
Supplementary Material:
Target Control in Logical Models Using the Domain
of Influence of Nodes

1 ALGORITHMS

1.1 Algorithm for calculating LDOI

Here we present the pseudocode for calculating the LDOI of a set of nodes, referred to as source, on
the expanded network G expanded. Negation(node) in line 8 calculates the negation of a non-composite
node on the expanded network. The Children(G expanded, node) function in line 11 returns all direct
neighbors that node points to on the expanded network. The InDegree function in line 14 calculates the
in-degree of a node on the expanded network (number of incoming edges or number of parent nodes).

Algorithm 1 Algorithm of calculating LDOI
1: procedure LDOI(G expanded, source)
2: queue← Queue(source)
3: visited← Set()
4: visited list← List()
5: cpnode count← HashMap()
6: while queue is not empty do
7: node← queue.pop()
8: if node /∈ visited AND Negation(node) /∈ visited then
9: visited← visited ∪ {node}

10: visited list.append(node)
11: for child in Children(G expanded, node) do
12: if child is not composite node then
13: queue.append(child)
14: else if cpnode count[child] = G expanded.InDegree(child)− 1 then
15: queue.append(child)
16: else
17: cpnode count[child] += 1
18: end if
19: end for
20: else if node ∈ source then
21: visited list.append(node)
22: end if
23: end while
24: return Set(visited list[length(source) : ])
25: end procedure

1.2 Algorithm of the local search for solution reduction

Here we give the pseudocode to obtain a reduced solution from a candidate solution, referred to as
solution, in the target control problem on the expanded network G expanded with Target as the target.
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Algorithm 2 Algorithm for local search of solution reduction
1: procedure LOCALSEARCH(G expanded, Target, solution)
2: reduced solution← solution
3: if solution.length() ≤ 1 then
4: return reduced solution
5: end if
6: for node in random order of solution do
7: temp solution← reduced solution
8: temp solution.remove(node)
9: if Target ⊂ LDOI(solution) then

10: reduced solution← temp solution
11: end if
12: end for
13: return reduced solution
14: end procedure

1.3 Algorithm of the MakeRCL function

Here we present the pseudocode to construct a restricted candidate list (RCL) from candidates given the
greedy function G(v) and random number α.

Algorithm 3 Algorithm of the MakeRCL function

1: procedure MAKERCL(candidates,G(v), α)
2: candidate scores← {G(v)|v ∈ candidates}
3: Gmax ← max(candidates scores)
4: Gmin ← min(candidates scores)
5: Gpass ← Gmin + α · (Gmax −Gmin)
6: RCL← {v ∈ candidates|G(v) ≥ Gpass}
7: return RCL
8: end procedure

A python implementation of the target control algorithm is available at

https://github.com/yanggangthu/BooleanDOI.

2 DEFINITION AND PROPERTIES OF THE LDOI

2.1 Mathematical description of the level-order preserving updating regime

Mathematically, let sex be the node in the expanded network whose logical domain of influence we
are seeking to determine, and s the corresponding node in the original network. Let d(s, i) represent the
distance (shortest path length) from sex to ni or ∼ ni on the expanded network. d(s, s) = 0 when there
is no feedback loop from node s to node s, otherwise, d(s, s) = ls, which is the length of the shortest
feedback loop passing s. Let ti be the first time node i is updated. In a level order preserving updating
regime, ti ≤ tj if and only if d(s, i) ≤ d(s, j) .

2.2 Mathematical proof of the second key property of LDOI

We prove the property by contradiction. The property is: if the LDOI of a node state set S contains
itself, then the LDOI of S contains a stable motif. The contradiction statement is that S ⊂ LD(S) implies
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Figure S1: Running time versus number of nodes and edges of a network.

that LD(S) does not contain a stable motif. S ⊂ LD(S) implies that there exists a level order preserving
updating regime in which node states in S will not change when these nodes are updated and are not
externally controlled (fixed). This level order preserving updating regime can be constructed by periodically
repeating the first round of updating. In such an updating regime, the system will evolve into a (partial)
fixed point as node states in S does not change. However, in the contradiction statement, LD(S) does
not contain a stable motif. Thus no subset of nodes belonging to S can be a (partial) fixed point since a
stable motif corresponds to a (partial) fixed point (proved in Zañudo and Albert (2013)), where we find the
contradiction. Thus the contradiction statement is false and the original property holds.

