Supplementary Information for manuscript:

"A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity"

Daniel A. Bachovchin¹, Luke W. Koblan¹, Wengen Wu², Yuxin Liu², Youhua Li², Peng Zhao², Iwona Woznica², Ying Shu², Jack H. Lai², Sarah E. Poplawski², Christopher P. Kiritsy³, Sarah E. Healey², Matthew DiMare², David G. Sanford², Robert S. Munford⁴, William W. Bachovchin^{2,3}, & Todd R. Golub^{1,5,6,7}*

Affiliations:

¹The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA. ²Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111, USA. ³Arisaph Pharmaceuticals, 100 High Street, Boston, MA 02110, USA. ⁴Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA. ⁵Department of Pediatric Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts 02115 USA. ⁶Harvard Medical School, Boston, Massachusetts 02115, USA. ⁷Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.

*Correspondence to: golub@broadinstitute.org

Supplementary Results

Supplementary Figure 1 The diverse serine hydrolase panel screened in this study. The dendrogram depicts the \sim 240 human serine hydrolases with branch lengths corresponding to sequence relatedness. The 94 enzymes colored red were included in the initial EnPlex assay.

Supplementary Figure 2 Representative analyses of protein purity and activity. Enzymes purified from (a) *E. coli* or (b) HEK 293T cells were labeled with FP-biotin (1 μ M), separated by SDS-PAGE, and analyzed by Western blotting with a streptavidin-conjugated infrared dye to confirm activity (the appearance of a band in the streptavidin blot indicates an active enzyme). Note that the catalytically inactivated proteins (colored red) and lysozyme do not label with the FP-probe. Similarly, we saw no labeling for two purified serine hydrolases, TPP2 and BPHL, indicating that these enzymes were either inactive or do not react with the FP-probe. (c) A few proteins, including His-tagged ABHD6, were difficult to purify to homogeneity. Here, co-migration of the His band and the streptavidin band indicates that ABHD6 is the only active hydrolase in the sample, even though it is <25% pure by Coomassie staining. The EnPlex assay only requires purity from other FP-sensitive enzymes, as shown here for ABHD6, and not from all cellular proteins.

Supplementary Figure 3 EnPlex assay reproducibility. Bead mixtures (frozen aliquots thawed one time) were evaluated on separate days on separate plates. Enzymes were considered active that gave signals >2-fold higher than that observed with catalytically inactivated enzymes (corresponding to a Luminex signal of 75). The median Luminex signal reflects both enzyme abundance and rate of reactivity with the FP-probe. The reason several FP-sensitive enzymes appear inactive on the beads is unclear, but is potentially due to immobilization impairing catalytic activity. Error bars represent s.e.m.

Supplementary Figure 4 Complete EnPlex profiles for the 55 widely used inhibitors with at least one target in the enzyme panel. Inhibitors were grouped according their intended target(s): (a) dipeptidyl peptidases, (b) proteasome, (c) DAG lipase (and assorted other lipases), (d) enzymes involved in blood clotting, (e) ACHE, (f) FAAH, MGLL, and ABHD6, (g) PREP, (h) trypsin/chymotrypsin, (i) other, and (j) non-selective.

Supplementary Figure 5 Two-dimensional hierarchical clustering of all interactions at the highest compound concentration for the 55 widely used inhibitors (33 μ M for all compounds except for Ada-(AHX)₃-(Leu)₃-VS and epoxomicin, which were screened at 16.7 μ M). The percent activity remaining relative to DMSO controls is shown. Clustering was performed based on the Pearson correlation.

Supplementary Figure 6 Validation of bortezomib off-targets. (a) HTRA2 (0.02 mg/mL) was incubated with its substrate β -casein (0.02 mg/mL) for 1 h in the presence of bortezomib or the HTRA2 inhibitor UCF-101 before being quenched, separated by SDS-PAGE, and analyzed by silver staining. This shows that bortezomib, even at 100 μ M, does not significantly inhibit HTRA2. (b) Gel-based competitive ABPP confirms bortezomib inhibits KLKB1, GZMA, and PRCP. Full gel images are shown in Supplementary Figure 11.

Supplementary Figure 7 Validation of lead inhibitor candidates identified in the EnPlex screen from the 55 widely used inhibitor library. The interactions between (a) JW480 and AFMID, (b) JP83 and AFMID, (c) Z-AAD-CMK and LACTB, (d) RHC 80267 and DDHD1, (e) JP83 and LYPLA1, and (f) JP83 and LYPLA2 were confirmed by gel-based competitive ABPP. Full gel images are shown in **Supplementary Figure 11**.

