## **SUPPLEMENTAL MATERIAL**

2

The Opp (AmiACDEF) Oligopeptide Transporter Mediates Resistance of Serotype 3 2 Streptococcus pneumoniae D39 to Killing by Chemokine CXCL10 and Other 4 **Antimicrobial Peptides** 5 6 Kevin E. Bruce<sup>1</sup>, Britta E. Rued<sup>1</sup>, Ho-Ching Tiffany Tsui<sup>1</sup>\*, 7 and Malcolm E. Winkler<sup>1</sup>\* 8 9 <sup>1</sup>Department of Biology, Indiana University Bloomington (IUB), Bloomington, IN 47405 10 USA 11 12 \*Corresponding author: \*Co-corresponding author: 13 Malcolm E. Winkler Ho-Ching Tiffany Tsui 14 Phone: 812-856-1781 Phone: 812-856-1318 15 E-mail: winklerm@indiana.edu E-mail: tttsui@indiana.edu 16 17 SUPPLEMENTAL TABLES 18 Table S1. Bacterial strains and oligonucleotide primers used in this study 19 Table S2. IC<sub>50</sub> of S. pneumoniae D39 cells treated with CXCL10, LL-37, or nisin 20 under various conditions 21 **Table S3.** IC<sub>50</sub> of chemokine-treated *Bacillus subtilis* under various conditions 22 Table S4. IC<sub>50</sub> of N-terminal CXCL10-treated S. pneumoniae cells with a CFU 23 survival assay in TGS buffer 24 25 SUPPLEMENTAL FIGURE LEGENDS. 26 Fig. S1. S. pneumoniae cells in TGS are sensitive to CXCL10 in the 0.03 to 0.06 µM 27 range 28 Fig. S2. Unencapsulated S. pneumoniae D39 show significant decreases in CFUs 29 and low fluorescence after incubation in NPB 30 Fig. S3. The fluorescence-based antimicrobial assay for IC<sub>50</sub> determination is not 31 dependent on the basal level of fluorescence signal generated by untreated bacteria 32 **Fig. S4.** The  $\Delta amiA$ -F clean deletion mutant phenocopies the  $\Delta amiA$ -F::P<sub>c</sub>-aad9 33 strain, and the  $\Delta amiA$ -F mutation is responsible for the phenotype seen in the  $\Delta OPT$ 34 mutant, and CXCL10 killing of the  $\Delta amiA-F$  strain is consistent with both fluorescence-35 based and CFU survival assays 36 **Fig. S5.** Spn D39 ∆*amiA-F* mutants in NPB are more resistant to nisin, whereas Spn 37 D39 ∆dlt and Spn TIGR4 are more sensitive to LL-37 and nisin relative to Spn D39 38 Fig. S6. Sensitivity to CXCL10 and dose response curves of S. mitis, S. sanguinis, 39 and S. mutans to LL-37 40 **Fig. S7.**  $\Delta ftsX$  and  $\Delta ftsE$  mutants of *B. subtilis* show similar IC<sub>50</sub> values to CXCL10 41 or N-CXCL10 as the  $ftsE^+$   $ftsX^+$  parent 42 Fig. S8. CXCL10 does not show antimicrobial activity against Spn D39 in DMEM ± 43 10% (vol/vol) FBS 44 45 SUPPLEMENTAL REFERENCES 46 47

|         | Streptococcus pneumoniae strains used i                                                                                                                                               | n this study                           |            |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------|
| Strain  | Construct (description)                                                                                                                                                               | Antibiotic                             | Reference  |
| Number  | Genotype (description)                                                                                                                                                                | resistance <sup>a</sup>                | or source  |
| IU1686  | TIGR4 [JNR.7/87]                                                                                                                                                                      | None                                   | ATCC       |
| IU1690  | D39                                                                                                                                                                                   | None                                   | (1)        |
| IU1781  | D39 rpsL1                                                                                                                                                                             | Str <sup>R</sup>                       | (2)        |
| IU1945  | D39 Δcps2A'-cps2H'= D39 ∆cps                                                                                                                                                          | None                                   | (1)        |
| IU3309  | D39 rpsL1 cps2E ( $\Delta A$ ); cps2E has a $\Delta A$<br>frameshift at codon 326                                                                                                     | Str <sup>R</sup>                       | (2)        |
| IU4325  | D39 $\Delta cps$ rpsL1 ftsEX <sup>+</sup> P <sub>c</sub> -[kan-rpsL <sup>+</sup> ]                                                                                                    | Kan <sup>R</sup> . Str <sup>s</sup>    | (3)        |
| IU6220  | D39 $\Delta cps$ ftsX(S161Y) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] (IU1945<br>X ftsFX P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] error-prone amplicon)                               | Kan <sup>R</sup>                       | This study |
| IU6234  | D39 $\Delta cps$ ftsX(D129V) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] (IU1945<br>X ftsEX P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] error-prone amplicon)                               | Kan <sup>R</sup>                       | This study |
| IU6236  | D39 $\Delta cps$ ftsX(N269T) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] (IU1945<br>X ftsEX P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] error-prone amplicon)                               | Kan <sup>R</sup>                       | This study |
| IU6237  | D39 $\Delta cps$ ftsX(F45I, K95M, E117K, V139A,<br>E213V) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] (IU1945 X ftsEX P <sub>c</sub> -<br>[kan-rpsL <sup>+</sup> ] error-prone amplicon) | Kan <sup>R</sup>                       | This study |
| IU6321  | D39 $\Delta cps pcsB(A160P) P_c-erm ftsX(W183L) P_c-[kan-rpsL+]$                                                                                                                      | Kan <sup>R</sup> ,<br>Erm <sup>R</sup> | (3)        |
| IU8773  | D39 ftsX(S161Y) $P_c$ -[kan-rpsL <sup>+</sup> ] (IU1690 X ftsX (S161Y) $P_c$ -[kan-rpsL <sup>+</sup> ] from IU6220)                                                                   | Kan <sup>R</sup>                       | This study |
| IU9004  | D39 ftsX(N269T) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] (IU1690 X ftsX<br>(N269T) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] from IU6236)                                              | Kan <sup>R</sup>                       | This study |
| IU9008  | D39 ftsX(W183L) $P_c$ -[kan-rpsL <sup>+</sup> ] (IU1690 X ftsX(W183L) $P_c$ -[kan-rpsL <sup>+</sup> ] from IU6321)                                                                    | Kan <sup>R</sup>                       | This study |
| IU9110  | D39 ftsX(D129V) $P_c$ -[kan-rpsL <sup>+</sup> ] (IU1690 X ftsX (D129V) $P_c$ -[kan-rpsL <sup>+</sup> ] from IU6234)                                                                   | Kan <sup>R</sup>                       | This study |
| IU9113  | D39 ftsX(E213V) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] (IU1690 X<br>ftsX(E213V) P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] from IU6237)                                               | Kan <sup>R</sup>                       | This study |
| IU9621  | D39 $\Delta cps rpsL1 \Delta khpA // \Delta bgaA::kan t1t2 PftsA-khpA+ (IU9036 X fusion \Delta bgaA::kan t1t2 P_{ftsA}-khpA^+)$                                                       | Str <sup>R</sup> , Kan <sup>R</sup>    | (4)        |
| IU10748 | D39                                                                                                                                                                                   | Kan <sup>R</sup>                       | This study |
| IU11720 | D39                                                                                                                                                                                   | Kan <sup>R</sup>                       | This study |
| IU11759 | D39 $\Delta$ amiACDEF::P <sub>c</sub> -aad9 (IU1690 X fusion $\Delta$ amiACDEF::P <sub>c</sub> -aad9) = $\Delta$ amiA-F                                                               | Spc <sup>R</sup>                       | This study |
| IU11778 | D39 Δ[ <i>spd_1167-spd_1170</i> ]::P <sub>c</sub> - <i>cat</i> (IU1690 X fusion Δ[ <i>spd_1167-spd_1170</i> ]::P <sub>c</sub> - <i>cat</i> )                                          | Cat <sup>R</sup>                       | This study |
| IU11819 | TIGR4 Δ[ <i>cps4A'-cps4E</i> ]::P <sub>c</sub> - <i>cat</i> (IU1686 X<br>fusion Δ[ <i>cps4A-cps4E</i> ]:P <sub>c</sub> - <i>cat</i> )                                                 | Cat <sup>R</sup>                       | This study |

