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Supplementary Discussion 22 

Cultural analogues of the Fifth Commandment 23 

Cultural norms that promote the help of the parents are widespread in both western and eastern 24 

culture. The Fifth Commandment (of the Hebrew and protestant Bible, the Fourth one, 25 

according to the catholic numbering) states: “Honor your father and your mother, that your 26 

days may be long in the land that the LORD your God is giving you.” (Exodus 20:12)  27 

From the interpretations of this commandment by the western churches we recall the following: 28 

Sefer Ha-chinukh (mitzva 33) elaborates: "A person should realize that his father and mother 29 

are the cause of his existence in this world; therefore it is appropriate that he render them all 30 

the honor and do them all the service he can”. St. Thomas Aquinas wrote: “Since we receive 31 

nourishment from our parents in our childhood, we must support them in their old age.” Martin 32 

Luther said: “For he who knows how to regard them in his heart will not allow them to suffer 33 

want or hunger, but will place them above him and at his side, and will share with them 34 

whatever he has and possesses” (Luther, M. p. 29). 35 

We also note that in China, to take care of elderly parents is also a moral rule: e.g. Confucius 36 

declared: "In serving his parents, a filial son reveres them in daily life; he makes them happy 37 

while he nourishes them; he takes anxious care of them in sickness …” (26) 38 

Based on the above, we introduce the so-called Fifth Rule, which is a translation of the Fifth 39 

Commandment into biological terms and is inherent in the above interpretations: “During your 40 

reproductive period, give away from your resources to your post-fertile parents.”  41 

 42 
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Supplementary Methods 43 

In the following we investigate a biological model for intra-familiar help, give some general 44 

results on it, and finally, we investigate the simplest model with numerical examples. 45 

 46 

1. The survival at the carrying capacity 47 

Here we propose a strictly Darwinian reasoning to see that the long-term growth rate is 48 

maximized by natural selection: the number of offspring, in general, is much higher than the 49 

carrying capacity, so only a part of the offspring and adults will survive. Let us consider random 50 

survival, assuming that the survival probabilities of individuals do not depend on phenotypes 51 

(in our case intergenerational help) and on the age of individuals. (Observe that this assumption 52 

gives some advantage to the families in which the intergenerational help is less.)  53 

Now let us consider two phenotypes A and B with respective long-term growth rates (i.e. 54 

positive eigenvalues of the corresponding Leslie matrices) 1 , BA   with λA>λB. To see the 55 

asymptotic frequency of phenotype B, we suppose that phenotypes A and B start from 56 

respective initial densities )0(x  and )0(z . According to the original Darwinian view, we need 57 

some density dependent selection to keep the total density of these two phenotypes at the 58 

carrying capacity. Since in the considered selection situation there is no interaction between the 59 

phenotypes and we assume that the phenotypes differ only in the demographic parameters, thus 60 

we can suppose there is a uniform survival process, i.e. the survival rate corresponding to the 61 

carrying capacity is the same for all individuals. Now the question arises which phenotype will 62 

win in the struggle for existence on the long selection time scale?  63 

Let us suppose that phenotypes A and B develop according to Leslie models having the 64 

respective population vectors )(tx , )(tz , and matrices LA, LB, total densities 65 
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i tztztxtx )()(  ,)()( . Then the relative frequency of phenotype B tends to zero, as 66 

it is shown below: 67 

Indeed, let us suppose that the subpopulations start from initial states )0(x  and )0(z , 68 

respectively, and the time unit is chosen in such a way that in unit time the total density of the 69 

system always exceeds the carrying capacity K, in particular 70 

.)0()0( BA KzLxL   (SI 2) 71 

Now, by the selection the total density of the system is reduced to K proportionally: 72 
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Indeed, obviously .)1()1( Kzx   75 

We emphasize that in this model we consider the “intrinsic” survival (described by the Leslie 76 

matrices) and the survival under selection independently. However, this model can be formally 77 

considered as a particular Leslie-type model depending on the total density of the system, where 78 

each demographic parameter in the Leslie matrices AL  and BL  is multiplied by 79 

)0()0( BA zLxL

K


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Similarly, for all t= 1, 2, 3,… we get our kin demographic selection model for two different 81 

phenotypes: 82 
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Now, for the proportion of phenotype B we obtain 85 
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Here 87 

t

tt

tz

tx

tz

tx

B

A

B

A

)(

)(

)(

)(















 . (SI 7) 88 

Since we can suppose that in both phenotypes the last two fecundities are positive, so the 89 

