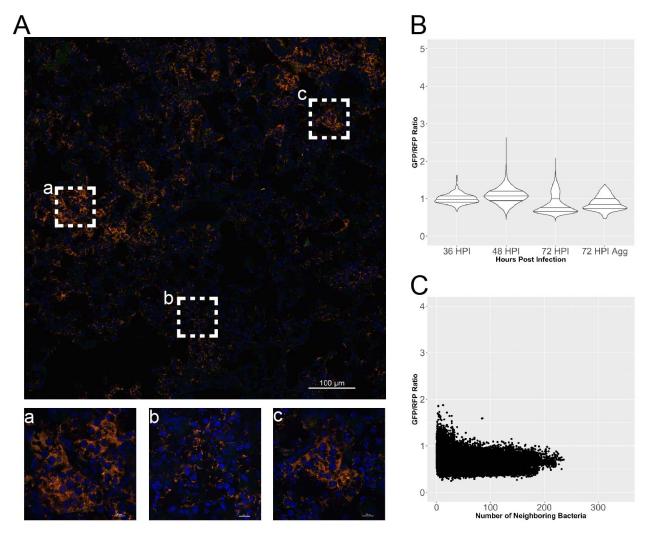
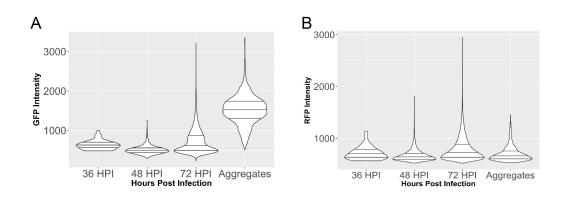
1 Supplementary Figures:

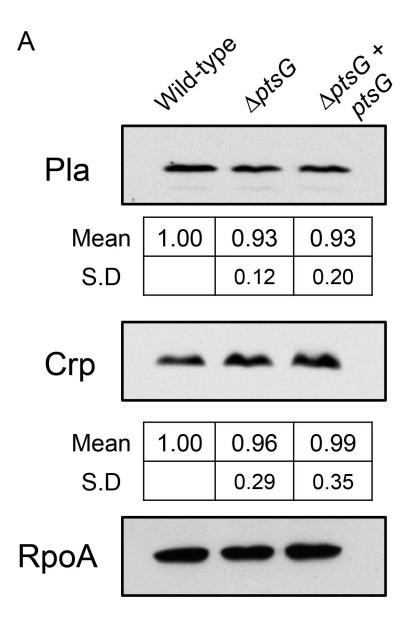


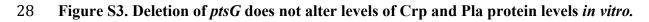

Figure S1. No increased spatiotemporal expression of *gfp* driven from the constitutive *tetO*promoter.

+ promoter.

5 Cross sections of lungs from mice infected with CO92 with the P*tetO*-GFP reporter 6 (green) and pGEN-RFP plasmid (red) were stained with DAPI (blue) and imaged by confocal 7 microscopy. (A) Large images were generated with the tile feature in NIS elements acquisition 8 software to cover *Y. pestis* containing lesions within the lung space. (a-c) Magnified images from 9 selected regions of the bigger lesion in (A). (B) Violin plots displaying the relative expression of 10 *tetO* as a ratio of GFP/RFP quantified in individual cells combined from the lung lesions of at

11 least three mice at each time-point, across two independent infection experiments at 36, 48, and 12 72 hpi. Horizontal lines within the violins represent the 25th percentile, median, and 75th 13 percentile. Aggregates were also imaged and analyzed separately. (C) Expression of *tetO* in 14 individual cells as a function of neighboring bacterial cell density from all images and time 15 points post infection.


16



19 Figure S2. Separated GFP and RFP channels for P_{crp}-GFP infections.

(A) GFP and (B) RFP intensities alone measured from FIJI analysis at 36, 48, and 72 hpi
 and within aggregates of cells in the lungs. Horizontal lines within the violins represent the 25th
 percentile, median, and 75th percentile.

- 29 (A) Representative blots of Crp and Pla protein levels of Y. pestis LCR-, Y. pestis LCR- ΔptsG,
- 30 and Y. pestis LCR- $\Delta ptsG + ptsG$ grown in BHI for 6 hours at 37°C. Quantification of Pla/RpoA

- 31 and Crp/RpoA ratios were measured in FIJI and standardized to wild-type Y. pestis from three
- 32 independent experiments.

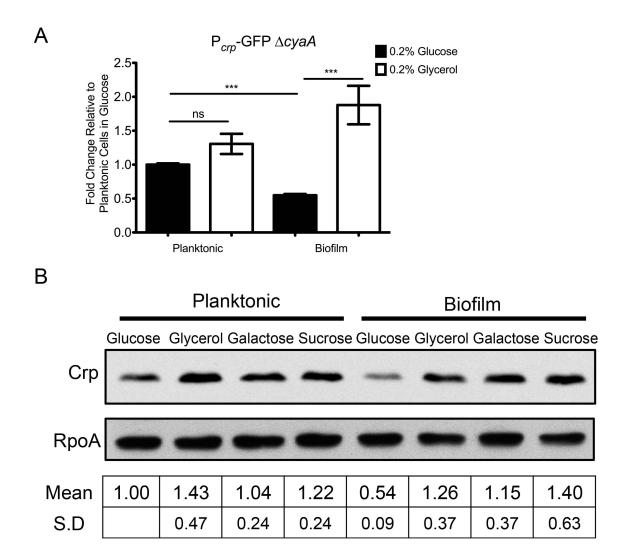


Figure S4. Repression of *crp* expression in biofilms does not require *cyaA* and is specific to
 glucose.