## Table S1. Bacterial strains and oligonucleotide primers used in this study

| IU11848          | D39 Δ <i>aliA</i> ::P <sub>c</sub> -[ <i>kan-rpsL</i> <sup>+</sup> ] (IU1690 X Δ <i>aliA</i> ::P <sub>c</sub> -<br>[ <i>kan-rpsL</i> <sup>+</sup> ] from K218)                                                                                                                    | Kan <sup>R</sup>                                                                | This study             |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|
| IU11850          | D39 $\Delta aliB$ ::P <sub>c</sub> -erm (IU1690 X $\Delta aliB$ ::P <sub>c</sub> -erm from E241)                                                                                                                                                                                  | Erm <sup>R</sup>                                                                | This study             |
| IU11867          | D39 ΔamiACDEF::P <sub>c</sub> -aad9 Δ[spd_1167-<br>spd_1170]::P <sub>c</sub> -cat (IU11759 X Δ[spd_1167-<br>spd_1170]::P <sub>c</sub> -cat from IU11778)                                                                                                                          | Spc <sup>R</sup> , Cat <sup>R</sup>                                             | This study             |
| IU11892          | D39 $\Delta amiACDEF$ ::P <sub>c</sub> -aad9 $\Delta$ [spd_1167-<br>spd_1170]::P <sub>c</sub> -cat $\Delta aliA$ ::P <sub>c</sub> -[kan-rpsL <sup>+</sup> ]<br>(IU11867 X $\Delta aliA$ ::P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] from<br>IU11848)                               | Spc <sup>R</sup> , Cat <sup>R</sup> ,<br>Kan <sup>R</sup>                       | This study             |
| IU11919          | D39 $\Delta amiACDEF$ ::P <sub>c</sub> -aad9 $\Delta$ [spd_1167-<br>spd_1170]::P <sub>c</sub> -cat $\Delta aliA$ ::P <sub>c</sub> -[kan-rpsL <sup>+</sup> ]<br>$\Delta aliB$ ::P <sub>c</sub> -erm (IU11892 X $\Delta aliB$ ::P <sub>c</sub> -erm from<br>IU11850) = $\Delta OPT$ | Spc <sup>R</sup> , Cat <sup>R</sup> ,<br>Kan <sup>R</sup> ,<br>Erm <sup>R</sup> | This study             |
| IU11966          | TIGR4 P1542                                                                                                                                                                                                                                                                       | None                                                                            | (5, 6)                 |
| IU12001          | TIGR4 $\Delta$ [ <i>cps4A'-cps4E'</i> ]::P <sub>c</sub> - <i>cat</i> = TIGR4 $\Delta$ <i>cps</i><br>(IU11966 X $\Delta$ [ <i>cps4A-cps4E</i> ]::P <sub>c</sub> - <i>cat</i> from<br>IU11819)                                                                                      | Cat <sup>R</sup>                                                                | This study             |
| IU12163          | D39 $\Delta cls::P_c$ - <i>erm</i> (IU1690 X $\Delta cls::P_c$ - <i>erm</i> from E422)                                                                                                                                                                                            | Erm <sup>R</sup>                                                                | This study             |
| IU12470          | D39 $\Delta dltA::P_c$ - <i>erm</i> (IU1690 X fusion $\Delta dltA::P_c$ -<br><i>erm</i> )                                                                                                                                                                                         | Erm <sup>R</sup>                                                                | This study             |
| IU13765          | D39 <i>rpsL1</i> ΔamiACDEF::P <sub>c</sub> -[kan-rpsL <sup>+</sup> ]<br>(IU1781 X ΔamiACDEF::P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] from<br>IU11720)                                                                                                                            | Kan <sup>R</sup>                                                                | This study             |
| IU13780          | D39 <i>rpsL1</i> ΔamiACDEF (IU13765 X fusion<br>ΔamiACDEF)                                                                                                                                                                                                                        | Str <sup>R</sup>                                                                | This study             |
| IU14488          | D39 Δ <i>amiD</i> (IU1690 X Δ <i>amiD</i> from E120)                                                                                                                                                                                                                              | Erm <sup>R</sup>                                                                | This study             |
| IU14510          | D39 ΔamiD // ΔbgaA::kan t1t2 P <sub>ftsA</sub> -amiD <sup>+</sup><br>(IU14488 X fusion ΔbgaA::kan t1t2 P <sub>ftsA</sub> -<br>amiD <sup>+</sup> )                                                                                                                                 | Kan <sup>R</sup>                                                                | This study             |
| E120             | D39 $\Delta cps \Delta amiD::P_c-erm$ (IU1945 X fusion $\Delta amiD::P_c-erm$ )                                                                                                                                                                                                   | Erm <sup>R</sup>                                                                | This study             |
| E241             | D39 Δ <i>cps</i> Δ <i>aliB</i> ::P <sub>c</sub> - <i>erm</i> (IU1945 X fusion<br>Δ <i>aliB</i> ::P <sub>c</sub> - <i>erm</i> )                                                                                                                                                    | Erm <sup>R</sup>                                                                | This study             |
| E422             | D39 $\Delta cps \Delta cls::P_c-erm$ (IU1945 X fusion $\Delta cls::P_c-erm$ )                                                                                                                                                                                                     | Erm <sup>R</sup>                                                                | This study             |
| K218             | D39 $\Delta cps \Delta aliA::P_c-[kan-rpsL^+]$ (IU1945 X fusion $\Delta aliA::P_c-[kan-rpsL^+]$ )                                                                                                                                                                                 | Kan <sup>R</sup>                                                                | This study             |
|                  | Other Streptococcus strains used in th                                                                                                                                                                                                                                            | nis study                                                                       |                        |
| Strain<br>number | Genotype (description)                                                                                                                                                                                                                                                            | Antibiotic<br>resistance <sup>a</sup>                                           | Reference<br>or source |
| IU11303          | S. mitis ATCC 49456; NCTC 12261 [NS 51]                                                                                                                                                                                                                                           | None                                                                            | ATCC                   |
| IU11305          | S. sanguinis ATCC 10556; DSS-10                                                                                                                                                                                                                                                   | None                                                                            | ATCC                   |