Perron-Frobenius theorem (see e.g. 28) implies that both 
t

tx

A

)(


 and 

t

tz

B

)(


 tend to finite 90 

positive limits as t .  In fact, the Leslie matrices can be cut at the last fertile age class, apply 91 

the Perron-Frobenius theorem to these matrices, and then the convergence can be extended to 92 

the post fertile age groups by simple survival   Therefore, 
 )(

)(
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tz
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t
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0
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. (SI 8) 94 

Thus if BA   , then the relative frequency of phenotype B tends to zero as t tends to infinity. 95 

Observe that in our model, the fecundity of a phenotype is determined by a phenotype-96 

dependent Leslie matrix, and the survival rates corresponding to the carrying capacity of 97 

different phenotypes are the same, so the long-term growth rate of a phenotype determines the 98 

fitness.  99 

 100 
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2. The general results 101 

Consider the general KK   Leslie matrix, where the entries depend on the cost y spent to 102 

grandparent support. Under the grandmother hypothesis, the grandmother support decreases the 103 

fecundity and survival rate of fertile parents, but increases the survival rate of the grandmother, 104 

who therefore increases the survival rate of pre-fertile grandchildren. Then the characteristic 105 

equation is  106 
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and its unique positive root is obtained as the root of equation 108 
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It is easy to see, that if any of the numerators (i.e. the average numbers of offspring produced 110 

by an individual of the corresponding age classes) in these fractions is changed to a greater one, 111 

then the curve of the ’hyperbolic’ function q shifts upwards, implying that the positive solution 112 

*  of this equation also will be greater. Therefore, if in a population where within the families 113 

grandparents are not supported, a new type emerges which supports grandparents, and all 114 

mentioned numerators increase, then Fifth Rule as behaviour type will propagate. If all these 115 

numerators decrease then this type will die out. Those mathematical cases when some of the 116 

numerators increase, others decrease, would need further mathematical discussions. 117 

 118 

Observe that equation 1)( q  can be written as  119 
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Here factor 


k

i
i y

1

)(  measures how much child care by grandmothers increases the survival 121 

of the children. Roughly speaking, factor 122 
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   (SI 12) 123 

measures, in an implicit way, to what extent the support to grandparents by the fertile age class 124 

decreases their own fecundity and survival rates. In this sense, the predictions of our model are 125 

in harmony with the cost-benefit approach saying that a trait will propagate if it eventually 126 

increases the fitness.  127 

 128 

Now the question arises how the demographic parameters may depend on y. The 129 

following assumptions are at hand: 1. The survival rate of grandparents is a saturation function 130 

of y strictly increasing at the beginning, and remains constant after. 2. Based on the grandmother 131 

hypothesis, the survival rate of grandchildren strictly increases with the survival rate of 132 

grandparents (which on its term depend on y). The grandmother hypothesis is the worst case 133 

when two trade-offs may exist. 3. The parents’ fecundity entries of the Leslie matrix (134 

Kk  ,...,1 ) are strictly decreasing functions of y. 4. The survival rates of parents ( Kk  ,...,1 ) 135 

are strictly decreasing functions of y. 136 

These assumptions allow the Fifth Rule to win or lose the struggle for existence, 137 

depending on whether the long-term growth rate of the family increases or decreases.  138 

 139 

Under assumption 1 there is a threshold for the support to grandparents, above which 140 

the survival of grandparents does not increase, and therefore the survival of grandchildren 141 
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either, but the fecundity and/or the survival of fertile parents still decrease. Over this threshold, 142 

the support to grandparents has no evolutionary advantage.  143 

 144 

Finally, we remark that the above reasoning can be applied not only to the grandmother 145 

hypothesis, since either the mother hypothesis or the embodied capital model alone can ensure 146 

the support to grandparents. For example, if any of the above two hypotheses implies the 147 

increase of at least one of the numerators in (3), while the rest of the numerators do not decrease, 148 

then the dominant eigenvalue, i.e. the asymptotic growth rate will increase. Of course, if in 149 

addition to the fact that the grandmother increases the survival of her grandchildren and the 150 

survival and fertility of her daughter, the hypothesis of the embodied capital model also holds 151 

(the grandmother also increases the adult age survival and fertility of her grandchildren), then 152 

not only 


k

i
i y

1

)(  but also factor (4) can synergically increase the asymptotic growth rate of 153 

the family.  154 

Finally, we note that the “altriciality” hypothesis can also be handled in terms of a 155 

linear model with a matrix structured differently from the Leslie matrices (since the survivals 156 

of children also depend on the age of their mothers). Thus, only a generalization our model 157 

could deal with the development of menopause based on altriciality. In our opinion, our Fifth 158 