Percent inhibition

Supplementary Figure 8 Heatmaps of the boronic acid and nitrile screening data. The percent inhibition of each enzyme (columns) relative to DMSO controls is shown. The compound numbers (rows) correspond to **Supplementary Table 6**.

Supplementary Figure 9 Compound **226** inhibits APEH with an $IC_{50} = 104$ nM in a substrate (Ac-Ala-AMC) assay. Data are means \pm s.e.m of three independent experiments.

Supplementary Figure 10 ARI-2408 and ARI-2243 have potent antiglycemic activity in mice in an oral glucose tolerance test. (a) The percent change in blood glucose AUC for both compounds. n = 7 mice/group for ARI-2243; n = 19, 27, and 42 mice/group for ARI-2408 at 10, 1 and 0.1 mg/kg, respectively. (b) The blood glucose increase (mg-min/dL) and (c) complete time course for ARI-2408. *p < 0.01 versus vehicle control; *** p < 0.001 versus vehicle control. Error bars represent s.e.m.

Supplementary Figure 11 Full gel images for those cropped in the paper figures. (a) Gel from Figure 3c. Note that trypsin was used to activate CEL2A, 3A, and 3B and was not removed prior to resolving these experiments. (b) Full gel from Figure 4b. (c) Full gel from Supplementary Figure 6b. Note that only PRCP is His-tagged. (d) Full gels from Supplementary Figure 7.

Supplementary Table 1 Comparison of competitive ABPP screening methods for serine hydrolases.

	ABPP-MudPIT	Gel-based ABPP	Fluopol-ABPP	EnPlex
Readout	Mass spectrometry	SDS-PAGE	Fluorescence polarization	Luminex
Enzymes	30-40	10-20	1	100s
Compounds	3-5	hundreds	thousands	thousands
Major limitation(s)	 Low throughput Expensive Selectivity information limited to active enzymes in specific cell lysates/tissues 	 Low throughput Limited selectivity information (due to gel resolution and sensitivity) 	 Requires large amounts of purified protein No selectivity information 	 Requires purified protein, but only small amounts