| IU11309  | S. mutans ATCC 25175; NCTC 10449 [IFO 13955]                    | None                                | ATCC                                |
|----------|-----------------------------------------------------------------|-------------------------------------|-------------------------------------|
|          | Bacillus subtilis strains used in this                          | study                               |                                     |
| Strain   | Construct (description)                                         | Antibiotic                          | Reference                           |
| number   | Genotype (description)                                          | resistance <sup>a</sup>             | or source                           |
| IU12153  | DK453, ancestral NCIB3610 ΔspollIE::kan                         | Kan <sup>R</sup>                    | (7)                                 |
| IU12165  | NCIB3610 ΔspoIIIE::kan ΔftsX::Tn10 spec                         | Kan <sup>R</sup> , Spc <sup>R</sup> | 0:41 - 4                            |
| IU12166  | NCIB3610 ΔspollIE::kan ΔftsE::Tn10 spec                         | Kan <sup>R</sup> , Spc <sup>R</sup> |                                     |
| IU12981  | NCIB3610 ΔspoIIIE::kan ΔftsX                                    | Kan <sup>R</sup>                    | D. Keams                            |
|          |                                                                 |                                     |                                     |
|          | Primers used to construct strain                                | าร                                  |                                     |
| Primer   | Sequence (5' to 3')                                             | Template <sup>b</sup>               | Amplicon<br>Product                 |
| For co   | onstruction of IU6220, IU6234, IU6236, IU6237 ι                 | using error-p                       | rone PCR                            |
| CS225    | CACCTCTGTTATTTTCAATACAGCGAAACT                                  |                                     | ftsEX <sup>+</sup> P <sub>c</sub> - |
| 03235    | AGCTAC                                                          |                                     | [ <i>kan-rpsL</i> ⁺]                |
|          |                                                                 |                                     | error-prone                         |
|          |                                                                 | 114225                              | amplicon;                           |
|          |                                                                 | 104325                              | <i>ftsEX</i> ⁺ to                   |
| CS129    | GGTGAAGACCAAATGGCAAGAGCAAACG                                    |                                     | 979 bp                              |
|          |                                                                 |                                     | downstream                          |
|          |                                                                 |                                     | of P <sub>c</sub> -[kan-            |
|          |                                                                 |                                     | rpsL⁺]                              |
|          | For construction of IU8773 (ftsX(S161Y) P <sub>c</sub>          | -[kan-rpsL <sup>-</sup> ])          |                                     |
| CS128    | TAAATACCTIGCGCCACCGTGTCATIGC                                    |                                     | 3' ftsE +                           |
| 00400    | GGTGAAGACCAAATGGCAAGAGCAAACG                                    | IU6220                              | ftsX(S161Y)                         |
| CS129    |                                                                 |                                     | $P_{c}$ -[ <i>kan</i> -             |
|          | Ear construction of UI0004 (ftoV(N260T) D                       | [kon rnol +1]                       | TpsL ]                              |
| <u> </u> | 1000000000000000000000000000000000000                           | <u>-[kan-rpsi ])</u>                | 2' ftoE 1                           |
| 03120    |                                                                 | 11 10000                            | 5 118E +<br>ftoV                    |
| CS120    |                                                                 | 106236                              | (NI260T) P -                        |
| 00129    | 0010707070070777100077070077700                                 |                                     | $[k_{2}0_{3}1)^{+}]$                |
|          | For construction of ILI9008 (ftsX(W183L) P                      | -[ <i>kan-r</i> ns/ +1)             |                                     |
| CS128    |                                                                 |                                     | 3' ftsE+                            |
| 00120    |                                                                 | 1116321                             | ftsX                                |
| CS129    | GGTGAAGACCAAATGGCAAGAGCAAACG                                    | 100321                              | (W183L) P <sub>2</sub> -            |
| 00120    |                                                                 |                                     | $[kan-rpsL^+]$                      |
|          | For construction of IU9110 (ftsX(D129V) P                       | -[ <i>kan-rpsL</i> <sup>+</sup> 1)  |                                     |
| CS128    | TAAATACCTTGCGCCACCGTGTCATTGC                                    | <u> </u>                            | 3' ftsE +                           |
|          |                                                                 | 11.16234                            | ftsX                                |
| CS129    | GGTGAAGACCAAATGGCAAGAGCAAACG                                    | 100204                              | (D129V) P <sub>c</sub> -            |
|          |                                                                 |                                     | [kan-rpsL <sup>+</sup> ]            |
|          | For construction of IU9113 ( <i>ftsX</i> (E213V) P <sub>c</sub> | -[kan-rpsL <sup>+</sup> ])          |                                     |
| CS128    | TAAATACCTTGCGCCACCGTGTCATTGC                                    | IU6237                              | 3' ftsE +                           |

| CS129              | GGTGAAGACCAAATGGCAAGAGCAAACG                                                                 |                                                      | ftsX(E213V)<br>P <sub>c</sub> -[kan-<br>rpsL <sup>+</sup> ]    |  |
|--------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------|--|
|                    | For construction of IU10748 ( <i>ftsX</i> <sup>+</sup> P <sub>c</sub> -[ <i>k</i>            | an-rpsL <sup>+</sup> ])                              |                                                                |  |
| CS128              | TAAATACCTTGCGCCACCGTGTCATTGC                                                                 | 114225                                               | 3' ftsE +                                                      |  |
| CS129              | GGTGAAGACCAAATGGCAAGAGCAAACG                                                                 | 104325                                               | ftsX <sup>+</sup> P <sub>c</sub> -<br>[kan-rpsI <sup>+</sup> ] |  |
|                    | For construction of IU11720 (ΔamiACDEF::F                                                    | c-[kan-rpsL <sup>+</sup>                             | ])                                                             |  |
| P25                | TGCTCCTGTTCGCTTGATGATGGA                                                                     |                                                      | 5' upstream                                                    |  |
| P29                | CATTATCCATTAAAAATCAAACGGATCCTAA<br>AGTACACCTGCTGCTAATAAAACAAGACC                             | D39                                                  | of <i>amiA</i> +<br>60 bp of 5'<br><i>amiA</i>                 |  |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                               | P <sub>c</sub> -[ <i>kan-</i><br>rps/ <sup>+</sup> ] | P <sub>c</sub> -[ <i>kan-</i>                                  |  |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                      | cassette <sup>c</sup>                                | rpsL <sup>+</sup> ]                                            |  |
| KB411              | CAAAAGCATAAGGAAAGGGGCCCGGTCAC<br>TATGTTTGGGCGAACCAAGCCGAA                                    | D39                                                  | 57 bp of 3'<br><i>amiF</i> + 3'                                |  |
| KB412              | CTTCGCTACGATAGAGTTGTCCGATGTCGC                                                               | 200                                                  | downstream<br>of <i>amiF</i>                                   |  |
|                    | For construction of IU11759 (ΔamiACDE                                                        | F::P <sub>c</sub> - <i>aad9</i> )                    |                                                                |  |
| P25<br>P29         | TGCTCCTGTTCGCTTGATGATGGA<br>CATTATCCATTAAAAATCAAACGGATCCTAA<br>AGTACACCTGCTGCTAATAAAACAAGACC | D39                                                  | 5' upstream<br>of <i>amiA</i> +<br>60 bp of 5'<br><i>amiA</i>  |  |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                               | P <sub>c</sub> - <i>aad9</i><br>cassette             | P <sub>c</sub> -aad9                                           |  |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                      | from<br>IU8429 <sup>d</sup>                          |                                                                |  |
| KB411              | CAAAAGCATAAGGAAAGGGGCCCGGTCAC<br>TATGTTTGGGCGAACCAAGCCGAA                                    | D39                                                  | 57 bp of 3'<br><i>amiF</i> + 3'                                |  |
| KB412              | CTTCGCTACGATAGAGTTGTCCGATGTCGC                                                               |                                                      | downstream<br>of <i>amiF</i>                                   |  |
|                    | For construction of IU11778 (Δ[spd_1167-spd                                                  | <u>[_1170]::P<sub>c</sub>-c</u>                      | at)                                                            |  |
| P1043              | CCAGGATTAGCTGGGATGATTTGTAGACG<br>G                                                           |                                                      | 5' upstream<br>of                                              |  |
| P1045              | CATTATCCATTAAAAATCAAACGGATCCTAA<br>CTACAAGCAACCAATCCTACTACAGCTAT                             | D39                                                  | spd_1170 +<br>75 bp of 5'<br>spd_1170                          |  |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                               | P <sub>c</sub> - <i>cat</i>                          | Pcat                                                           |  |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                      | cassette <sup>e</sup>                                |                                                                |  |
| KB413              | AAACGTCCAAAAGCATAAGGAAAGGGGCC<br>CGTTGAATTTAAAGCACAGTACCATGAATT<br>T                         | D39                                                  | 102 bp of 3'<br>spd_1167 +<br>3'                               |  |