Rule may be derived on the bases of “altriciality” hypothesis, but in such a future model the 159 

formation of multi-generation families should also be included, since “altriciality” hypothesis 160 

itself does not need the convivence of several generations.  161 

  162 
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3. Two-age-class model 163 

For a deeper insight, in this simplest case, we will calculate first when the menopause can 164 

evolve, second, when the Fifth Rule is evolutionary successful, third, using numerical 165 

examples we demonstrate that convex benefit and concave cost functions promote the 166 

evolution of intra-familiar help. 167 

 168 

Consider the simplest case with one child age class and one fertile age class. Then the 169 

Leslie matrix is 170 









0

0

1

0




, 171 

where 1  is the survival rate of children and 0  is the fecundity of fertile parents. The survival 172 

rate from fertile age to post-fertile age is 2 , and 3  denotes the probability that a post-fertile 173 

individual still lives (without the support by a fertile individual) when child care is needed. Now 174 

the fitness is 10  . 175 

 176 

3.1 Grandmother hypothesis 177 

Now the question arises: When is the menopause adaptive? Consider the case when fertile 178 

individuals do not support grandmothers. We consider the following two cases: (i) Suppose 179 

that grandmothers do not help in child care, but their survival linearly reduces their own 180 

fecundity, i.e. ss :)(2  and )1(:)( 0 ss  , where )1,0[s  is the cost spent on survival to 181 

post-fertile age (Fig. 3 depicts the situation). The fitness of the population is the long-term 182 

growth rate which can be calculated from the characteristic equation of the Leslie matrix: 183 
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  10 1)(  ss  , and the optimal strategy is not to spend on own survival to post-fertile 184 

age. (ii) Suppose that grandmothers help in child care (Figure S 2.b). Let ss 22 :)(   , with 185 

some 2 , )1(:)( 0 ss   and )(:)( 2111 sPas   , where )1,0[s , 1  is a „basic” 186 

survival rate, and the probability that a grandmother is alive when her help needed is 187 

ssP 32:)(  , i.e. we count only the help of those grandmothers who survive to the upper 188 

boundary of the third age class and do not count those who reach ‘grandmother age’ (reach 189 

the third class) but die before the upper boundary of age, and a21 denotes the efficiency of the 190 

grandmother’s grandchild care. Clearly 13221 a and sas 322111 )(   , thus the 191 

fitness is 192 

   sass 322110 1)(   ,   (SI 13) 193 

which is maximal at
3221

13221

2 


a

a
s


 . Therefore, if the effect of grandchild care on the 194 

grandchild’s survival is greater than his/her survival rate without this care, i.e. 13221  a , 195 

then menopause is evolutionarily successful.  196 

 197 

 198 

3.2 The Fifth Rule 199 

Now the question arises: When is Fifth Rule adaptive?  It requires us to support our elderly, 200 

which is possible only if the menopause has already become evolutionarily fixed, i.e. for fixed201 

)1,0[s , let s22 :    and )1(: 0 s  . Let ]1,0[y  denote the cost spent on the survival of 202 

post-fertile parents, and suppose that the negative effect of y on fecundity is linear: )1( y , 203 

the children survival is )(:)( 11 yaPy  , where )(:)( 32 byyP    and b indicates how 204 
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efficiently the support to post-fertile parents by fertile individuals increases post-fertile 205 

survival, so )(:)( 3211 byay    (Fig. 4 depicts the situation). Now we have to 206 

maximize the fitness which can be calculated from the characteristic equation of the Leslie 207 

matrix, it is given by the following function in y: 208 

  )(1)( 321 byayy   ,  (SI 14) 209 

which attains its maximum at 
 

2

132

2 


ab

ba
y


 . The latter is positive if 210 

  0132   ba . This condition is satisfied e.g., if the efficiency of the support to post-211 

fertile parents is sufficiently large compared to the basic post-fertile survival rate.  212 

