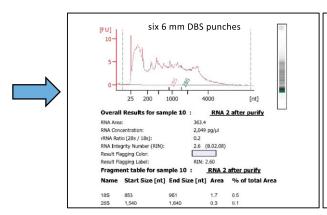

DBS RNA Extraction Testing Flowchart

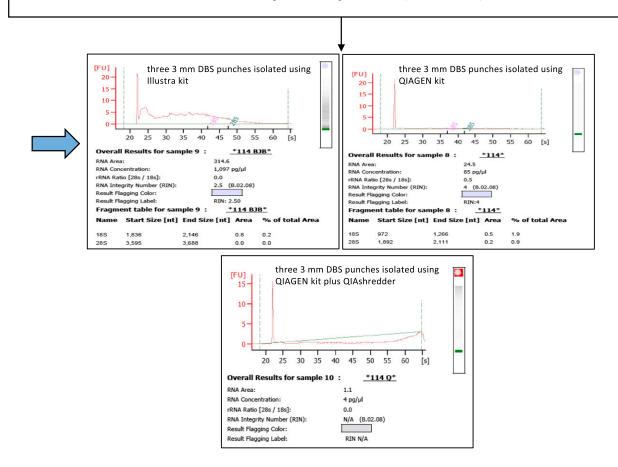
- 1. Test different DBS punch sizes and two sample disruption methods
 - A. Homogenizer disruption method: one 6 mm punch, one full DBS
 - B. Incubation and agitation method: one 6 mm punch, one full DBS



The blue arrow indicates the condition that provided the optimal results in this experiment. (Clockwise from top left): This image indicates a tube containing one 6 mm punch that was homogenized using a 1-hour incubation at room temperature with vortexing for 30 seconds every 15 minutes. The top right image indicates a full DBS that underwent the same method. The bottom right image indicates a full DBS that was homogenized using a bead beater. The sample was "beat" twice consecutively for 30 seconds at the highest setting. The bottom left image shows one 6 mm punch that was homogenized using the bead beater method. All samples were homogenized in 350 μ L lysis buffer with 3.5 μ L beta-mercaptoethanol. This set of conditions was determined to be most optimal based on both the Agilent image above and the NanoDrop concentration.

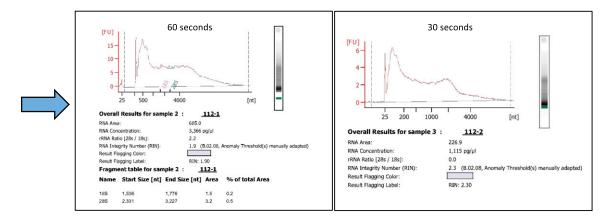
SUPPLEMENTAL FIGURE 1. Optimization of RNA extraction and purification steps from dried blood spots (DBS). ID numbers on the Agilent graphs were the IDs used during research and development.

- 2. Test optimal number of 6 mm punches per extraction tube, using optimal sample disruption method from Test 1
 - A. Two tubes with one 6 mm punch each, pooled after sample disruption
 - B. Three tubes with two 6 mm punches each, pooled after sample disruption



The blue arrow indicates the condition that provided the optimal results in this experiment. The left image indicates a tube that contained six 6 mm punches that were homogenized in three different tubes (each containing two punches) and then pooled into one tube after homogenization for the RNA isolation. The right image indicates a tube that contained two 6 mm punches that were homogenized individually and then pooled for the RNA isolation procedure. All samples were homogenized using the incubation and agitation method as described in the previous experiment. This set of conditions was determined to be most optimal based on both the Agilent image above and the NanoDrop concentration.

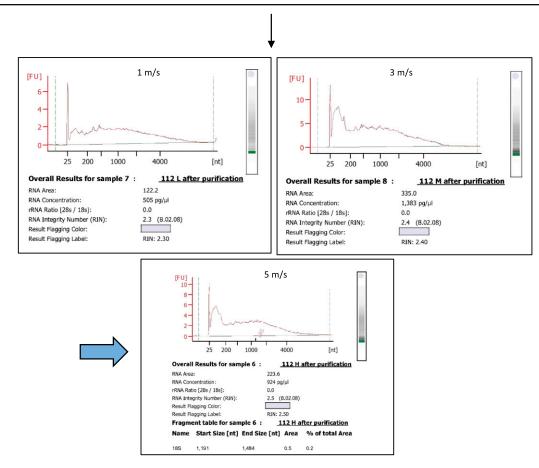
3. Test optimal RNA extraction method A. Three 3 mm punches using Rneasy Micro Kit (QIAGEN) B. Three 3 mm punches using Illustra Kit (GE Healthcare)