|                    |                                                                                   |                                       | downstream                       |
|--------------------|-----------------------------------------------------------------------------------|---------------------------------------|----------------------------------|
| ND414              | ATCAGCACTCGTAGATACACACGGCAAGC                                                     |                                       | oi<br>spd 1167                   |
|                    | For construction of IU11819 (TIGR4 Δ[cps4A'-                                      | -<br>cps4E′]::P <sub>c</sub> -a       | at)                              |
| KP/10              | CATTATCCATTAAAAATCAAACGGATCCTA                                                    |                                       | 5' upstream                      |
| KD419              | CGACACCGAACTAATAGGACCATAGGTG                                                      | TIGR4                                 | of cps4A +                       |
| KB420              | CACGTTCACAGAAAGTGAAGCGAAGTG                                                       | (IU1686)                              | 5' 51 bp of                      |
| konroel            |                                                                                   |                                       | CPS4A                            |
| forward            | TAGGATCCGTTTGATTTTTAATGGATAATG                                                    | P <sub>c</sub> -cat                   | Pcat                             |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                           | cassette <sup>e</sup>                 |                                  |
| KB416              | CCTCCAAAGAACGTCTTCCATAGAAGG                                                       |                                       | 42 bp of 3'                      |
|                    | AAACGTCCAAAAGCATAAGGAAAGGGGCC                                                     | TIGR4                                 | cps4E + 3'                       |
| KB418              | CAAACGAAAAGGTATTGTAGAGGGTAGTG                                                     | (IU1686)                              | downstream                       |
|                    | GT                                                                                | , , , , , , , , , , , , , , , , , , , | of cps4E                         |
|                    | For construction of IU11848 (D39 ΔaliA::P <sub>c</sub>                            | -[kan-rpsL <sup>+</sup> ])            | •                                |
| DEOZ               | AGTCCAAAGTTTAGGAGCAAGGCGACGCT                                                     |                                       |                                  |
| P527               | A                                                                                 | K218                                  | $\Delta a IIA :: P_c$ -          |
| P528               | TTTCCATTGGCATCAACGGTCAAGCCCTTC                                                    |                                       | [หลา-เมระ ]                      |
|                    | For construction of IU11850 (D39 Δ <i>aliB</i>                                    | 8::P <sub>c</sub> - <i>erm</i> )      |                                  |
| P555               | TTCTTGCTACCAGCAACGGTTGGAGTGGTT                                                    |                                       | ∆ aliB…D _                       |
| DEEE               | GCCGCAAAGATAAATAAGAGAGCAAACGA                                                     | E241                                  | ΔallDF <sub>C</sub> -            |
| 1 3 3 0            | GGTCT                                                                             |                                       | enn                              |
| For                | $r$ construction of IU11867 (D39 $\Delta amiACDEF$ ::P                            | <sub>c</sub> -aad9 Δ[spd              | _1167-                           |
|                    | $spo_1770$ ::Pc-Cat                                                               |                                       | A[and 1167                       |
| P1043              | G                                                                                 |                                       | $\Delta[spu_1]or$                |
|                    |                                                                                   | IU11778                               | -<br>snd 11711:                  |
| KB414              | ATCAGCACTCGTAGATACACACGGCAAGC                                                     |                                       | $P_c$ -cat                       |
| For                | construction of IU11892 (D39 Δ <i>amiACDEF</i> ::P                                | -aad9 ∆[spd                           | 1167-                            |
| _                  | spd_1170]::P <sub>c</sub> -cat ΔaliA::P <sub>c</sub> -[kan-rp                     | os <i>L</i> ⁺])                       |                                  |
| DEOZ               | AGTCCAAAGTTTAGGAGCAAGGCGACGCT                                                     |                                       |                                  |
| P527               | A                                                                                 | IU11848                               | $\Delta a    A :: P_c^-$         |
| P528               | TTTCCATTGGCATCAACGGTCAAGCCCTTC                                                    |                                       | [kan-rpsL]                       |
| For                | construction of IU11919 (D39 ΔamiACDEF::Pa                                        | c-aad9 ∆[spd                          | _1167-                           |
|                    | spd_1170]::P <sub>c</sub> -cat ΔaliA::P <sub>c</sub> -[kan-rpsL <sup>+</sup> ] Δa | aliB::P <sub>c</sub> -erm)            |                                  |
| P555               | TTCTTGCTACCAGCAACGGTTGGAGTGGTT                                                    |                                       | ∆ <i>ali</i> B∵P -               |
| P556               | GCCGCAAAGATAAATAAGAGAGCAAACGA<br>GGTCT                                            | IU11850                               | erm                              |
|                    | For construction of IU12001 (TIGR4 Δ[cps4A'                                       | cps4E']::P <sub>c</sub> -c            | cat)                             |
| KB420              | CACGTTCACAGAAAGTGAAGCGAAGTG                                                       |                                       | $\Delta$ [cps4A'-                |
| KB416              | CCTCCAAAGAACGTCTTCCATAGAAGG                                                       | IU11819                               | cps4E']::P <sub>c</sub> -<br>cat |
|                    | For construction of IU12163 (D39 Δ <i>cls</i> :                                   | ::P <sub>c</sub> -erm)                |                                  |
| P943               | TCCCTGCCTTGACTCGCTTGGTTGAGTTTA                                                    | E422                                  | Δ <i>cl</i> s::P <sub>c</sub> -  |

| P944               | ATGTCCAGCTTGGTCTCCTTGCTCTGTCAA                                       |                                  | erm                                                        |
|--------------------|----------------------------------------------------------------------|----------------------------------|------------------------------------------------------------|
|                    | For construction of IU12470 (D39 ∆ <i>dltA</i>                       | ::P <sub>c</sub> - <i>erm</i> )  |                                                            |
| P1659              | CAAAGGTTGGAAGTTAGTTGCTAGAAATCC                                       |                                  | 5' upstream                                                |
| P1661              | CATTATCCATTAAAAATCAAACGGATCCTAA<br>ACATTATAGACAGGATAGCTAGGCTGTGT     | D39                              | 84 bp of<br><i>dltA</i>                                    |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                       | P <sub>c</sub> -erm              | P - orm                                                    |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                              | cassette <sup>c</sup>            | 1 <sub>C</sub> -OIIII                                      |
| P1662              | AAACGTCCAAAAGCATAAGGAAAGGGGCC<br>CACTCCAAATGGAAAGATTGACATCAAAGG<br>A | D39                              | 3' 54 bp of<br><i>dltA</i> + 3'<br>downstream              |
| P1660              | CGATATAGTACCAGGTCACACCATGCC                                          |                                  | of <i>dltA</i>                                             |
| For                | construction of IU13765 (D39 rpsL1 ΔamiACD                           | DEF::P <sub>c</sub> -[kan-       | rpsL⁺])                                                    |
| P25                | TGCTCCTGTTCGCTTGATGATGGA                                             |                                  | ∆amiA-                                                     |
| KB412              | CTTCGCTACGATAGAGTTGTCCGATGTCGC                                       | IU11720                          | <i>F</i> ::P <sub>c</sub> -[ <i>kan-</i><br><i>rpsL</i> ⁺] |
|                    | For construction of IU13780 (D39 rpsL1 Δ                             | amiACDEF)                        |                                                            |
| P25                | TGCTCCTGTTCGCTTGATGATGGA                                             |                                  | 5' upstream                                                |
| KB430              | GGTTCGCCCAAACATAGTGACCAAGTACA<br>CCTGCTGCTAATAAAACAAGACCTGC          | D39                              | of <i>amiA</i> + 5'<br>60 bp of<br><i>amiA</i>             |
| KB429              | CTACAGCAGGTCTTGTTTTATTAGCAGCAG<br>GTGTACTTGGTCACTATGTTTGGGCGAACC     | D20                              | 3' 57 bp of<br><i>amiF</i> + 3'                            |
| KB412              | CTTCGCTACGATAGAGTTGTCCGATGTCGC                                       | 039                              | downstream<br>of <i>amiF</i>                               |
| For                | construction of IU14510 (D39 Δ <i>amiD</i> // bgaA::k                | an-T1T2-P <sub>fts</sub>         | ∖- <i>amiD</i> ⁺)                                          |
| P146               | TGGCCATTCATCGCTGGTCGTGCTGAAAT                                        |                                  | 3' PTS EII +                                               |
| KB448              | CGATTGTAGACATTACATCGCTTCCTCTCT<br>ATCTTCCAAGTTTCG                    | IU9621                           | t1t2 + P <sub>ftsA</sub><br>+ 5' 13 bp<br>of <i>amiD</i>   |
| KB447              | ATAGAGAGGAAGCGATGTAATGTCTACAAT<br>CGATAAAGAAAAATTTCAGTTTGTAAAACG     | Daa                              | 3' 19 bp of<br>P <sub>ftsA</sub> + <i>amiD</i>             |
| KB446              | CCGCAGCAACTGGTTTATGAGAAAGTAAGT<br>TCTTCTATCTATGTGTACGTGGATCACTAG     | D39                              | + 34 bp of<br>3' <i>bgaA</i>                               |
| KB445              | CTAGTGATCCACGTACACATAGATAGAAGA<br>ACTTACTTTCTCATAAACCAGTTGCTGCGG     | IU9621                           | 3' 26 bp of<br><i>amiD</i> + 3'                            |
| CS121              | GCTTTCTTGAGGCAATTCACTTGGTGC                                          |                                  | bgaA                                                       |
|                    | For construction of E120 (D39 Δ <i>cps</i> Δ <i>am</i>               | <i>iD</i> ::P <sub>c</sub> -erm) |                                                            |
| P380               | CTCAAGAACCTACAAGTCACCTAGTCAGGC                                       |                                  | 5' upstream                                                |
| P382               | CATTATCCATTAAAAATCAAACGGATCCTAT<br>TCAGAGGCAAAATCGTCACGTTTTACAAA     | D39                              | of <i>amiD</i> + 5'<br>60 bp of<br><i>amiD</i>             |

| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                           | P <sub>c</sub> -erm                                  | P - orm                                          |  |  |  |
|--------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------|--|--|--|
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                  | cassette <sup>c</sup>                                | P <sub>c</sub> -em                               |  |  |  |
| P383               | CAAAAGCATAAGGAAAGGGGCCCTCCCTT<br>TTCGTAGTTGGTCAAAACTTAG<br>CCCTTTCAGGTCAGTATAAAGTGACGGAG | D39                                                  | 3' 60 bp of<br><i>amiD</i> + 3'<br>dowstream     |  |  |  |
| F 301              | G                                                                                        |                                                      | of <i>amiD</i>                                   |  |  |  |
|                    | For construction of E241 (D39 $\Delta cps \Delta ali$                                    | B::P <sub>c</sub> -erm)                              |                                                  |  |  |  |
| P555               |                                                                                          |                                                      | 5' upstream                                      |  |  |  |
| P557               | CATTATCCATTAAAAATCAAACGGATCCTAA<br>ACTCCTGTACCCAGGACAAGACCTG                             | D39                                                  | 60 bp of<br><i>aliB</i>                          |  |  |  |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                           | P <sub>c</sub> -erm                                  | Perm                                             |  |  |  |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                  | cassette <sup>c</sup>                                | ₽ <sub>c</sub> -erm                              |  |  |  |
| P558               | CAAAAGCATAAGGAAAGGGGCCCAAAGAA<br>AAAGAAGAATCCAATAAAAAAGCCC                               | <b>D</b> 20                                          | 3' 57 bp of<br>aliB + 3'<br>dowstream<br>of aliB |  |  |  |
| P556               | GCCGCAAAGATAAATAAGAGAGCAAACGA<br>GGTCT                                                   | D39                                                  |                                                  |  |  |  |
|                    | For construction of E422 (D39 $\Delta cps \Delta cls::P_c$ -erm)                         |                                                      |                                                  |  |  |  |
| P943               | TCCCTGCCTTGACTCGCTTGGTTGAGTTTA                                                           |                                                      | 5' upstream                                      |  |  |  |
| P945               | CATTATCCATTAAAAATCAAACGGATCCTA<br>CATAATCGAAAGACTAAAGCCATACTTGG                          | D39                                                  | of <i>cls</i> + 5'<br>60 bp of <i>cls</i>        |  |  |  |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                           | P <sub>c</sub> -erm                                  | P <sub>c</sub> - <i>erm</i>                      |  |  |  |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                  | cassette <sup>c</sup>                                |                                                  |  |  |  |
| P946               | CAAAAGCATAAGGAAAGGGGCCCTCTCAG<br>GAAGTCTATCCTCATTCTATCA                                  | 030                                                  | 3' 87 bp of<br><i>cl</i> s + 3'                  |  |  |  |
| P944               | ATGTCCAGCTTGGTCTCCTTGCTCTGTCAA                                                           | 039                                                  | downstream<br>of <i>cl</i> s                     |  |  |  |
|                    | For construction of K218 (D39 Δ <i>cps</i> Δ <i>aliA</i> ::F                             | P <sub>c</sub> -[kan-rpsL <sup>+</sup>               | ])                                               |  |  |  |
| P527               | AGTCCAAAGTTTAGGAGCAAGGCGACGCT<br>A                                                       | D39                                                  | 5' upstream<br>of <i>aliA</i> + 5'               |  |  |  |
| P529               | CATTATCCATTAAAAATCAAACGGATCCTAT<br>AAAGTAGTCGCCGCCAATAATGTCAC                            |                                                      | 60 bp of<br><i>aliA</i>                          |  |  |  |
| kanrpsL<br>forward | TAGGATCCGTTTGATTTTTAATGGATAATG                                                           | P <sub>c</sub> -[ <i>kan-</i><br>rps/ <sup>+</sup> 1 | P <sub>c</sub> -[kan-                            |  |  |  |
| kanrpsL<br>reverse | GGGCCCCTTTCCTTATGCTTTTG                                                                  | cassette <sup>c</sup>                                | rpsL <sup>+</sup> ]                              |  |  |  |
| P530               | CAAAAGCATAAGGAAAGGGGCCCCACTGT<br>AGATGAATACCAAAAAGCTCAGGA                                | D39                                                  | 3' 100 bp of<br><i>aliA</i> + 3'                 |  |  |  |

|    | P528                    | TTTCCATTO  | TTCCATTGGCATCAACGGTCAAGCCCTTC |                    |               |                    |       | downs<br>of a | tream<br>aliA     |
|----|-------------------------|------------|-------------------------------|--------------------|---------------|--------------------|-------|---------------|-------------------|
| 50 | <sup>a</sup> Antibiotic | resistance | markers:                      | Erm <sup>R</sup> , | erythromycin; | Kan <sup>R</sup> , | kanam | nycin;        | Spec <sup>R</sup> |

<sup>51</sup> spectinomycin; Str<sup>R</sup>, streptomycin; Cat<sup>R</sup>, chloramphenicol.

<sup>52</sup> <sup>b</sup>Genomic DNA of indicated *S. pneumoniae* strains was used as templates for PCR

<sup>53</sup> reactions, except for  $P_c$ -[*kan-rpsL*<sup>+</sup>],  $P_c$ -*erm*,  $P_c$ -*cat*, and  $P_c$ -*aad9* cassettes.

<sup>54</sup>  $^{c}P_{c}$ -[*kan-rpsL*<sup>+</sup>], and  $P_{c}$ -*erm* are described in (8, 9).

- <sup>55</sup> <sup>d</sup>The P<sub>c</sub>-*aad9* cassette was amplified from IU8429 (10).
- <sup>56</sup> <sup>e</sup>P<sub>c</sub>-*cat* cassette was obtained from IU10294 (9).

Table S2. IC<sub>50</sub> of *S. pneumoniae* D39 cells treated with CXCL10, LL-37, or nisin under
 various conditions<sup>a</sup>

|                  | CXCL10                                |                          |                                       | LL-37                    |                          | Nisin                       |  |  |
|------------------|---------------------------------------|--------------------------|---------------------------------------|--------------------------|--------------------------|-----------------------------|--|--|
|                  | ΙC <sub>50</sub><br>(μΜ) <sup>b</sup> | 95% CI (µM) <sup>c</sup> | ΙC <sub>50</sub><br>(μΜ) <sup>b</sup> | 95% CI (µM) <sup>c</sup> | IC <sub>50</sub><br>(µM) | 95% CI<br>(µM) <sup>c</sup> |  |  |
| 1. TGS-<br>CFU   | 0.016                                 | 0.015–0.017              | 0.063                                 | 0.057–0.070              | 0.25                     | 0.19–0.32                   |  |  |
| 2. NPB-<br>CFU   | 1.9                                   | 1.5–2.4                  | 0.67                                  | 0.47–0.95                | 0.76                     | 0.70–0.83                   |  |  |
| 3. NPB-<br>Fluor | 1.7                                   | 1.1–2.7                  | 1.6                                   | 1.5–1.7                  | 0.80                     | 0.71–0.90                   |  |  |

<sup>a</sup> IC<sub>50</sub> and 95% CI of Spn D39 to CXCL10, LL-37, and nisin were determined using a

61 CFU survival assay in TGS buffer (10 mM Tris-HCl, pH 7.4 with 5 mM glucose) (TGS-

62 CFU), or in NPB buffer (10 mM sodium phosphate, pH 7.4 with 1% (vol/vol) BHI broth)

63 (NPB CFU), or with a fluorescence-based antimicrobial assay in NPB (NPB-Fluor) as

described in Materials and Methods. Inhibition curves from which IC<sub>50</sub> and 95% CI

values were obtained are shown in Fig. 2.