 213 

 214 

3.3 A general multiplicative coevolution model  215 

Now we set up a model combining the model of grandmother hypothesis and the 216 

model of the Fifth Rule. Our study will be based on two biological preconditions: First, since 217 

one can help a grandmother only if she is alive, for the development of the Fifth Rule, the 218 

existence of menopause is needed. Second, if a fertile mother gave away all her resources to 219 

help the survival of her mother, her fecundity would be zero. As before, let s be the cost a 220 

fertile female spends on her own survival to post-fertile age, and y the cost a fertile female 221 

spends on the survival of post-fertile parents. Based on the first precondition, unlike the 222 

additive approach of sections 3.2 and 3.3, we express the effect of strategies s and y on the 223 

demographic parameters in multiplicative form, considering the following strategy-dependent 224 

Leslie matrix: 225 
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









0),(

),(0
:),(

1

0

ysP

ys
ysL




,  (SI 15) 226 

where in both variables ),( ysP is strictly monotonically increasing, and ),( ys  is strictly 227 

monotonically decreasing. Let us assume that strategies s and y act independently both on the 228 

fecundity and on the survival of children:  229 

)()(),( yqspysP  , )()(),( ysys   , (SI 16) 230 

where all one-variable functions are defined on [0,1]. 231 

Technical conditions on the functions involved: 232 

a) p, q,   ,  are twice continuously differentiable. 233 

b) 1)0((0)  qp , 1)0()0(   . We note that these technical conditions imply that 234 

1  and 0 are the demographic parameters before the appearance of the considered 235 

traits, while 0)1( )1(    expresses our second precondition.  236 

c) 0)( ,)(  yqsp ])1,0[,( ys , 1)1()1(1 qp . 237 

d) 0)( ,)(  ys  ])1,0(,( ys , 0)0()0(   . 238 

Observe that conditions c) and d) are mathematical descriptions of trade-offs.  239 

e) 0)( ,)(),( ,)(  ysyqsp   ))1,0(,( ys . (This condition will guarantee strict concavity 240 

of function z near its maximum).  241 

 242 

Now, the fitness (unique positive eigenvalue of ),( ysL ) is 243 

)()()()(),( 01 ysyqspys    ( ]1,0[, ys ). (SI 17) 244 

We will show that ),( ys attains a strict local maximum at an interior point of the unit square245 

]1,0[]1,0[  . Indeed, maximization of ),( ys  is equivalent to the maximization of  246 

)()()()(),( 01 ysyqspysz   ( ]1,0[, ys ).  (SI 18) 247 
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The first order necessary condition for the maximum attained at an interior point is 248 

  0)()()()()()(),( 



sspspsyyqysz
s

 ,  (SI 19) 249 

  0)()()()()()(),( 



yyqyqysspysz
y

  (SI 20) 250 

Since p, q,   ,  are all positive in the interval (0,1), the above necessary condition is 251 

equivalent to   252 

0)()()()(:)(  sspspss  ,  (SI 21) 253 

0)()()()()(  yyqyqyy  . (SI 22) 254 

From conditions b), c) and d) we obtain 0)0(  , 0)1(  , hence there is an )1,0(s  with 255 

0)( s . It is easy to check that conditions b), c), d) and e) also imply 0)(  s , and hence   is 256 

strictly decreasing, therefore s  is its unique zero in the interval. )1,0( . Similar straightforward 257 

checking shows that )( y also has a unique zero y in the interval )1,0( . Hence ),(  ys is a 258 

unique stationary point of function z in the interior of the unit square.  259 

Now, for a second order sufficient condition for the maximum of function z , we calculate its 260 

Hessian: 261 

 262 
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    
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 (SI 23) 264 

Observe that from 0)( s  and 0)( y , we obtain  265 

 
 




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
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
  266 

From conditions a)-e), we easily get  267 

  0)()()()(2)()()()(   sspsspspsyyq   (SI 24) 268 
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  0)()()()(2)()()()(   yyqyyqyqyssp  , (SI 25) 269 

implyig 0),(tr  ysH  and 0),(det  ysH , i.e. ),(  ysH is negative definite. Therefore ),(  ys  270 

is a strict local maximum point. Since ),(  ys  is the unique stationary point, it is also a strict 271 

global maximum point in the interior of the unit square.  272 

Finally, we note that, if Hessian ),( ysH  is negative definite in the interior of the unit 273 

square, then function   is globally strictly concave, and therefore ),(  ys is a global 274 

maximum point of . In the terminology of fitness landscapes, in the sense of any reasonable 275 

strategy dynamics the species will evolve into the evolutionarily optimal behavior ),(  ys . 276 