Gene Symbol	Preferred Protein Name	NCBI Gene ID	Genbank Accession number	Species	Expression system	clone	Tag	Vendor, if applicable
ABHD2	Abhydrolase domain- containing protein 2	11057	NP 0089423	Homo sapiens	E coli	full-length	C-terminal His/V5	
	Abhydrolase domain-	(2054	NT _0003 12.3		L. con		C-terminal	
ABHD4	Monoacylglycerol	63874	NP_071343.2	Homo sapiens	HEK2931	tull-length	FLAG/His C-terminal	
ABHD6	lipase ABHD6	57406	NP_065727.4	Homo sapiens	E. coli	aa 29-end	His/V5	
	acyl-glucuronide						C-terminal	
ABHD10	esterase, mitochondrial Abhydrolase domain-	55347	NP_060864.1	Homo sapiens	HEK293T	full-length	FLAG/His C-terminal	
ABHD11	containing protein 11	83451	NP_683710.1	Homo sapiens	E. coli	full-length	His/myc	
ABHD14B	containing protein 14B	84836	NP_001139786.1	Homo sapiens	E. coli	full-length	His/V5	
ACHE	Acetylcholinesterase	11423	NP 033729.1	Mus musculus	HEK293T	full-length	C-terminal FLAG/His	
ACOT1	Acyl-coenzyme A	641371	NP 001032238 1	Homo sapians	E coli	full_length	C-terminal His/V5	
ACOT2	Acyl-coenzyme A thioesterase 2	10965	NP 006812 3	Homo sapiens	HEK293T	full-length	C-terminal ELAG/His	
ACOT4	Acyl-coenzyme A	122070	NP 680544.3	Homo sapians	E coli	full longth	C-terminal	
AC014	Kynurenine	122970	NF_089544.5	110mo suprens	E. coli	iun-iengui	C-terminal	
AFMID	formamidase	125061	NP_001138998.1	Homo sapiens	E. coli	full-length	His/V5 C-terminal	
AOAH	Acyloxyacyl hydrolase	313	NP 001628.1	Homo sapiens	HEK293T	full-length	FLAG/His	
APEH	releasing enzyme	327	NP_001631.3	Homo sapiens	HEK293T	full-length	FLAG/His	
BCHE	Cholinesterase	590	NP_000046.1	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
BPHL	Valacyclovir hydrolase	670	NP_004323.2	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
C1R	Complement C1r subcomponent	715	NP_001724.3	Homo sapiens	Mouse myeloma cells	full-length	C-terminal His	R&D Systems
C1S	Complement C1s subcomponent	716	NP 958850.1	Homo sapiens	Mouse myeloma cells	full-length	C-terminal His	R&D Systems
C2	Complement C2	717	NP 000054 2	Homo saniens	Mouse myeloma cells	aa 21-752	C-terminal His	R&D Systems
CEL	Bile salt-activated	1056	NP_001798.2	Homo sapians	HEK 203T	full_length	C-terminal FLAC/His	
CEL	Chymotrypsin-like	1050	NI 001798.2	110mo suprens	nEK2)51	Tun-tengui	TLAO/III3	
CELA1	member 1	396766	NP_998988.1	Sus scrofa	pancreas	aa 27-264	none	abcam
	Chymotrypsin-like elastase family					active	C-terminal	
CELA2A	member 2A Chymotrypsin-like	63036	NP_254275.1	Homo sapiens	HEK293T	enzyme	FLAG/His	
CET 1.0.1	elastase family	10106				active	C-terminal	
CELA3A	Chymotrypsin-like	10136	NP_005738.4	Homo sapiens	HEK2931	enzyme	FLAG/His	
CELA3B	elastase family member 3B	23436	NP 031378.1	Homo sapiens	HEK293T	active enzyme	C-terminal FLAG/His	
CESI	Liver carboxylesterase	1066	NID 001020266 1	Homo amiona	UEV 202T	full longth	C-terminal	
CESI	1	1000	NP_001020366.1	Homo sapiens	HEK2931	Tull-length	C-terminal	
CES2	Cocaine esterase	8824	NP_003860.2	Homo sapiens	HEK293T	full-length	FLAG/His C-terminal	
CES3	Carboxylesterase 3	23491	NP_079198.2	Homo sapiens	HEK293T	full-length	FLAG/His	
CES4A	Carboxylesterase 4A	283848	NP_776176.5	Homo sapiens	HEK293T	full-length	FLAG/His	
CES5	Carboxylesterase 5A	234673	NP_766347	Mus musculus	Mouse myeloma cells	full-length	C-terminal His	R&D Systems
CFD	Complement factor D	1675	NP_001919.2	Homo sapiens	Mouse myeloma cells	aa 26-253	C-terminal His	R&D Systems
CMA1	Chymase	1215	NP_001827.1	Homo sapiens	Human skin	active enyzme	none	Enzo
	Probable serine carboxypeptidase						C-terminal	
CPVL	CPVL	54504	NP_112601.3	Homo sapiens	HEK293T Bovine	full-length active	FLAG/His	
CTRC	Chymotrypsin-C	514047	NP_001092435.1	Bos taurus	pancreas	enyme	none C-terminal	Promega
CTSA	protein	5476	NP_000299.2	Homo sapiens	HEK293T	full-length	FLAG/His	
CTSG	Cathepsin G	1511	NP_001902.1	Homo sapiens	neutrophils	enzyme	none	Enzo
DDHD1	Phospholipase DDHD1	80821	NP 085140.2	Homo sapiens	HEK293T	full-length	FLAG/His	
DPP4	Dipeptidyl peptidase 4	1803	NP_001926.2	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
DPP7	Dipeptidyl peptidase 7	29952	NP_037511.2	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
DPP8	Dipeptidyl peptidase 8	54878	NP_569118.1	Homo sapiens	Insect cells	full-length	N-terminal His	Enzo

Supplementary Table 2 Enzyme panel assembled in this study.