 $^{66}$  <sup>b</sup> IC<sub>50</sub> values were obtained from pooled data from at least two independent

experiments and fit to a dose-response curve (log of inhibitor vs. response-variable

slope) using GraphPad Prism.

 $^{\circ}$  95% confidence interval of the IC<sub>50</sub> value.

|    |                                    |                   |                                        | CXCL10                                |                   |                              | N-1<br>C                | terminal<br>XCL10 |
|----|------------------------------------|-------------------|----------------------------------------|---------------------------------------|-------------------|------------------------------|-------------------------|-------------------|
|    | Ð                                  |                   |                                        | DMEM                                  |                   |                              |                         |                   |
|    | ь.<br>subtilis                     |                   |                                        | + 10%                                 |                   | TGS <sup>d</sup>             |                         | TGS <sup>d</sup>  |
|    | strains <sup>a</sup>               | ·                 |                                        | (vol/vol)                             |                   |                              |                         |                   |
|    |                                    | IC <sub>50</sub>  | 95% CI                                 | IC <sub>50</sub>                      | IC <sub>50</sub>  | 95% CI                       | IC <sub>50</sub>        | 95% CI            |
|    | -                                  | (µM) <sup>e</sup> | (µM) <sup>f</sup>                      | (µM)                                  | (µM) <sup>e</sup> | (µM) <sup>f</sup>            | (µM) <sup>e</sup>       | (µM) <sup>f</sup> |
|    | 1. <i>ftsX</i> <sup>+</sup>        | 0.00              | 0.07.074                               |                                       | 0.54              | 0.00.070                     | 0.00                    | 0.00.0.40         |
|    | ItSE <sup>®</sup><br>narent        | 0.69              | 0.67-0.71                              | >5.8°                                 | 0.51              | 0.36-0.72                    | 0.38                    | 0.33–0.43         |
|    | 2. $\Delta ftsX$                   | 0.73              | 0.60-0.90                              | >5.8 <sup>g</sup>                     | 0.42              | 0.32–0.55                    | 0.52                    | 0.40–0.67         |
|    | 3. ∆ftsE                           | 0.73              | 0.56–0.96                              | nd <sup>h</sup>                       | nd <sup>h</sup>   |                              | 0.43                    | 0.27–0.68         |
| 72 | <sup>a</sup> B. subtil             | is strain:        | s used were fts                        | X <sup>+</sup> ftsE <sup>+</sup> pare | nt (IU121         | 53), Δ <i>ft</i> sX (IU12    | 2981) for               | assays            |
| 73 | in NPB ar                          | nd DME            | M +10% (vol/vo                         | ol) FBS. Δ <i>ft</i> sX               | (::Tn10 <i>รเ</i> | pec (IU12165) fo             | or assavs               | in TGS.           |
|    |                                    |                   | `````````````````````````````````````` | , ,                                   | ,                 | ( )                          | ,                       | ,                 |
| 74 | and $\Delta ftsE$                  | :::Tn10 s         | spec (IU12166)                         |                                       |                   |                              |                         |                   |
| 75 | <sup>b</sup> IC <sub>50</sub> and  | 95% C             | I were determir                        | ned using a flu                       | uorescen          | ce-based antim               | icrobial a              | ssay in           |
| 76 | NPB as d                           | escribed          | d in Materials a                       | nd Methods.                           | Inhibition        | curves from wh               | nich IC <sub>50</sub> a | and 95%           |
| 77 | CI values                          | were ob           | otained are sho                        | wn in Fig. 6. /                       | A CFU su          | urvival assay wa             | as perforn              | ned               |
| 78 | under the                          | same c            | onditions and r                        | esults are sho                        | own in Fig        | g. S7A.                      |                         |                   |
| 79 | $^{\rm c}$ IC <sub>50</sub> valu   | les were          | e estimated fror                       | n a fluoresce                         | nce-base          | d antimicrobial              | assay an                | d a CFU           |
| 80 | survival a                         | ssay in           | DMEM +10% (                            | vol/vol) FBS a                        | as descrit        | bed in Materials             | and Metl                | nods.             |
| 81 | Graphs fr                          | om whic           | $h \ IC_{50}$ values v                 | vere estimate                         | d are sho         | own in Fig. S7D              | and S7E                 |                   |
| 82 | $^{d}$ IC <sub>50</sub> and        | 95% CI            | were determin                          | ied using a C                         | FU surviv         | al assay in TG               | S as desc               | ribed in          |
| 83 | Materials                          | and Me            | thods. Inhibitio                       | n curves from                         | which IC          | $c_{50}$ and 95% CI $^\circ$ | values we               | ere               |
| 84 | obtained                           | are sho           | wn in Fig. S7B                         | and S7C.                              |                   |                              |                         |                   |
| 85 | <sup>e</sup> IC <sub>50</sub> valu | ues were          | e obtained from                        | pooled data                           | from at le        | east two indepe              | ndent                   |                   |
| 86 | experime                           | nts and           | fit to a dose-res                      | sponse curve                          | (log of in        | hibitor vs. respo            | onse-varia              | able              |
| 87 | slope) usi                         | ng Grap           | hPad Prism.                            |                                       |                   |                              |                         |                   |

**Table S3.** IC<sub>50</sub> of chemokine-treated *Bacillus subtilis* under various conditions

- <sup>f</sup> 95% confidence interval of the IC<sub>50</sub> value.
- <sup>89</sup> <sup>g</sup>Less than 50% inhibition was obtained with both the fluorescence-based antimicrobial
- <sup>90</sup> assay and the CFU survival assay at the highest concentration (5.8 μM) of CXCL10
- 91 (see Fig. S7D and S7E).
- <sup>92</sup> <sup>h</sup> nd, not determined.

