Figure S8 The candidate driver genes identified in 21 NETs. (a) Distribution of frequencies
of candidate driver genes in in each type of 21 NETs. The distribution of the 86 genes in
21 NETs revealed that malignant NETs have higher driver mutant events comparing with
benign tumors. Tumor-specific driver genes, such as PRKACA in ACAs and KCNJS5 in APA,

15-21,26
have been reported ™"

. (b) Boxplot of candidate driver genes across 21 NETs, only
samples contain mutations in candidate driver genes are plotted. Mutations in 40 of these 52
genes occur frequently in other types of NETs in our integrated cohort; 34 novel SMGs are

identified in NETs, including AHNAK, ARRDC3, ASHIL, ASXL3, BMS1, CNTNAP5, ELK4,

PHF?2, SUGP2, ZNF292 and 24 genes in Cancer Gene Census (CGC).
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Figure S9 The mutated sample frequency of 86 candidate driver genes identified from
21 NETs. All candidate driver genes are plotted by the highest frequency in the benign (x
axis) and malignant (y axis) tumor types. Genes marked with the color of the highest
frequency tumor type as in Figure 1. MENI and RET mutations, which are responsible for
multiple endocrine neoplasia type 1 and type 2 syndromes respectively, are well-known
drivers in multiple NET types. Mutations of 3 novel SMGs (PRUNE2, ASHIL and ATM) and
6 known candidate driver genes (GNAS, CREBBP, KMT2A4, TP53, SMARCA4 and TSC?2) are

identified in as least 5 NET types.
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Figure S10 The 86 candidate driver genes classified to 20 cellular processes in NETSs.

Frequencies of candidate driver genes in individual tumor types are shown. The higher the

frequency of each gene in 21 NETs, the deeper the color. Mutations of EIFIAX, which

encodes an essential eukaryotic translation initiation factor (eIF1A) that promotes the

formation of the 43S complex, were reported in PC, papillary thyroid carcinoma and

anaplastic thyroid carcinoma® 3% °, EIF1AX and SF3BI mutations were also identified in

uveal melanomas®®. Wnt/B-catenin signaling is activated in various NET types by mutation-

mediated blockage of B-catenin degradation. Activating CTNNBI and inactivating APC

mutations are common in adrenal NETs. In addition, mutations activating PKA signaling and

inactive MENI mutations can promote Wnt/B-catenin signaling in adrenal and pancreatic

NETs®! %2 separately. WNT negative regulators CDC73 (HRPT2), RNF43 and its homolog

ZNRF3 are SMGs in ACC®-%, CDC73 is also frequently mutated in PTC®®.
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Figure S11 Clustering of cellular processes in NETs. A cellular process matrix was
constructed for 317 tumors with non-silent mutations in candidate driver genes. Genes
were selected with frequency more than 1% of 21 NETs. Tumors having no mutation in

these genes were excluded. The tumor types are marked with the color as in Figure 1.



Supplementary information, Figure S12

a
[=]
3
2 21 l
5 o : .
5 S . | l H
& L
=4
=}
s o
5 2+ . I * . =
£ o
= .l. | | l [
2 o
7 <
s 3
z
T T T T T T T T T
bﬁlrlg%.n laml mallllgr_:_ant brca ov kirc ucec gbm coadread hnsc bica luad sclc lusc

b
Mutation frequency in tumors
I T T T T Neuroendocrine tumors
0 02 0.6 —
. Drivers specific to neuroendocrine tumors . 13.other,cancers
Drivers specific to other cancer
described by Kandoth et al and
small cell of lung cancer by George et al
Drivers shared in NETs and
other cancers .
.
B
|3
(4
= =
&
&
=
B
Q.
[
—_ — &,
— g
&
3
T
3
&
&
— B
E
B
]
E
£
B
&
Ex
— &,
&
]
— &
&
— F
4
a— E
—_— B
B
[
|3
&
&
. &
B
&
COLILQLLLIFELCODELOVLOOOODEZL L Q9T T Q
EPEIEREfEbbg2Es203 L R 082 ]¢E
e % FO oo B
8
[+
70 i :
Drivers in 12 other cancers Other 556 cancer related genes
described by Kandoth et al described by Xie et al
8 Y : .
5 . Drivers specific in NETs
=
o
2
S 35
P
a
=
o
Q
E 17
S
P-4
0

ACC NB ACA PCPCC/PGLSINET INS PNET MTC CD APA GHPA PPA AIMAH ADO PTC PTA GTPATSHPAPRLPANFPA



Figure S12 Comparison of 86 candidate driver genes in NETs with cancer-related genes
in other cancer types. (a) Non-silent mutation rate distribution of neuroendocrine tumors, 12
cancers described by Kandoth er al. and small cell of lung cancer (SCLC) described by
George et al. and Rudin et al. The mutation frequency of benign and malignant NETs is lower
compared to other cancer types. (b) Clustering tumors with candidate driver genes in 21 NETs
and significant mutated genes in 12 cancers and SCLC. A gene frequency to each tumor
type matrix was constructed. NETs shared 24 driver genes (28%) with other cancers. (c¢) Bar
plot of candidate driver genes in NETs and other cancers. Malignant NETs contain more
shared candidate driver gene with other types of cancer than benign NETs (P value = 0.013,
student’s z-test, one-sided). Comparison of the 86 genes, 127 driver genes of main cancer
types and 556 cancer related genes in each NET type showed that 7 benign types of NETs are