							C terminal	
DPP9	Dipeptidyl peptidase 9	91039	NP_631898.3	Homo sapiens	HEK293T	full-length	FLAG/His	
ELANE	Neutrophil elastase	1991	NP 001963 1	Homo saniens	Human neutrophils	active enzyme	none	Epzo
FOD	S-formylglutathione	2000	ND 0010751	11	E 1	6.11.1 4	C-terminal	Linco
ESD	hydrolase	2098	NP_001975.1	Homo sapiens	E. coli	active	His/myc	
F2	Prothrombin	2147	NP_000497.1	Homo sapiens	Human plasma	enzyme	none	Enzo
F7	Coagulation factor VII	2155	NP_000122.1	Homo sapiens	Human plasma	enzyme	none	Enzo
F10	Coagulation factor X	2159	NP_000495.1	Homo sapiens	Human plasma	enzyme	none	Enzo
F11	Coagulation factor XI	2160	NP 0001191	Homo saniens	Human nlasma	active	none	abcam
	Fatty-acid amide	20247	NID 077046 1	Rattus	E L'	20 1	N-terminal	uoouiii
FAAH	Abhydrolase domain-	29347	NP_07/046.1	novegicus	E. coli	aa 30-end	C-terminal	
FAM108A1	containing protein 17A Abhydrolase domain-	81926	NP_112490.3	Homo sapiens	E. coli	aa 21-end	His/V5 C-terminal	
FAM108B1	containing protein 17B	51104	NP_057098.2	Homo sapiens	E. coli	aa 20-end	His/V5	
FAM108C1	containing protein 17C	58489	NP_067037.1	Homo sapiens	HEK293T	aa 27-end	FLAG/His	
FAP	Seprase	2191	NP 004451.2	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
GZMA	Granzyme A	3001	NP 006135.1	Homo sanians	E coli	full_length	not	Enzo
OZ MA		2002	ND 06 1122 2	110mo suprens	D. COII	c ll l c ll	not	Elizo
GZMB	Granzyme B	3002	NP_004122.2	Homo sapiens	E. coli Schneider 2	tull-length active	specified C-terminal	Enzo
HPN	Serine protease hepsin	3249	NP_892028.1	Homo sapiens	cells	enzyme	His/V5 C-terminal	Enzo
HTRA1	Serine protease HTRA1	56213	NP_062510.2	Mus musculus	HEK293T	full-length	FLAG/His	DCD
HTRA2	serine protease HTRA2, mitochondrial	27429	NP_037379.1	Homo sapiens	E. coli	aa 234-458	C-terminal His	K&D Systems
HTRA4	Serine protease HTRA4	203100	NP 710159.1	Homo saviens	HEK293T	full-length	C-terminal FLAG/His	
	Isoamyl acetate-						C terminal	
IAH1	homolog	285148	NP_001034702.1	Homo sapiens	E. coli	full-length	His/myc	
KLK1	Kallikrein-1	3816	NP_002248.1	Homo sapiens	Yeast	full-length	not specified	Abcam
KI K2	Kallikrein-2	3817	NP 005542 1	Homo saniens	Mouse myeloma cells	aa 67-293	C-terminal His	R&D Systems
NER2	Kunktein 2	3017	NP_00/5742.1	Homo suprens	Mouse	au 07 275	C-terminal	R&D