(A) *Y. pestis* Δ*cyaA* with the P_{crp}-GFP reporter was grown in TMH supplemented with
0.2% glucose (black bars) or 0.2% glycerol (white bars) overnight. Planktonic and biofilm cells
were separated and GFP intensity was standardized to planktonic cells grown in 0.2% glucose.
(B) Representative blot measuring Crp protein levels in *Y. pestis* LCR- grown in TMH

40 supplemented with either 0.2% glucose, 0.2% glycerol, 0.2% galactose, or 0.2% sucrose
41 overnight. Quantification of Crp/RpoA ratio was measured in FIJI and was standardized to
42 planktonic cells in 0.2% glucose from three independent experiments.

45 Supplemental Information

Table S1. Bacterial strains used in this study

<i>Y. pestis</i> strains	Designation	Genotype/Characteristics	Source
	0	wild-type, pCD1+, pMT+, pPCP1+,	
CO92	SAN3	pgm+	Lab Stock
		$\Delta ptsG$, pCD1+, pMT+, pPCP1+,	
$CO92 \Delta ptsG$	SAN321	pgm+	This work
$CO92 \Delta ptsG +$		$\Delta ptsG$, pCD1+, pMT+, pPCP1+,	
ptsG	SAN323	pgm+, <i>att</i> Tn7: <i>ptsG</i> complement	This work
CO92 Pcrp-GFP		pCD1+, pMT+, pPCP1+, pgm+,	
RFP+	SAN237	pGEN-RFP, <i>att</i> Tn7: P <i>crp</i> -GFP	This work
CO92 Ppla-GFP		pCD1+, pMT+, pPCP1+, pgm+,	
RFP+	SAN235	pGEN-RFP, <i>att</i> Tn7: P <i>pla</i> -GFP	This work
CO92 PtetO-GFP		pCD1+, pMT+, pPCP1+, pgm+,	
RFP+	SAN289	pGEN-RFP, <i>att</i> Tn7: PtetO-GFP	This work
CO92 Pcrp-tetO		pCD1+, pMT+, pPCP1+, pgm+,	
5'UTR-GFP		pGEN-RFP, <i>att</i> Tn7: P <i>crp-tetO</i>	
RFP+	SAN239	5'UTR-GFP	This work
CO92 $\Delta ptsG$		$\Delta ptsG$, pCD1+, pMT+, pPCP1+,	
Pcrp-GFP RFP+		pgm+, pGEN-RFP, <i>att</i> Tn7: P <i>crp</i> -	
$\Delta ptsG$	SAN327	GFP	This work
$CO92 \Delta ptsG$		$\Delta ptsG$, pCD1+, pMT+, pPCP1+,	
Ppla-GFP RFP+	SAN333	pgm+, pGEN-RFP, <i>att</i> Tn7: Ppla-GFP	This work
		$\Delta ptsG$, pCD1+, pMT+, pPCP1+,	
CO92 $\Delta ptsG$		pgm+, pGEN-RFP, attTn7: PtetO-	
PtetO-GFP RFP+	SAN335	GFP	This work
CO92 LCR-	PAN259	pCD1-, pMT+, pPCP1+, pgm+	Lab Stock
CO92 LCR-		Δ <i>ptsG</i> , pCD1-, pMT+, pPCP1+,	
$\Delta ptsG$	PAN1020	pgm+	This work
CO92 LCR-		$\Delta ptsG$, pCD1-, pMT+, pPCP1+,	
$\Delta ptsG + ptsG$	PAN1024	pgm+, <i>att</i> Tn7: <i>ptsG</i> complement	This work
CO92 LCR-		pCD1-, pMT+, pPCP1+, pgm+,	
Promoterless GFP	PAN494	attTn7: GFP	(1)
CO92 LCR- Pcrp-		pCD1-, pMT+, pPCP1+, pgm+,	
GFP	PAN578	attTn7: Pcrp-GFP	(1)
CO92 LCR- Ppla-		pCD1-, pMT+, pPCP1+, pgm+,	
GFP	PAN607	<i>att</i> Tn7: Ppla-GFP	(1)
CO92 LCR- Pcrp-		pCD1-, pMT+, pPCP1+, pgm+,	
tetO 5'UTR-GFP	PAN828	attTn7: Pcrp-tetO 5'UTR-GFP	This work
CO92 LCR-			
$\Delta cyaA$		pCD1-, pMT+, pPCP1+, pgm+,	
Promoterless GFP	PAN749	attTn7: GFP $\Delta cyaA$	This work