The blue arrow indicates the condition that provided the optimal results in this experiment. The top left image indicates three 3 mm DBS punches extracted using the Illustra RNA Isolation Kit (GE Healthcare). The top right image was three 3 mm DBS punches extracted using the RNeasy micro kit (QIAGEN), and the bottom image was three 3 mm DBS punches extracted using the RNeasy micro kit (QIAGEN), in addition to a pass through a QIAshredder column. All tubes were homogenized using the incubation and agitation method as described in experiment 1. This set of conditions was determined to be most optimal based on both the Agilent image above and the NanoDrop concentration.

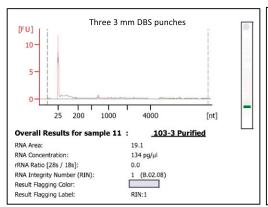
4. Test bead beater sample disruption method

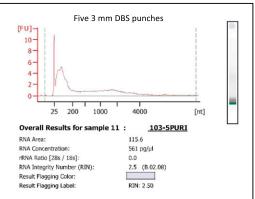
- A. Three 3 mm punches in bead beater 30 seconds at max speed (5 m/s)
- B. Three 3 mm punches in bead beater 60 seconds at max speed (5 m/s)

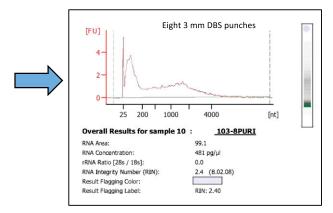


The blue arrow indicates the condition that provided the optimal results in this experiment. The image on the left indicates a tube with DBS that was homogenized using the Bead Mill 4 Bead Beater (Fisher Scientific) for 60 seconds, and the image on the right indicates a tube with DBS was homogenized using the Bead Mill 4 Bead Beater for 30 seconds. All tubes contained three 3 mm punches from the same patient, and were homogenized in a solution of 350 μ L lysis buffer and 35 μ L beta-mercaptoethanol. This set of conditions was determined to be most optimal basedon both the Agilent image above and the NanoDrop concentration.

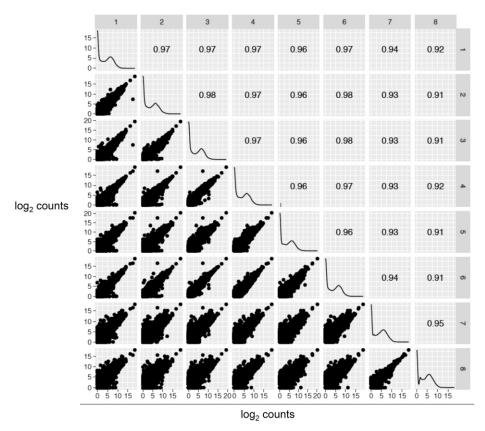
SUPPLEMENTAL FIGURE 1. (Continued)

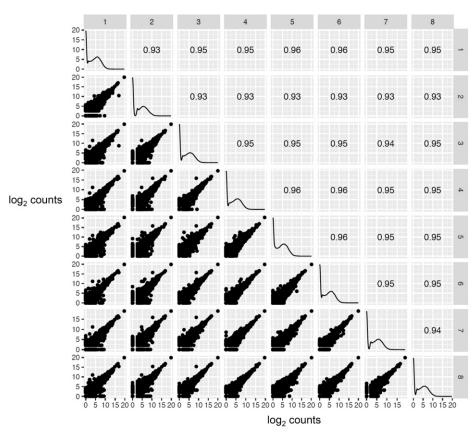

- 5. Determination of optimal bead beater speed for disruption
- A. Three 3 mm punches in bead beater 60 seconds at minimum speed (1 m/s)
- B. Three 3 mm punches in bead beater 60 seconds at medium speed (3 m/s)
- C. Three 3 mm punches in bead beater 60 seconds at maximum speed (5 m/s)




The blue arrow indicates the condition that provided the optimal results in this experiment. All tubes contained three 3 mm punches from the same patient. The punches were homogenized in tubes also containing 350 μ L lysis buffer and 3.5 μ L beta-mercaptoethanol. This set of conditions was determined to be most optimal based on both the Agilent image above and the NanoDrop concentration.