**Table S4.** IC<sub>50</sub> of N-terminal CXCL10-treated S. pneumoniae cells with a CFU survival

94 assay in TGS buffer<sup>a</sup>

|     |                                                                  | Ν                                         | -terminal CXCL10                                                              |
|-----|------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|
|     | <i>S. pneumoniae</i> strains <sup>b</sup>                        | IC <sub>50</sub> (μΜ) <sup>c</sup>        | 95% Cl <sup>d</sup>                                                           |
|     | 1. D39                                                           | 0.14                                      | 0.12–0.16                                                                     |
|     | 2. $ftsX^{+} P_{c}$ -[kan-rpsL <sup>+</sup> ]                    | 0.14                                      | 0.12-0.16                                                                     |
|     | 3. ftsX (W183L) P <sub>c</sub> -[ <i>kan-rpsL</i> <sup>+</sup> ] | 0.15                                      | 0.12-0.19                                                                     |
|     | 4 <i>. ftsX</i> (N269T) P <sub>c</sub> -[ <i>kan-rpsL</i> ⁺]     | 0.13                                      | 0.10-0.18                                                                     |
|     | 5. ftsX (S161Y) P <sub>c</sub> -[ <i>kan-rpsL</i> ⁺]             | 0.12                                      | 0.11–0.13                                                                     |
|     | 6. ftsX (D129V) P <sub>c</sub> -[ <i>kan-rpsL</i> ⁺]             | 0.17                                      | 0.11–0.27                                                                     |
|     | 7. ftsX (E213V) $P_c$ -[kan-rpsL <sup>+</sup> ]                  | 0.15                                      | 0.12–0.19                                                                     |
| 95  | <sup>a</sup> IC <sub>50</sub> and 95% CI were determine          | ned using a CFU su                        | urvival assay in TGS as described in                                          |
| 96  | Materials and Methods.                                           |                                           |                                                                               |
| 97  | <sup>b</sup> Strains used are in D39 genetion                    | c background and                          | are as follows: D39, IU1690; $ftsX^{+} P_{c}$ -                               |
| 98  | [ <i>kan-rpsL</i> ⁺], IU10748; <i>ftsX</i> (W18                  | 3L) P <sub>c</sub> -[ <i>kan-rpsL</i> ⁺], | IU9008; <i>ftsX</i> (N269T) P <sub>c</sub> -[ <i>kan-rpsL</i> <sup>+</sup> ], |
| 99  | IU9004;                                                          | sL⁺], IU8773; ftsX                        | (D129V) P <sub>c</sub> -[ <i>kan-rpsL</i> ⁺], IU9110; <i>ftsX</i>             |
| 100 | (E213V) P <sub>c</sub> -[ <i>kan-rpsL</i> ⁺], IU9113.            | The range of N-te                         | rminal CXCL10 concentrations used                                             |
| 101 | was 0.014 to 1.85 µM for IU1690                                  | 0 and 0.014 to 0.46                       | 63 μM for all other strains                                                   |
| 102 | $^{\rm c}$ IC_{\rm 50} values were obtained from                 | n pooled data from                        | at least two independent experiments                                          |
| 103 | and fit to a dose-response curve                                 | e (log of inhibitor vs                    | . response-variable slope) using                                              |
| 104 | GraphPad Prism.                                                  |                                           |                                                                               |
| 105 | <sup>d</sup> 95% confidence interval of the                      | IC <sub>50</sub> value.                   |                                                                               |
| 106 |                                                                  |                                           |                                                                               |

107

## SUPPLEMENTAL FIGURE LEGENDS

Fig. S1. S. pneumoniae cells in TGS are sensitive to CXCL10 in the 0.03 to 0.06 µM 108 range. A CFU survival assay in TGS (10 mM Tris-HCl 5 mM glucose, pH 7.4) in the 109 presence of CXCL10 was performed as described in Materials and Methods. D39 110 (IU1690, black) and D39  $\Delta cps$  (IU1945, red) are encapsulated and unencapsulated 111 strains of serotype 2 Spn respectively, and TIGR4 (IU11966, blue), and TIGR4  $\Delta cps$ 112 (IU12001, green) are encapsulated and unencapsulated strains of serotype 4 Spn, 113 respectively. n indicates the number of independent experiments, each containing 114 duplicate reactions. Each data point represents the mean  $\pm$  SEM (if not visible, error 115 bars are smaller than the symbol). Dose-response curves were fit to pooled data in 116 GraphPad Prism, using the (log of inhibitor vs. response-variable slope) function. See 117 Table 1 for 95% CI values. 118

Fig. S2. Unencapsulated S. pneumoniae D39 show significant decreases in CFUs 119 and low fluorescence after incubation in NPB. (A) Percentage CFU survival after 2 h of 120 incubation in TGS (10 mM Tris-HCl with 5 mM glucose, pH 7.4; left two columns) or 121 NPB (10 mM sodium phosphate, pH 7.4 with 1% (vol/vol) BHI broth; right four columns). 122 Strains from left to right are D39  $cps^+$  (IU1690), D39  $\Delta cps$  (IU1945), D39  $cps^+$  (IU1690), 123 D39  $\triangle cps$  (IU1945), D39 rpsL1 cps<sup>+</sup> (IU1781) and D39 rpsL1 cps2E ( $\triangle A$ ) (IU3309) 124 containing a frameshift mutation within cps2E. Strains were grown in BHI broth and 125 resuspended in the indicated buffers as described in Materials and Methods. Cells were 126 serially diluted and plated for CFU both before and after incubation, and % survival 127  $(CFU_{2h}/CFU_{0h}) \pm$  standard error (SE) for each strain is shown. n=2, except for the 128 following: D39 in TGS, n=5; D39  $\Delta cps$  in TGS, n=11; D39 in NPB, n=7. Statistical 129

significance was determined using Mann-Whitney T-test. ns, not significant; \*, p < 0.05; \*\*, p < 0.01. (B) Representative plots of fluorescence over time for incubations of strains in NPB. Resazurin dye was added after 2 h to cell suspensions in NPB and fluorescence was measured until approximately 5 h. Numbers to the right of each plot show the raw fluorescence value in Arbitrary Fluorescence Units (AFU), as well as the percent relative to *Spn* D39.

Fig. S3. The fluorescence-based antimicrobial assay for  $IC_{50}$  determination is not 136 dependent on the basal level of fluorescence signal generated by untreated bacteria. 137 (A) Representative plots of fluorescence over time for incubations of Spn D39 (IU1690, 138 black), TIGR4 (IU11966, red) and TIGR4  $\Delta cps$  (IU12001, blue) in NPB showing 139 variability in fluorescence signals among strains. (B) Representative plots showing 140 similar fluorescence signals between D39 (IU1690, black) and  $\Delta amiA-F$  (IU11759, red) 141 in NPB. (C) Mean (± SEM) fluorescence (AFU at approximately 4.5 h) in NPB for Spn 142 strains and serotypes and other Streptococcus species (y-axis) plotted as a function of 143 the mean IC<sub>50</sub> for CXCL10 (x-axis; closed symbols). Open symbols indicate estimated 144 IC<sub>50</sub> values. Upper and lower panels show data from different batches of CXCL10. 145 Linear regression analysis showed no correlation (upper panel, R<sup>2</sup>=0.14; lower panel 146  $R^2 = 0.06$ ). 147

Fig. S4. The Δ*amiA-F* clean deletion mutant phenocopies the Δ*amiA-F*::P<sub>c</sub>-*aad9* strain, and the Δ*amiA-F* mutation is responsible for the phenotype seen in the ΔOPT mutant. CXCL10 killing of the Δ*amiA-F* strain is consistent with both fluorescence-based and CFU survival assays. (A) D39 *rpsL1* (IU1781, black) and isogenic Δ*amiA-F* clean deletion strain (IU13780, red) were assayed with a fluorescence-based antimicrobial

assay in NPB with various concentrations of CXCL10, LL-37 and nisin. (B) D39 153 (IU1690, black), ΔamiA-F (IU11759, red), Δ[spd\_1166-spd\_1170] (IU11778, green), 154  $\Delta aliA$  (IU11848, purple),  $\Delta aliB$  (IU11850, light blue) and  $\Delta OPT$  (IU11919, dark blue) 155 were assayed with a fluorescence-based antimicrobial assay in NPB with 6 µM 156 CXCL10, 1.2 μM LL-37 and 2.4 μM nisin. (C) Spn D39 (IU1690, black) and ΔamiA-F 157 (IU11759, red) were assayed with a fluorescence-based antimicrobial assay (Fluor.) 158 and a CFU survival assay (CFU) in NPB (see Materials and Methods) with 6 µM 159 CXCL10. Experiments in A, B, and C were performed once with duplicate wells. 160

**Fig. S5.** Spn D39  $\triangle$ amiA-F mutants in NPB are more resistant to nisin, whereas Spn 161 D39  $\triangle dlt$  and Spn TIGR4 are more sensitive to LL-37 and nisin relative to Spn D39. 162 Sensitivity to LL-37 (A and B) and nisin (C and D) in NPB was determined using a 163 fluorescence-based antimicrobial assay, as described in Materials and Methods. (A and 164 C): S. pneumoniae D39 (IU1690, black circles; data from Fig. 2), Spn D39 AamiA-F 165 (IU11759, red squares), Spn D39  $\Delta$ OPT (IU11919, blue triangles), and Spn D39  $\Delta$ dltA 166 (IU12470, green inverted triangles). (B and D): D39 (IU1690, black circles; data from 167 Fig. 2), Spn TIGR4 (IU11966, red squares), and Spn TIGR4  $\Delta cps$  (IU12001, blue 168 triangles). n indicates the number of independent experiments, each containing 169 duplicate reactions. Each data point represents the mean  $\pm$  SEM (if not visible, error 170 bars are smaller than the symbol). Dose-response curves were fit to pooled data in 171 GraphPad Prism, using the (log of inhibitor vs. response-variable slope) function. See 172 Table 3 for 95% CI values. 173

