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Supplementary Fig. 1: Cyclin K expression is not regulated by p53 protein. 

(a) Expression analysis of cyclin K by immunoblotting in various cell lines.  HFF, 

neonatal human foreskin fibroblast.  p53 is inactivated in HeLa cells and null in 

H1299 cells. (b) Time course analyses of cyclin K expression by immunoblotting after 

ultraviolet radiation (UV, 40 J/m2) in MCF7 cells. (c) Time course analyses of cyclin K 

expression by immunoblotting after UV treatment in isogenic HCT116 colon cancer 

cell lines with wild-type or knockout of p53. (d) Time course analyses of cyclin K 

expression after UV treatment in normal human cells.  Upper panel, protein blot 

analyses.  Lower panel, analyses by reverse transcription polymerase chain 

reaction (RT).  HFF, neonatal human foreskin fibroblast.  All experiments were 

repeated three times and representative results are shown. 
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Supplementary Fig. 2: Knockdown of CDK12 reduces cell proliferation, similar 

to knockdown of cyclin K. 

(a) Knockdown of CDK12 reduced proliferation in various human cancer cells.  Data 

are means ± SEM (n = 5) (***p < 0.001; Student’s t-test). (b) Cell cycle profiling of 

HCT116 cells with or without CDK12 knockdown. (c) Cell cycle profiling of p53-null 

HCT116 cells with or without CDK12 knockdown. (d) The percentage of Annexin V-

positive (marker of early apoptosis) HCT116 cells was similar with or without CDK12 

knockdown. (e) Detection of EdU-positive (marker of proliferation) HCT116 cells by 

FACS analysis with or without CDK12 knockdown.  Quantitation was generated from 
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five independent experiments.  Data are means ± SEM (n = 6) (***p < 0.001; 

Student’s t-test). (f) Immunofluorescence analysis of γH2AX (marker of DNA 

damage) in HCT116 cells with or without CDK12 knockdown.  CPT was used as a 

positive control for DNA damage induction.  Scale bar, 15 μm.  All experiments 

were repeated at least three times and representative results are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Fig. 3: Cell cycle reentry after partial hepatectomy.  

Two hours before sacrifice, BrdU was injected into mice.  BrdU was used to 

mark cells in the S phase, and Ki67 to label proliferating cells.  Results were 

quantified from four mice at each time point.  The differences on the time point of 

peak detection for BrdU and Ki67 were likely because BrdU labelling only detected 

proliferative cells in a 2-hour timeframe, while Ki67 detected all proliferative cells 

accumulated in the past 48-72 hours.  The kinetics of cyclin K and Mcm2 

accumulation mimicked that of Ki67.  Scale bar, 100 μm.   

 

 

 

 

 

 

 

 

 

 

 

 

B
rd

U
/D

A
P

I
K

i6
7
/D

A
P

I

36 40 48   hours

0

36 40 48  hours

5

10

15

20

B
rd

U
p

o
s
it

iv
e
 (

%
)

0

10

20

40

30

36 40 48  hours

K
i6

7
 p

o
s
it

iv
e
 (

%
)

post partial hepatectomy



 

Supplementary Fig. 4: Dissection of potential mechanisms how cyclin K 

regulates pre-RC assembly.  

(a) Analysis of the loading of ORC complex (ORC4 and ORC6) with or without cyclin 

K knockdown in HCT116 cells.  Knockdown of cyclin K did not perturb the loading 

kinetics of ORC4 and ORC6. (b) Analysis of Geminin protein with or without cyclin K 
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knockdown in HCT116 cells.  Knockdown of cyclin K did not perturb the kinetics of 

Geminin regulation in cell cycle. (c) Regulation of CDT1 by proteasome was similar 

with or without cyclin K knockdown in HCT116 cells.  In addition, upregulation of 

CDT1 by MG132 treatment (5 μM) failed to rescue the effect by cyclin K knockdown. 

(d) Loading of several general transcription apparatuses was comparable with or 

without cyclin K knockdown in HCT116 cells, indicating that cyclin K knockdown did 

not cause a global defect in chromatin organization. (e) Inhibition of global RNA 

polymerase II transcription elongation by actinomycin D (ActD, 500 ng/ml) did not 

affect pre-RC assembly in HCT116 cells. (f) Inhibition of global RNA polymerase II 

transcription by different inhibitors did not affect pre-RC assembly in HCT116 cells.  