 277 

3.4 Numerical Examples 278 

In this section, by numerical study, we illustrate the effect of different (linear, convex and 279 

concave) trade-offs on the level of the optimal backward help (y*). We calculated the 280 

maximal long-term growth rate (fitness) of various populations as a function of y from the 281 

characteristic equation of the corresponding Leslie matrix. The value of y that gives the 282 

highest long-term growth rate termed as the optimal backward help (y*). We also calculated 283 

the number of offspring and the offspring survival given the optimal y*. We investigated the 284 

effects of different cost-benefit parameters on the evolvability of backward help (y). Life-285 

history parameters are based on the figures from Mace [1]. It is possible to generate all the 286 

possible combinations of cost-benefit trade-offs by setting the appropriate cost, benefit 287 

parameters to zero (c, d, h). Also, convex or concave cost-benefit functions can be achieved 288 

by setting the appropriate parameters (c, d, h) to smaller or to greater than one (see Table S1 289 

for a summary of parameters). We used the following general Leslie matrix (see Fig. 5 for a 290 

schematic description): 291 
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Table S1. Parameters of the model. 298 

 
Life-history parameters 
 
α: Number of offspring 
ω1: survival of the first age class (offspring)  
ω2: survival of the first reproductive class (parents) 
ω3: survival of the non-reproductive class (grandparents) 
 
Benefit-parameters 
 
a12: efficacy of the granny’s help on the fecundity of the parent 
a21: efficacy of the granny’s help on the survival of the offspring 
b: effectiveness of IT, the maximum efficacy of the parents help on the grandparent’s 
survival h: efficacy of the parents help (steepness) 
 
Cost parameters 
 
c: cost of helping grannies on the fecundity of the parent (steepness) 
d: cost of helping grannies on the survival of the parent (steepness) 

 299 

Four possible combinations exist in terms of the benefit functions: (i) a12, a21 > 0; (ii) 300 

a12 > 0, a21 = 0, (iii) a12 = 0, a21 > 0; and (iv)  a12, a21 = 0. In the first case, grandmothers give 301 

benefits for both the number of offspring and for the survival of them, in the second case they 302 

give benefit only for the number of offspring; in the third case they only give benefit for the 303 

survival of the offspring and finally, in the last case, they do not provide any benefit. This last 304 

case is not interesting for us, thus it will not be investigated any further. 305 

In the same way, four possible combinations exist in terms of the cost functions: (i)  c, 306 

d > 0; (ii) c > 0, d = 0, (iii) c = 0, d > 0; and (iv)  c, d = 0. In the first case helping 307 

grandmothers imposes a cost on both the parents’ reproductive output and on the parents’ 308 

survival, in the second case only on the number of offspring, in the third only on the survival 309 

of the parent, and finally, in the last case it imposes no cost at all. Just as before, this last case 310 
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is not interesting for us, thus it will not be investigated any further. See Table S2 for 311 

investigated parameter combinations. 312 

 313 

Table S2. The investigated parameter combinations (see Figures S1-S7 for the corresponding 314 

results). 315 

 Grandparental help Shape of the cost 

function 

Shape of the benefit 

function 

Figure: 

1. a12, a21 > 0 d = 1 h = 1 S1 

2.  d = 1 h = 2 S2 

3.  d = 0.5 h = 2 S3 

4. a12= 0,  a21 > 0   d = 1 h = 1 S4 

5.  d = 0.5 h = 2 S5 

6. a12> 0,  a21 = 0   d = 1 h = 1 S6 

7.  d = 0.5 h = 2 S7 

 316 

3.5 Illustrative numerical examples: results 317 

IT evolves the most readily when the grandparental help increases both the survival of 318 

the offspring and the number of offspring (Figure S1-S3). Linear cost and benefit functions do 319 

not favour the evolution of IT (Figs. S1, S4, S6, d=1, h=1); conversely, convex benefit and 320 

concave cost functions promote the evolution of IT (Fig. S2, S3, S5, S7, d=0.5, h=2). It is 321 

possible to find cost parameters (c, d) where IT evolves even if the efficacy parental transfer 322 

and grandparental help (a21 and b respectively) is low (Figs. S2, S3). Conversely, it is possible 323 
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to find (high) a21, b parameters where IT evolves even if it imposes a high cost on the survival 324 

of the parents or on the number of offspring (d and c, respectively, see Figs. S1, S2). 325 