CO92 LCR-		pCD1-, pMT+, pPCP1+, pgm+,	
∆ <i>cyaA</i> P <i>crp</i> -GFP	PAN857	<i>att</i> Tn7: Pcrp-GFP ΔcyaA	This work

- Table S2. Plasmids used in this study. 51

E. coli				
Strain	Strain	Name	Description	Source
		puc18R6		
	CC118 λ-	K-mini-		Lab
LAN24	pir	tn7-km	Plasmid backbone used for Tn7 integration	stock
	DH5aF' λ-		Lab	
LAN25	pir	pTNS2	Tn7 transposase helper plasmid	Stock
			Lab	
LAN29	DH5a	pSkippy	IPTG-inducible FLP recombinase plasmid	Stock
			Contains entire CDS of gfp cloned into	
LAN308	S17 λ-pir	pLB30	pUC18R6K-mini-Tn7-km	(1)
			Contains 496 bp upstream through first 27 nt	
			of <i>crp</i> CDS fused to CDS of GFP cloned into	
LAN357	S17 λ-pir	pLB35	BamHI/PstI site of puc18R6K-mini-tn7-km	(1)
			Contains 500 bp upstream through first 27 nt	
			of <i>pla</i> CDS fused to CDS of GFP cloned into	
LAN375	S17 λ-pir	pLB38	BamHI/PstI site of puc18R6K-mini-tn7-km	(1)
			Contains Pcrp-tetO 5'UTR-GFP construct	
	EC100D		cloned into BamHI/PstI site of puc18R6K-	This
LAN450	λ-pir	pJR04	mini-Tn7-km	work
		pGEN-	Constitutive dsredT3 expression under control	
LAN468	Top10	RFP	of em7 promoter	(2)
			Contains PtetO-GFP construct cloned into	This
LAN501	S17 λ-pir	pJR25	BamHI/PstI site of puc18R6K-mini-Tn7-km	work

- 55 Table S3. Primers used in this study.

Name	Sequence	Purpose
INAILIE	GTGTAGGCTGGAGCTGCTTC	Purpose Amplifcation of Kan
P63		cassette for Lambda Red
105	ATTCCGGGGGATCCGTCGACC	
P64	ATTUUUUUATUUTUAU	Amplifcation of Kan cassette for Lambda Red
P04		
D245	AACTGCAGCTTTCACCAGCGTTTCTGGGTG	5' amplification of <i>tetO</i>
P345		promoter with PstI
D246	GGGTACCTTTCTCCTCTTTAATG	3' amplification of <i>tetO</i>
P346		promoter
D1000	CGGGATCCTTATTTGTATAGTTCATCCATG	3' amplification of <i>gfp</i>
P1089	CCATGTG	into BamHI Tn7
	CTGCAGGACACGACATCAATGGCGCTACA	5' amplification 496bp
D1654	CCCCCCGC	upstream of <i>crp</i> with
P1554		PstI
	ATCAGCAGGACGCACTGACCGAATTCATT	5' amplification of <i>gfp</i>
D.1	AAAGAGGAGAAAAGGTACCCATGAGTAAAG	with tetO 5'UTR
P1772	GAGAAGAAC	overhang
	GGGTACCTTTCTCCTCTTTAATGAATTCGG	3' amplification of P <i>crp</i>
	TCAGTGCGTCCTGCTGATCTTTCTTTTAGC	with <i>tetO</i> 5'UTR
P1773	ATATTAAC	overhang
	ATAGGCTGTTGGTGGAAACAG	Deletion of <i>ptsG</i> by
		Lambda Red
P1993		Recombination
	GAAGCAGCTCCAGCCTACACAGTTGAGCG	Deletion of <i>ptsG</i> by
	TGCTCCTGAGTAATAG	Lambda Red
P1994		Recombination
	GGTCGACGGATCCCCGGAATTTCAGGTAG	Deletion of <i>ptsG</i> by
	GGGAGAGCAAAAG	Lambda Red
P1995		Recombination
	TCAACGTAATACCCTCGACACC	Deletion of <i>ptsG</i> by
		Lambda Red
P1996		Recombination
	GGGGGATCCATAGGCTGTTGGTGGAAACA	Complementation of
	G	ptsG into BamHI/PstI
P1997		Tn7
	GGGCTGCAGTCAACGTAATACCCTCGACA	Complementation of
	CC	ptsG into BamHI/PstI
P1998		Tn7

59 **REFERENCES**

- 60
- 61 1. Lathern WW, Schroeder JA, Bellows LE, Ritzert JT, Koo JT, Price PA, Caulfield AJ,
- 62 Goldman WE. 2014. Posttranscriptional regulation of the *Yersinia pestis* cyclic AMP
- 63 receptor protein Crp and impact on virulence. MBio 5:e01038-13.
- 64 2. Price PA, Jin J, Goldman WE. 2012. Pulmonary infection by *Yersinia pestis* rapidly
- 65 establishes a permissive environment for microbial proliferation. Proc Natl Acad Sci U S
- 66 A 109:3083-8.