THZ1 (250 nM) inhibits CDK7 to block global transcription initiation, and reduces both 

Ser2 and Ser5 phosphorylation RNA polymerase II CTD.  Flavopiridol (500 nM) 

inhibits CDK9 to block global transcription elongation and reduce Ser2 

phosphorylation. (g) Inhibition of c-MYC (10058-F4, 50 μM) did not affect pre-RC 

assembly in HCT116 cells. (h) ATM and ATR inhibition failed to rescue CDT1 loading 

defect caused by cyclin K knockdown in HCT116 cells.  Similar results were 

obtained from inhibition of ATM (KU-60019, 5 μM) and ATR (VE-821, 5 μM) in 

combination (shown here) or individually.  All experiments were repeated at least 

three times and representative results are shown. 

 

 

 

 

 

 



 

Supplementary Fig. 5: Characterization of various anti-cyclin E1 antibodies.  

(a) Similar experiment as in Fig. 5a except that Ab1 was a different batch from the 

same commercial vendor.  Note that the band above 50 kD denoted by asterisk in 

Fig. 5a and 5b was absent. (b) Verification of cyclin E1 antibodies using cyclin E1 

knockout HCT116 cell lines. (c) Total cell lysates were derived from HEK293 cells 

transfected with indicated cDNA, and analyzed by protein blotting with indicated 

antibodies.  All constructs were FLAG-tagged at the C-terminus.  WT, wild-type 

cyclin E1.  All experiments were repeated at least three times and representative 

results are shown. 
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Supplementary Fig. 6: The accumulation of cyclin E1 induced by cyclin K 

knockdown is dependent on CDK2.  

CDK2 knockout HCT116 cell lines (CDK2-/-) were generated by CRISPR/Cas9 

technology.  Total cell lysates were analyzed by immunoblotting with or without 

cyclin K knockdown for 3 days.  wt, isogenic wild-type cells. 
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Supplementary Fig. 7: CDK2 kinase assay.  

(a) Input of total cell lysates for anti-CDK2 immunoprecipitation generated from 

HCT116 cells with or without cyclin K knockdown.  Cyclin K knockdown did not 

affect endogenous CDK2 protein level. (b) Endogenous CDK2 was 

immunoprecipitated from cell lysates shown in (a), and normalized to equal amount 

for in vitro kinase assay.  A/G, protein A/G agarose beads was used for mock 

immunoprecipitation without anti-CDK2 antibodies. (c) Recombinant human histone 

H1 (H1) was used as substrate for purified CDK2 from (b).  Phospho-T/S-P 

antibodies were used for detection of phosphorylated H1 as an indication of 

endogenous CDK2 kinase activity.   
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Supplementary Fig. 8: Ectopic expression of cyclin B1 does not compromise 

pre-RC assembly. 

 Either cyclin B1 or cyclin E1 was overexpressed in HCT116 cells, and pre-RC 

loading was similarly monitored as in Fig. 6a.   
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Supplementary Fig. 9: Working model how cyclin K regulates pre-RC assembly.  

High level of CDK2/cyclin E1 activity in early G1 is detrimental to pre-RC 

assembly by preventing CDT1 and subsequent MCM loading.  Under normal 

situation (a), cyclin K/CDK12 directly or indirectly phosphorylates most cyclin E1 at 

S366 to prevent interaction with CDK2.  Without interacting with CDK2, cyclin E1 is 

quickly degraded in cells so that CDK2 activity is low in G1, and pre-RC assembly is 

allowed.  When cyclin K or CDK12 is knocked down (b), S366 phosphorylation is 

lost, leading to increased cyclin E1/CDK2 activity in G1 to block pre-RC assembly.  

Likewise, when cyclin E1 is overexpressed (c), there is not enough endogenous 

cyclin K/CDK12 to fully phosphorylates S366, leading to increased cyclin E1/CDK2 

activity in G1.  pre-RC assembly is compromised.    
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Supplementary Fig. 10: Full images of western blots.   