KLK5 KLKB1	Kallikrein-5 Plasma kallikrein	25818 3818	NP_036559.1 NP_000883.2	Homo sapiens Homo sapiens	myeloma cells Human plasma	full-length full-length	His none	Abcam
	Serine beta-lactamase-		-				C torminal	
LACTB	mitochondrial	114294	NP_116246.2	Homo sapiens	HEK293T	full-length	FLAG/His	
LCAT	Group XV phospholipase A2	3931	NP_000220.1	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
	Lysosomal acid						C-terminal	
LIPA	hydrolase	3988	NP_001121077.1	Homo sapiens	HEK293T	full-length	FLAG/His	
LIPC	lipase	3990	NP_000227.2	Homo sapiens	HEK293T	full-length	FLAG/His	
LIPE	Hormone-sensitive lipase	3991	NP 005348.2	Homo sapiens	HEK293T	full-length	C-terminal FLAG/His	
I IDE	Gastric triacylglycerol	8513	NP 001185758 1	Homo sapiane	HEKJOIT	full_length	C-terminal	
		0010	111_001103/30.1	110mo suptens	11084731	a na s	C-terminal	
LIPG	Endothelial lipase	9388	NP_006024.1	Homo sapiens	НЕК293Т	full-length	FLAG/His C-terminal	
LPL	Lipoprotein lipase Acyl-protein thioesterase	4023	NP_000228.1	Homo sapiens	HEK293T	full-length	FLAG/His N-terminal	
LYPLA1	1	10434	NP_006321.1	Homo sapiens	E. coli	full-length	His	
(S119A)	Acyi-protein thioesterase 1 (S119A)	10434	NP_006321.1	Homo sapiens	E. coli	full-length	N-terminal His	
LYPLA2	Acyl-protein thioesterase 2	11313	NP 009191.1	Homo sapiens	E. coli	full-length	C-terminal His/V5	
LYPLA2 (S122A)	Acyl-protein thioesterase	11212	NP 000101 1	Homo caniana	E coli	full_longth	N-terminal	
(5122A)	Lysophospholipase-like	11515	INF_009191.1	riomo sapiens	E. COII	run-rengui	N-terminal	
LYPLAL1	protein 1	127018	NP_620149.1	Homo sapiens	E. coli	full-length	His C-terminal	
MGLL	Monoglyceride lipase	11343	NP_009214.1	Homo sapiens	E. coli	full-length	His/myc	
01.17	synthase thioesterase,	57201	ND 0007011			6.11.1	C-terminal	
OLAH	Ovarian cancer-	55301	NP_060794.1	Homo sapiens	E. coli	tull-length	H1s/myc C-terminal	
OVCA2	associated gene 2 protein Platelet-activating factor	124641	NP_543012.1	Homo sapiens	E. coli	full-length	His/myc	
DAFAUIDO	acetylhydrolase IB	5040	ND 002572.1	Homeseniter	E1	6.11 1	C-terminal	
rafah1B2	Platelet-activating factor	3049	INF_002563.1	riomo sapiens	E. con	iuii-iength	riis/myc	
1	(11 1 1 TD	1	1	1	1	1	C-terminal	1
PAFAH1B3	subunit gamma	5050	NP_001139411.1	Homo sapiens	E. coli	full-length	His/myc	