Fig. S6. Sensitivity to CXCL10 and dose response curves of *S. mitis*, *S. sanguinis*,
 and *S. mutans* to LL-37. Sensitivities of *S. mitis* (IU11303, red), *S. sanguinis* (IU11305,

blue), and S. mutans (IU11309, green) to (A) CXCL10 and (B) LL-37 in NPB buffer 176 relative to Spn D39 (IU1690, black closed circles; data from Fig. 2B) and Spn TIGR4 177 (IU11966, black open circles; data from Fig. S5B) were determined using a 178 fluorescence-based antimicrobial assay, as described in Materials and Methods. Each 179 bar or point represents the mean ± SEM of n independent experiments, each containing 180 duplicate reactions. Dose-response curves and IC<sub>50</sub> values in (B) were fit to a dose-181 response curve (log of inhibitor vs. response-variable slope) using GraphPad Prism. 182  $IC_{50}$  of *S. mutans* to LL-37 was estimated to be 5  $\mu$ M. 183

**Fig. S7.**  $\Delta$ *ftsX* and  $\Delta$ *ftsE* mutants of *B. subtilis* show similar IC<sub>50</sub> values to CXCL10 184 or N-CXCL10 as the  $ftsE^+$   $ftsX^+$  parent. CFU survival assays were performed as 185 described in Materials and Methods. (A)  $ftsX^{\dagger}$  parent (IU12153; black circles) and 186  $\Delta fts X$ ::Tn10 spec (IU12165; red squares) mutant of *B. subtilis* in NPB buffer. Data 187 shown was obtained from one experiment with duplicate wells. (B) and (C), assays in 188 TGS buffer, parent (IU12153; black), ΔftsX (IU12981; red) and ftsE::Tn10 spec 189 (IU12166; blue). n indicates the number of independent experiments. IC<sub>50</sub> and 95% CI 190 values in comparison with other assay conditions are included in Table S3. (D) and (E) 191 3 x 10<sup>4</sup> CFU per reaction of Bsu parent and  $\Delta ftsX$  strains in DMEM +10% (vol/vol) FBS 192 with indicated CXCL10 concentrations were incubated for 3.4 h statically in 96-well 193 plates at 37°C in 5% CO<sub>2</sub> before the addition of resazurin dye. Fluorescence was 194 measured (shown in D) and cells were serially diluted and plated for CFU survival assay 195 (shown in E) at 5.2 h. Results included in Table S3. 196

Fig. S8. CXCL10 does not show antimicrobial activity against *Spn* D39 in DMEM ±
 10% (vol/vol) FBS. (A) *Spn* D39 (IU1690) was incubated in DMEM +10% (vol/vol) FBS

with 11.6 µM CXCL10 (three independent experiments with duplicate wells) or various 199 concentrations of nisin (one experiment with duplicate wells) and assayed with a 200 fluorescence-based antimicrobial assay as described in Materials and Methods. 201 Statistical significance was determined using Mann-Whitney t-test of CXCL10-treated vs 202 untreated sample. \*\*, p < 0.01. (B) Spn D39 (IU1690) was incubated in DMEM with no 203 FBS with 3.5 µM CXCL10 or 3 µM nisin for 3.8 h. Resazurin dye was then added, 204 fluorescence was measured 2 h later (top panel), and cells were serially diluted and 205 plated for CFU (bottom panel). Numbers on bars indicate the percentage of 206 fluorescence relative to the untreated sample (top panel) or 10<sup>7</sup> CFU/mL (bottom panel). 207 This experiment was performed once with duplicate wells. 208

209

211

210

## SUPPLEMENTAL REFERENCES

- 1. Lanie JA, Ng WL, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, 212 Tettelin H, Glass JI, Winkler ME. 2007. Genome sequence of Avery's virulent 213 serotype 2 strain D39 of Streptococcus pneumoniae and comparison with that of 214 unencapsulated laboratory strain R6. J Bacteriol **189:**38-51. 215
- 2. Ramos-Montanez S, Tsui HC, Wayne KJ, Morris JL, Peters LE, Zhang F, 216 Kazmierczak KM, Sham LT, Winkler ME. 2008. Polymorphism and regulation 217 of the *spxB* (pyruvate oxidase) virulence factor gene by a CBS-HotDog domain 218 protein (SpxR) in serotype 2 Streptococcus pneumoniae. Mol Microbiol 67:729-219 746. 220

- Sham LT, Jensen KR, Bruce KE, Winkler ME. 2013. Involvement of FtsE ATPase
  and FtsX extracellular loops 1 and 2 in FtsEX-PcsB complex function in cell
  division of *Streptococcus pneumoniae* D39. MBio 4:e00431-13.
- 224 4. Zheng JJ, Perez AJ, Tsui HT, Massidda O, Winkler ME. 2017. Absence of the
  225 KhpA and KhpB (JAG/EloR) RNA-binding proteins suppresses the requirement
  226 for PBP2b by overproduction of FtsA in *Streptococcus pneumoniae* D39. Mol
  227 Microbiol 106:793-814.
- 5. Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg 228 J, DeBoy RT, Haft DH, Dodson RJ, Durkin AS, Gwinn M, Kolonay JF, Nelson 229 WC, Peterson JD, Umayam LA, White O, Salzberg SL, Lewis MR, Radune D, 230 Holtzapple E, Khouri H, Wolf AM, Utterback TR, Hansen CL, McDonald LA, 231 Feldblyum TV, Angiuoli S, Dickinson T, Hickey EK, Holt IE, Loftus BJ, Yang 232 F, Smith HO, Venter JC, Dougherty BA, Morrison DA, Hollingshead SK, 233 Fraser CM. 2001. Complete genome sequence of a virulent isolate of 234 Streptococcus pneumoniae. Science 293:498-506. 235
- 236 6. Zafar MA, Kono M, Wang Y, Zangari T, Weiser JN. 2016. Infant Mouse Model for
  237 the Study of Shedding and Transmission during *Streptococcus pneumoniae* 238 Monoinfection. Infect Immun 84:2714-2722.
- 7. Rajkovic A, Hummels KR, Witzky A, Erickson S, Gafken PR, Whitelegge JP,
  Faull KF, Kearns DB, Ibba M. 2016. Translation Control of Swarming
  Proficiency in *Bacillus subtilis* by 5-Amino-pentanolylated Elongation Factor P. J
  Biol Chem 291:10976-10985.

| 243 | 8. | Tsui HC, Keen SK, Sham LT, Wayne KJ, Winkler ME. 2011. Dynamic distribution   |
|-----|----|-------------------------------------------------------------------------------|
| 244 |    | of the SecA and SecY translocase subunits and septal localization of the HtrA |
| 245 |    | surface chaperone/protease during Streptococcus pneumoniae D39 cell division. |
| 246 |    | MBio <b>2</b> :e00202-11.                                                     |
| 247 | 9. | Tsui HC, Zheng JJ, Magallon AN, Ryan JD, Yunck R, Rued BE, Bernhardt TG,      |
| 248 |    | Winkler ME. 2016. Suppression of a deletion mutation in the gene encoding     |
| 249 |    | essential PBP2b reveals a new lytic transglycosylase involved in peripheral   |
| 250 |    | peptidoglycan synthesis in Streptococcus pneumoniae D39. Mol Microbiol        |
| 251 |    | <b>100:</b> 1039-1065.                                                        |
| 252 | 10 | . Tsui HT, Boersma MJ, Vella SA, Kocaoglu O, Kuru E, Peceny JK, Carlson EE,   |

VanNieuwenhze MS, Brun YV, Shaw SL, Winkler ME. 2014. Pbp2x localizes
 separately from Pbp2b and other peptidoglycan synthesis proteins during later
 stages of cell division of *Streptococcus pneumoniae* D39. Mol Microbiol 94:21 40.



Fig. S1



В