Full unprocessed images and signals detected by western blotting, with the 

regions used in the corresponding main display items indicated by red frames. 
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Supplementary Table 1: list of primes and oligos  

 

Primers and oligos Sequence 5’-3’ 

shRNA-Cyclin K 

targeting sequence 1 

GCAGGACGTTTGTGCAAATTT 

shRNA-Cyclin K 

targeting sequence 2 

CCACCAAATCCTGGATCTTTA 

shRNA-CDK12 

targeting sequence 

GCACTGAAAGAGGAGATTGTT 

CCNE1 targeting 

gRNA1 

CCTCGCCGTCCTGTCGATTT 

CCNE1 targeting 

gRNA2 

CCAAAATCGACAGGACGGCG 

CDK2 targeting gRNA1 GGCGCTTAAGAAAATCCGCC 

CDK2 targeting gRNA2 GATCTCTCGGATGGCAGTAC 

PCR primers to validate 

Cyclin E1 KO 

forward, ACACCATGAAGGAGGACGG 

reverse, GCTGTGGCTGCATTAGAGA 

PCR primers to validate 

CDK2 KO 

forward, TATACTGCGTTCCATCCC 

reverse, GCATTACCTTGATGAGGG 

qPCR primers targeting 

CDS to validate Cyclin 

K knockdown 

forward, AAAGACTTGGCTCATACACCC 

reverse, CAGTTGCCAGGGTATCATAGTG 

qPCR primers targeting 

3’ UTR to validate 

Cyclin K knockdown  

forward, CAGCCTGGATGAGATAACGT 

reverse, TTCCCATACTGCAACTGTCG 

qPCR primers targeting 

CDS to validate CDK12 

knockdown 

forward, CTTGCTCGGCTCTATAACTCTG 

reverse, TTCCCCAAGAATACATCCACAG 

Cyclin K cloning 

 

forward, GAGGATCCATGAAGGAGAATAAAGAAAAT 

reverse, GATCTAGATTACTTGTCGTCATCGTCTTTG 

TAGTCTCTCATCCAGGCTGC 

shRNA-resistant 

human Cyclin K 

forward, CTCGCAGGACGTTTATGTAAGTTTGAAATACAAG 

reverse, CTTGTATTTCAAACTTACATAAACGTCCTGCGAG 



Cyclin B1 cloning 

 

forward, GTTCTAGACACCATGGCGCTCCGAGTCACC 

reverse, GTGGATCCTTACTTGTCGTCATCGTCTTTGTAGT 

CCACCTTTGCCACAGCCTT 

Cyclin E1 cloning 

 

forward, GTGAATTCACCATGCCGAGGGAGCGCAG 

reverse, GTTCTAGATTACTTGTCGTCATCGTCTTTGTAG 

TCCGCCATTTCCGGCCCGCT 

Cyclin E1 truncation (1-

327) cloning 

 

forward, GTGAATTCACCATGCCGAGGGAGCGCAG 

reverse, GTTCTAGATTACTTGTCGTCATCGTCTTTGTAG 

TCACAGTTCTCTATGTCGCA 

Cyclin E1 truncation (1-

355) cloning 

forward, GTGAATTCACCATGCCGAGGGAGCGCAG 

reverse, GTTCTAGATTACTTGTCGTCATCGTCTTTGTAGT 

CTTCATCAGCGACGCCCCT 

Cyclin E1 truncation (1-

382) cloning 

forward, GTGAATTCACCATGCCGAGGGAGCGCAG 

reverse, GTTCTAGATTACTTGTCGTCATCGTCTTTGTAGTC 

TTCAGACAACATGGCTTT 

Cyclin E1 T362A 

mutation 

forward, CACACAACATACAGGCCCACAGAGAC 

reverse, GTCTCTGTGGGCCTGTATGTTGTGTG 

Cyclin E1 T362E 

mutation 

forward, CACACAACATACAGGAACACAGAGAC 

reverse, GTCTCTGTGTTCCTGTATGTTGTGTG 

Cyclin E1 S366A 

mutation 

forward, GTCCAGCAAATCCAAGGCGTCTCTGTG 

reverse, CACAGAGACGCCTTGGATTTGCTGGAC 

Cyclin E1 S366D 

mutation  

forward, GTCCAGCAAATCCAAGTCGTCTCTGTG 

reverse, CACAGAGACGACTTGGATTTGCTGGAC 

Cyclin E1 S381A 

mutation 

forward, GAAAGCCATGTTGGCTGAACAAAATAGGG 

reverse, CCCTATTTTGTTCAGCCAACATGGCTTTC 

Cyclin E1 S381D 

mutation 

forward, GAAAGCCATGTTGGATGAACAAAATAGGG 

reverse, CCCTATTTTGTTCATCCAACATGGCTTTC 

 

 

 

 