excluded with driver 127 genes> ¢’
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Figure S13 Mutated genes related to chromatin remodeling and histone modification in
21 NETs. Chromatin remodeling genes: ARIDIA, ARID2, ATRX, SMARCA2, SMARCA4,
chromatin-associated adapter proteins: MENI, DAXX, PSIPI, ASXL3; histone H3
methyltransferase: ASHIL, DOTIL, NSD1, SETD2, KMT2A, KMT2C, KMT2D;, histone H3
histone demethylase: PHF2; histone acetyltransferases: CREBBP; DNA methyltransferase
DNMT3A; active DNA demethylation: TET2; SWI/SNF family: ARIDIA, ATRX, SMARCA?2,
SMARCA4. Ten chromatin modification and remodeling genes are identified as novel
SMGs, including the SWI/SNF complex gene ARID?2, histone H3 methyltransferase ASHIL,
NSDI and SETD2, the DOTIL complex component MLLTI, histone H3 demethylase PHF?2,
DNA methyltransterase DNMT3A4 and TET2, histone H2A phosphorylation factor ATM and
chromatin-associated adapter protein ASXL3. These SMGs were previously identified in other
cancer types, suggesting shared etiologies between NETs and other cancers. KMT2A,

DNMT3A4, SETD2, TET2 and ASXL3 are significantly mutated in hematological



68-71

malignancies™"". Inactivating mutations of ARID2 are relatively common in hepatocellular

carcinoma’®. Frequent mutations of ASHIL were reported in esophageal squamous cell

cancer and lung cancers’> 74,
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ARID1A CREBBP

Figure S14 Protein-protein interaction network for the functional relationship of

chromatin remodeling and histone modification genes in SMGs.
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Figure S15 Variant allele frequency distribution of SMGs. (a) Variant allele frequency (VAF)
distribution of mutations in candidate driver genes across tumors. Only mutation sites with
more than 100x coverage were used for analysis and plotting. Candidate driver genes with
at least 3 data points were included in the plot. The VAFs of mutations in ZNRF2 (P =
1.72e-05), MENI (P = 1.20e-04), RBI1 (P = 1.83e-03) are significantly higher than average
among candidate driver genes. Significant levels were calculated using student’s #-test, one-

sided. The MENI, ZNRF3 mutations are associated with LOH as reported'® 7. (b) LOH of



MENI in INS. Depth and B allele frequency (higher frequency allele) of whole exonic SNP

site in case INS36. The whole chromosome 11 which includes MENI was identified as LOH.
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Figure S16 Gels for 21 NETs with clinical actionable mutations. Each patient’s clinical
actionable somatic mutations were systematically analyzed according to druggable targets in
NETs, additional biologically significant pathways and gene sets, and then ranked them by
applying a series of rules on the basis of clinical and biological relevance. Level of mutations
were defined as follows: A, clinically actionable mutations of NETs; B, mutations in
actionable cancer genes of NETs; C, COSMIC mutations in CGC genes; D, mutations in
genes that affected drugable linked pathway; E, mutations in genes that affected cancer
related pathway; F, mutations in COSMIC; G, unknown mutations. Defined levels of
potential targets in tumors revealed that most of the NET types (17/21) contained level A
druggable mutated genes (predictive for FDA-approved therapies and in clinical trial

therapies).
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Figure S17 Fold coverage of target regions for the pairs of APAs. (a) The box plots show
the distribution of average sequencing depth of exonic regions obtained from APA samples
target deep sequencing data. The bold lines in boxes represent the medians and the lines
outside the boxes represent the first or third quartiles of fold coverage. (b) The box plots
show the fraction of target bases covered by at least 1 reads, 4 reads, 10 reads and 20 reads
across the target deep sequencing of APA samples. The bold lines in boxes show the medians
and the lines outside the boxes show the first or third quartiles of fraction of target bases

covered by reads.
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Figure S18 Somatic mutations in KCNJ5, ATP2B3, DNMT3A, YY1, ATPIAl, CACNAID
and CTNNBI. Mutations annotated with red are identified as new mutations in APAs. The
types and relative positions of somatic mutations are shown in the transcripts of genes using
the following symbols: yellow bullets, missense mutations; green triangles, InDels. Colored
regions represent domains in genes, YY/: red, Asp/Glu-rich (acidic); purple, Gly-rich; light
green, Gly/Ser-rich; green, C2H2-type zinc fingers (ZnF C2H2); ATPIAI: purple, cation
transporter/ATPase, N-terminus (Cation ATPase N); light green, E1-E2 ATPase (El-
E2 ATPase); red, cation transport ATPase (Cation ATPase); green, cation transporting
ATPase, C-terminus (Cation ATPase C); CACNAID: light green, ion transport protein
(Ton_trans); purple, voltage-dependent L-type calcium channel, 1Q-associated (GPHH); green,
voltage-dependent L-type calcium channel, 1Q-associated (Ca chan 1Q); red, voltage-gated
calcium channel subunit alpha, C-term (CACIF C); CTNNBI: green: HEAT repeats

(HEAT 2); red: Armadillo/beta-catenin-like repeat (Arm).
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Figure S19 Hotspot mutations of candidate driver genes in 21 NETs between functional
and non-functional tumors. The angular space is compartmentalized into the 21 NETs.
The distance from the center represents the total mutation frequency in tumor types. The
activating hotspots mutations in SMGs, including YYI, GNAS, PRKACA, KCNJ5, USP$§
and RET, are more frequent in functional NETs, indicating their dual roles in hormone

production and tumorigenesis.
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