- 6. Test optimal number of 3 mm punches per tube using optimal bead beater speed and time
 - A. Three 3 mm punches
 - B. Five 3 mm punches
 - C. Eight 3 mm punches





The blue arrow indicates the condition that provided the optimal results in this experiment. The optimal number of 3 mm punches proved to be eight in one tube. All tubes in this experiment were homogenized using the Bead Mill 4 bead beater for 60 seconds at 5 m/s in 350 μ L lysis buffer and 3.5 μ L beta-mercaptoethanol. This set of conditions was determined to be most optimal based on both the Agilent image above and the NanoDrop concentration.

SUPPLEMENTAL FIGURE 1. (Continued)

Supplemental Figure 2. Inter-sample correlations for Tempus tube transcriptomes. Left-lower triangular entries are scatter plots of \log_2 counts for each pair of eight samples and upper triangular entries are Spearman correlations of \log_2 counts from each pair.

 $\label{thm:supplemental} \mbox{Supplemental Figure 3.} \quad \mbox{Inter-person correlation for dried blood spot transcriptomes.}$

SUPPLEMENTAL TABLE 1

Top 1% of genes with increased counts in transcriptome from DBS RNA

RNA	·
	Gene ID
	A2M
	ALS2CR12
	ANKRD36
	ANKRD36B
	ANKRD36BP2
	APLF ASPM
	ASTN2
	ATAD5
	BNIP3L
	CASC5
	CC2D2A
	CCDC141
	CCDC144B CCDC18
	CDC42BPA
	CDKN2B-AS1
	CENPE
	CEP57L1
	CLEC4GP1
	CNTLN
	DDI2 DNAJC6
	DOK6
	EFCAB13
	EGR1
	EGR3
	ERCC6L2
	FAM46C FOS
	FOSB
	GSG2
	GYPA
	HELB
	HEMGN
	HIST1H1E
	KCNQ1OT1 KIF14
	KIF20B
	LNPEP
	MAB21L3
	MALAT1
	MAN1A2
	MBNL1-AS1 MBNL3
	MPP6
	MTMR12
	MTRNR2L1
	MTRNR2L10
	MTRNR2L2
	MTRNR2L3 MTRNR2L4
	MTRNR2L6
	MTRNR2L8
	NBEAL1
	NEIL3
	NR4A2
	NRSN1
	NUSAP1 ORC4
	PGM5P2
	PGPEP1
	PTGS2
	PZP
	RMRP
	RPPH1
	SCARNA10
	SCARNA17

SUPPLEMENTAL TABLE 1 Continued

	Continued	
	Gene ID	
	SCARNA2 SCARNA21 SCARNA7 SHISA9 SLITRK4 SOX6 SPECC1 SSTR5-AS1 STIL SWT1 TBCEL TCP11L2 TMEM212 TPM4 TTN UGDH-AS1 UGT8 VRK1 YOD1 ZBED6 ZNF460 ZNF471	
DBS = dried blood spot.		

SUPPLEMENTAL TABLE 2

Top 1% of genes with increased counts in transcriptome from whole blood Tempus RNA

IGFLR1 KLF16 LENG8 LRCH4 LSM10 LSP1 LTBP3 LTBP4 LY6E MAP1S MAP3K10 MAPK3 MBD6 MEN1 MIB2 MLLT1 MMP9 NCDN NDUFS7 NPDC1 **OGFR** OLIG1 **OSCAR** PRAM1 **PRKCSH** PTP4A3 RAD9A RFNG RHPN1 RPS16 SAMD1 SAP25 SCAF1 SF3A2 SGSH SH2B1 SH3BP1 **SIGIRR** SLC39A13 SLC52A2 SPI1 SRM STMN3 STUB1

SUPPLEMENTAL TABLE 2 Continued TAF1C TBKBP1 TELO2 TGFB1 TMEM134 TMUB1 TNFSF12 TNK2 VAMP1 WAS ZDHHC8 ZFPM1 ZNF385A ZNF444 ZNF467 ZNF524 ZNF580

ZYX

ACAP3 APOBR
ARHGDIA
ATN1
BAX
C11orf68
C16orf13
CD7
CDK10 CDK2AP2
CIRBP
CORO1B
DBP
DENND1C
DMPK
DYRK1B
ENGASE
ERF FBRSL1
GLTSCR1
GPAA1
GPBAR1
HAPLN3
HDAC10
IDUA
IFITM3