· · · · · · · · · · · · · · · · · · ·		1				1		1
DCSV 1	Neuroendocrine	5122	ND 000420.2	II	UEV 202T	full lonoth	C-terminal	
PUSKI	Nauroandoarina	5122	NP_000430.5	riomo sapiens	ПЕК2931	Tun-tengui	C terminal	P&D
PCSK2	convertase 2	5126	NP 0025852	Homo saniens	CHO cells	aa 110-end	His	Systems
100112	Group XV	0120	111_002000.2	filomo suprens	erro teno	uu 110 thu	C-terminal	Systems
PLA2G15	phospholipase A2	23659	NP 036452.1	Homo sapiens	HEK293T	full-length	FLAG/His	
	Cytosolic		_	í í	Spodoptera		C-terminal	R&D
PLA2G4A	phospholipase A2	5321	NP_077734.1	Homo sapiens	frugiperda	full-length	His	Systems
	Platelet-activating						C-terminal	
PLA2G7	factor acetylhydrolase	7941	NP_005075.3	Homo sapiens	HEK293T	full-length	FLAG/His	
	Tissue-type						C-terminal	
PLAT	plasminogen activator	5327	NP_000921.1	Homo sapiens	HEK293T	full-length	FLAG/H1s	DAD
DIALI	Urokinase-type	5229	NID 002(40.1		Mouse	6-11 1	C-terminal	R&D
PLAU	plasminogen activator	5328	NP_002649.1	Homo sapiens	myeloma cells	Tull-length	HIS	Systems
PL G	Plasminogen	5340	NP 000292.1	Homo saniens	Human nlasma	envzme	none	Abcam
120	Pancreatic	5540	111_0002/2.1	110mo supiens	Trumun plusinu	enyzine	C-terminal	notum
PNLIP	triacylglycerol lipase	5406	NP 000927.1	Homo sapiens	HEK293T	full-length	FLAG/His	
	Pancreatic lipase-						C-terminal	
PNLIPRP2	related protein 2	5408	NP_005387.2	Homo sapiens	HEK293T	full-length	FLAG/His	
	Patatin-like							
	phospholipase domain-						C-terminal	
PNPLA2	containing protein 2	57104	NP_065109.1	Homo sapiens	HEK293T	full-length	FLAG/His	
	Protein phosphatase						N-terminal	
PPME1	methylesterase 1	51400	NP_057231.1	Homo sapiens	E. coli	full-length	His	
	Protein phosphatase						NT (1 1	
PPMEI (S156A)	(S156A)	51400	ND 057221 1	II	E seli	full lonoth	N-terminal	
(S150A)	(S130A) Palmitovl protoin	51400	NP_03/231.1	riomo sapiens	E. COII	Tun-tengui	C terminal	
PPT1	thioesterase 1	0374	NP 0011010321	Homo sanians	HEK 203T	full-length	ELAG/His	
1111	L vsosomal thioesterase))) 	141_001171052.1	110mo supiens	TILK2/51	Tun-Tengui	C-terminal	
PPT2	PPT2	9374	NP 005146.4	Homo sapiens	HEK293T	full-length	FLAG/His	
	Lysosomal Pro-X						C-terminal	
PRCP	carboxypeptidase	5547	NP 005031.1	Homo sapiens	HEK293T	full-length	FLAG/His	
							N-terminal	
PREP	Prolyl endopeptidase	5550	NP_002717.3	Homo sapiens	E. coli	full-length	His	
	Prolyl endopeptidase-						N-terminal	
PREPL	like	9581	NP_001165074.1	Homo sapiens	E. coli	full-length	His	
PR o G	Vitamin K-dependent				<i>a</i> 110 11	12.141		
PROC	protein C	5624	NP_000303.1	Homo sapiens	CHO cells	aa 43-461		
DDCC1	Termain 1	615227	ND 001107100 1	Destauro	Dorvino	active		Dromaco
PK551	11ypsin-1	013237	INF_00110/199.1	bos taurus	Boville	enzyme	C terminal	Promega P&D
PRSS	Prostasin	5652	NP 002764.1	Homo sanians	CHO cells	aa 33-310	C-terminar His	Systems
1 10556	Brain-specific serine	5052	NI_002704.1	110mo suprens	Mouse	aa 55-517	C-terminal	R&D
PRSS22	protease 4	64063	NP 071402.1	Homo sapiens	myeloma cells	aa 33-317	His	Systems
					Mouse		C-terminal	R&D
PRSS27	Serine protease 27	83886	NP_114154.1	Homo sapiens	myeloma cells	aa 23-290	His	Systems
	Glutamyl-tRNA(Gln)		_					-
	amidotransferase							
	subunit A,						C-terminal	
QRSL1	mitochondrial	55278	NP_060762.3	Homo sapiens	HEK293T	full-length	FLAG/His	
DDDDO	Putative hydrolase	10741	ND 00(507.2		E15	6-11 1	N-terminal	
KBBP9	KBBP9	10/41	NP_006597.2	Homo sapiens	E. coli	rull-length	H1S	
(\$75A)	Putative nydrolase RBBP0 (\$75A)	10741	NP 006597.2	Homo saniana	E coli	full-length	IN-terminal His	
(375A)	Retinoid_inducible	10/41	INF_000377.2	110mo suprens	E. COII	iun-iengui	1115	
	serine						C-terminal	
SCPEP1	carboxypeptidase	59342	NP 067639.1	Homo sapiens	HEK293T	full-length	FLAG/His	
	Sialate O-						C-terminal	
SIAE	acetylesterase	54414	NP_733746.1	Homo sapiens	HEK293T	full-length	FLAG/His	
	Suppressor of		_					
	tumorigenicity 14						N-terminal	R&D
ST14	protein	6768	NP_068813.1	Homo sapiens	E. coli	aa 596-855	His	Systems
	Transmembrane	a (Mouse		N-terminal	R&D
TMPRSS11D	protease serine 11D	9407	NP_004253.1	Homo sapiens	myeloma cells	aa 72-418	His	Systems
TDD2	T	7174	ND 002202 2		UEVOOT	6 H L - C	C-terminal	
TPP2	I ripeptidyl-peptidase 2	/174	NP_003282.2	Homo sapiens	HEK293T	tull-length	FLAG/H18	