3 ADDITION INFORMATION ON RANDOM BOOLEAN NETWORKS

In Fig. S1 we plot the run time in seconds (represented by the color) as a function of the number of
nodes N (horizontal axis) and the number of edges M (vertical axis). The run time is the total duration of
considering 50 randomly selected target sets (of two and three targets), with solutions for each target set
calculated in 500 individual iterations in a serial mode (i.e. max itr = 500 for line 4 in Algorithm Table 1)
for the ensemble with nested canalizing functions.

4 ADDITIONAL INFORMATION ON THE BIOLOGICAL EXAMPLES

4.1 EMT network

Detailed information about the EMT network can be found in Steinway et al. (2014, 2015). The Boolean
regulatory functions are presented in the Supplemental Table 1 of Steinway et al. (2015). The two steady
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states of the EMT network model are shown in Supplemental Table 2 of Steinway et al. (2015). Previous
knockout intervention results are illustrated in Figure 1 of Steinway et al. (2015).

4.2 Breast cancer network

Detailed information about the breast cancer network, including the Boolean regulatory functions of
each node, can be found in the section “Regulatory functions in the model” of the additional file in Gómez
Tejeda Zañudo et al. (2017). Relevant initial conditions that lead to cancerous steady states, which have
slight variations among themselves, are stated in the section “Initial or externally controlled states” of
the additional file in Gómez Tejeda Zañudo et al. (2017). For our purpose of target control, we chose the
initial condition that leads to the most cancerous steady state and obtained a (relatively large) reduced
network after plugging in these initial conditions. Specifically, among the 12 source nodes, IGFR1 T,
PBX1 and ER are fixed to be ON. HER2, HER3 T, PTEN, SGK1 T, PIM, PDK1 and mTORC2 are fixed
to be OFF. BIM T is assumed to be OFF while BCL2 T is assumed to be ON. The seven source nodes
corresponding to the drugs are still kept as source nodes in the network. The outcome nodes “Apoptosis”
and “Proliferation” are multi-level nodes representing a cell′s propensity to commit programmed cell death
or cell cycle progression, respectively. Apoptosis has four levels and is represented by three Boolean nodes.
Proliferation has five levels and is represented by four Boolean nodes. The highest level of apoptosis
corresponds to full commitment to apoptosis and lower levels correspond to partial commitment. The
regulatory function that represents a higher level of apoptosis or proliferation is more stringent compared to
the regulatory function of a lower level. Under the current chosen initial condition and without any drugs,
the natural attractors are cancerous steady states with low level of apoptosis (Apoptosis = 0) and high level
of proliferation (Proliferation = 3 or 4). In the reduced network under the currently chosen initial condition,
PI3K inhibitor can only lead to apoptosis level 2 and no drug (combinations) can lead to apoptosis level 3.

4.3 ABA induced stomatal closure network

On the epidermes of leaves and other aerial plant parts, a pair of guard cells modulate the size of natural
openings known as stomata, which are the entry and exit points of gas exchange. Albert et al. constructed a
Boolean model of the signaling process involved in stomatal closure in response to the drought hormone
abscisic acid (ABA) Albert et al. (2017). The nodes of the network include signaling proteins, small
molecules, effectors of ion flow and conceptual nodes such as the outcome node “Closure”. The detailed
Boolean rules are given in Table 2 and S1 Text of Albert et al. (2017). The relevant initial conditions (which
specify the state of 54 nodes based on biological knowledge and leave 26 unspecified) and corresponding
natural attractors are given in Table S6 and S7 of Albert et al. (2017).The dynamic model captures the
process of stomatal closure in response to ABA and the robustness of this outcome to variations in the
initial conditions. Albert et al. also systematically studied the effect of knockout and constitutive activity in
the presence or absence of ABA, obtaining many results consistent with prior experimental results. Two
model predictions were tested and validated experimentally in Albert et al. (2017). The model predicts that
in the absence of ABA, only the constitutive activation of reactive oxygen species (ROS) will lead to a high
closure probability similar to the case in the presence of ABA.