 326 

  327 
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 328 

 329 

 330 

 331 

 332 

Figure S1. Numerical example for the Fifth Rule, grandmothers increase both offspring 333 

survival and the number of offspring (a12, a21 > 0). a) Dominant eigenvalues (fitness); b) 334 

corresponding y* value; c) offspring number as a function of y*; d) survival of offspring as a 335 

function of y*; all four subfigures plotted as a function of the effectiveness of IT (b) and the 336 

efficacy of the grandparental help on the survival of the offspring (a21). Parameters: α2=6, 337 

ω1=0.45, ω2=0.62, ω3=0.25, d = 1, h = 1, c =0.2, 0.6, 1; a12=10. 338 

  339 
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 340 

 341 

 342 

 343 

 344 

Figure S2. Numerical example for the Fifth Rule: grandmothers increase both offspring 345 

survival and the number of offspring (a12, a21 > 0). a) Dominant eigenvalues (fitness); b) 346 

corresponding y* value; c) offspring number as a function of y*; d) survival of offspring as a 347 

function of y*; all four subfigures plotted as a function of the effectiveness of IT (b) and the 348 

efficacy of the grandparental help on the survival of the offspring (a21). Parameters: α2=6, 349 

ω1=0.45, ω2=0.62, ω3=0.25, d = 1, h = 2, c =0.2, 0.6, 1; a12=10. 350 

 351 

  352 
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 353 

 354 

 355 

 356 

Figure S3. Numerical example for the Fifth Rule: grandmothers increase both offspring 357 

survival and the number of offspring (a12, a21 > 0). a) Dominant eigenvalues (fitness); b) 358 

corresponding y* value; c) offspring number as a function of y*; d) survival of offspring as a 359 

function of y*; all four subfigures plotted as a function of the effectiveness of IT (b) and the 360 

efficacy of the grandparental help on the survival of the offspring (a21). Parameters: α2=6, 361 

ω1=0.45, ω2=0.62, ω3=0.25, d = 0.5, h = 2, c =0.2, 0.6, 1; a12=10. 362 

 363 
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 367 

 368 

 369 

Figure S4. Numerical example for the Fifth Rule, grandmothers only increase offspring 370 

survival (a12= 0,  a21 > 0). a) Dominant eigenvalues (fitness); b) corresponding y* value; c) 371 

offspring number as a function of y*; d) survival of offspring as a function of y*; all four 372 

subfigures plotted as a function of the effectiveness of IT (b) and the efficacy of the 373 

grandparental help on the survival of the offspring (a21). Parameters: α2=6, ω1=0.45, ω2=0.62, 374 

ω3=0.25, d = 1, h = 1, c =0.2, 0.6, 1; a12 =0. 375 

 376 

  377 
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 378 
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 380 

 381 

Figure S5. Numerical example for the Fifth Rule, grandmothers only increase offspring 382 

survival (a12= 0,  a21 > 0). a) Dominant eigenvalues (fitness); b) corresponding y* value; c) 383 

offspring number as a function of y*; d) survival of offspring as a function of y*; all four 384 

subfigures plotted as a function of the effectiveness of IT (b) and the efficacy of the 385 

grandparental help on the survival of the offspring (a21). Parameters: α2=6, ω1=0.45, ω2=0.62, 386 

ω3=0.25, d = 0.5, h = 2, c =0.2, 0.6, 1; a12 =0. 387 

  388 
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 389 

 390 

 391 

Figure S6. Numerical example for the Fifth Rule, grandmothers only increase offspring 392 

number (a12> 0,  a21 = 0). a) Dominant eigenvalues (fitness); b) corresponding y* value; c) 393 

offspring number as a function of y*; d) survival of offspring as a function of y*; all four 394 

subfigures plotted as a function of the effectiveness of IT (b) and the efficacy of the 395 

grandparental help on the fecundity of the parent (a12). Parameters: α2=6, ω1=0.45, ω2=0.62, 396 

ω3=0.25, d = 1, h = 1, c =0.2, 0.6, 1; a21 = 0. 397 

  398 
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 402 

 403 

Figure S7. Numerical example for the Fifth Rule, grandmothers only increase offspring 404 

number (a12> 0,  a21 = 0). a) Dominant eigenvalues (fitness); b) corresponding y* value; c) 405 

offspring number as a function of y*; d) survival of offspring as a function of y*; all four 406 

subfigures plotted as a function of the effectiveness of IT (b) and the efficacy of the 407 

grandparental help on the fecundity of the parent (a12). Parameters: α2=6, ω1=0.45, ω2=0.62, 408 

ω3=0.25, d = 0.5, h = 2, c =0.2, 0.6, 1; a21 = 0. 409 

 410 

 411 
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