We first ask what nodes need to be controlled to lead to closure in the absence of ABA. Inspecting the
LDOI of each node state (Supplemental Data Sheet S1), we find that there are no node states that have
Closure in their LDOI. Conversely, the lack of closure (∼Closure) is in the LDOI of 19 node states, one of
which represents the activity of the inhibitory protein ABI1 and the rest represent the inactive states of
proteins such as OST1, SphK1/2, RBOH and low concentrations of small molecules such as PA, ROS. The
LDOI of these latter proteins contains the stable motif previously identified to correspond to the absence of
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closure in the absence of ABA (see Fig. 2E in Albert et al. 2017). Thus each of these 18 node states is
either a core, or an external driver of this stable motif. The largest LDOIs are those of Ca2+c , ROS and
RBOH (around 20 node states), but they do not contain Closure or its direct regulators. Turning to the
target control algorithm to answer the question, the minimal solution given by our algorithm involves at
least two nodes. There are only two compatible solutions with size two, that is, activation of H2O efflux
and Microtubule or TCTP. This solution is not very insightful as these nodes are direct regulators of the
node Closure. The algorithm gives several incompatible solutions: Ca2+ and any of ROS, RBOH, OST1,
∼ABI2, ∼HAB1, ∼PP2CA or H2O efflux. The solutions are incompatible as Ca2+ is regulated by a
negative feedback loop and oscillates in the natural dynamics of the system. The fact that the target control
solution requires more than activation of ROS is due to the fact that the target control solution is applicable
for all initial conditions, while the knockout or constitutive activation study starts with biologically relevant
initial conditions.

Another interesting target is the activation of H2O efflux, a key contributor (and upstream node) of
stomatal closure. The incompatible solutions indicated above still hold (except Ca2+ and H2O efflux since
H2O efflux is the target). The minimal compatible solutions involve three nodes, as shown in Table S1.
Interestingly, the LDOI of these solutions do not contain closure, meaning that they are enough to activate
H2O efflux but not enough to activate closure.

Table S1. The minimal compatible solutions for activating H2O efflux. The three-node solution comprises of the activation of any node from each column in
the same row.

A B C
Kefflux AnionEM, SLAC1 ROS, RBOH, OST1, PIP21
VATPase, Vacidification AnionEM, SLAC1, MAPK912 ROS, RBOH

4.4 T-LGL leukemia network

T cell large granular lymphocyte (T-LGL) leukemia is a rare blood cancer, where leukemic T-LGL
cells do not undergo activation induced cell death (apoptosis) after successfully fighting a virus like a
normal T cells do. Zhang et al. (2008) construct a network model consisting of the proteins involved in the
activation of T cells, in activation induced cell death, as well as a number of proteins that were observed
to be abnormally highly expressed or active in T-LGL cells. The original network has 60 nodes and 142
regulatory edges, details of which and the regulatory functions can be found in Tables S1-S4 of Zhang et al.
(2008). The model captures the normal (apoptosis) and leukemic (survival) states of the system Zhang
et al. (2008); Saadatpour et al. (2011). For the discussion below, we consider the biological relevant initial
condition where the source nodes IL15, Stimuli are ON and PDGF, Stimuli2, CD45 and TAX are OFF and
the cell is in a resting (inactive) state.

Previous, experimentally validated research established that S1P = 0, PDGFR = 0, SPHK1 = 0 forms
a stable motif and fixing any of the three nodes in the OFF state can control the stable motif, which can
drive the system to the normal steady state, i.e. Apoptosis. Indeed, the LDOI of the three complementary
nodes is identical and contains all three of them as well as three other nodes. However, these LDOIs do not
contain the node Apoptosis. Another group of 6 nodes, namely IL2RB, IL2RBT, RAS, GRB2, ZAP70,
PLCG1 also have identical LDOIs of 32 node states, which correspond to another previously identified
stable motif of this network (the blue motif in Fig. 3 of Zañudo and Albert 2015). The target control
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algorithm′s minimal solutions for the target Apoptosis involve control of two nodes, namely any of ∼S1P,
∼SPHK1, ∼PDGFR combined with any of IL2RB, IL2RBT, RAS, GRB2, PI3K, NFκB. This discrepancy
illustrates the difference between LDOI and DOI. The LDOI of neither stable motif contains Apoptosis.
However, the stable motif analysis of Zañudo and Albert (2015) indicates that once the ∼S1P, ∼PDGFR,
∼SPHK1 stable motif is established, the system′s natural dynamics will lead to the stabilization of the
other motif and finally will converge to Apoptosis. Thus in this case our target control algorithm gives
a solution that is more stringent than necessary, which can guarantee to reach apoptosis based solely on
the logical regulatory functions. When combined with stable motif control, we could do a target control
search of the activation stable motif and find alternative ways to reach the desired state without directly
controlling the stable motif.
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