Supplementary Table 3 55 widely used inhibitors profiled in this study. These compounds were obtained from the indicated source and used without further confirmation of their purity or specific activity.

Inhibitor	Source	Structure	Primary Target(s)
1,5-Dansyl-Glu-Gly-Arg chloromethyl ketone (1,5-Dansyl-EGR-CMK)	CalBioChem	$H_{2}N \xrightarrow{H}_{NH} H \xrightarrow{CI}_{N} \xrightarrow{H}_{N} \xrightarrow{H}_{N} \xrightarrow{O}_{O} \xrightarrow{H}_{N} \xrightarrow{O}_{O} \xrightarrow{H}_{N} \xrightarrow{O}_{O} \xrightarrow{O}_{O} \xrightarrow{H}_{O} \xrightarrow{O}_{O} \xrightarrow{O}_{O} \xrightarrow{O}_{O} \xrightarrow{H}_{O} \xrightarrow{O}_{O} \xrightarrow{O}_{O} \xrightarrow{O}_{O} \xrightarrow{H}_{O} \xrightarrow{O}_{O} \xrightarrow{O} \xrightarrow{O}_{O} O$	PLAU, FXa
ABL127	Sigma		PME1
Ada-(Ahx)3-(Leu)3-vinyl sulfone	Enzo		20S proteasome
AEBSF	Sigma	H ₂ N	pan-serine protease inhibitor
Ala-boroPro	W. Bachovchin (Tufts Univ.)	H_2 H_2 H_2 H_2 H_2 H_2 H_2 H_3	Dipeptidyl peptidases
Antipain	Santa Cruz	H_2N N H_2	many serine and cysteine proteases
Arachidonyl trifluoromethyl ketone (Arachidonyl TFMK)	Cayman Chemical	CF ₃	Cytosolic and calcium- independent PLA2 enzymes, FAAH
Argatroban	Sigma	$H_2N \xrightarrow{N}_{NH_2} N \xrightarrow{N}_{NH_$	Thrombin

Supplementary Table 4 Comparison of IC_{50} values determined by EnPlex with published values. An asterisk (*) indicates that enzymes from different species were used to obtain the two values shown. Because the lowest dose evaluated by EnPlex was 5 nM, compounds inhibiting enzyme activity > 50% at that dose were assigned a value of "< 5".

CompoundEnzymeIC $_{50}$ IC $_{50}/K_1/K_d$ (nM)ReferenceABL 127PME112.24.21Ala-boroProDPP4<522Ala-boroProDPP81034133Ala-boroProDPP9189.12.83AntipainTrypsin187.84304AntipainPlasmin816766005Arachidonyl TFMKFAAH39845506Arachidonyl TFMKMGLL*267.729006BoceprevirCMA14517327ArgatrobanThrombin<5128BortezomibDPP7851287009ChymostatinChymotrypsin*128.89410ChymostatinCMA1108542010DabigatranThrombin<54.511DabigatranFXa28109376011DabigatranFKa278.65.712EmetineRBBP96008780013GabexatePLAU1348130014GabexatePLG364.4160015GabexateKLKB1488.220015GabexateThrombin148797015JP104FAAH<57.316H02FAAH<57.316				Published	
ABL127 PME1 12.2 4.2 1 Ala-boroPro DPP4 <5 2 2 Ala-boroPro DPP8 1034 13 3 Ala-boroPro DPP9 189.1 2.8 3 Antipain Trypsin 187.8 430 4 Antipain Plasmin 8167 6600 5 Arachidonyl TFMK FAAH 3984 550 6 Arachidonyl TFMK MGLL* 267.7 2900 6 Boceprevir CMA1 4517 32 7 Argatroban Thrombin <5 12 8 Bortezomib DPP7 8512 8700 9 Chymostatin Chymotrypsin* 128.8 94 10 Dabigatran Thrombin <5 4.5 11 Dabigatran FXa 28109 3760 11 Dabigatran Trypsin* 1611 50.3 11 Donepezil	Compound	Enzyme	IC ₅₀	$IC_{50}/K_i/K_d$ (nM)	Reference
Ala-boroPro DPP4 <5 2 2 Ala-boroPro DPP8 1034 13 3 Ala-boroPro DPP9 189.1 2.8 3 Antipain Trypsin 187.8 430 4 Antipain Plasmin 8167 6600 5 Arachidonyl TFMK FAAH 3984 550 6 Arachidonyl TFMK MGLL* 267.7 2900 6 Boceprevir CMA1 4517 32 7 Argatroban Thrombin <5	ABL127	PME1	12.2	4.2	1
Ala-boroPro DPP8 1034 13 3 Ala-boroPro DPP9 189.1 2.8 3 Antipain Trypsin 187.8 430 4 Antipain Plasmin 8167 6600 5 Arachidonyl TFMK FAAH 3984 550 6 Arachidonyl TFMK MGLL* 267.7 2900 6 Boceprevir CMA1 4517 32 7 Argatroban Thrombin <5	Ala-boroPro	DPP4	<5	2	2
Ala-boroProDPP9 189.1 2.8 3 AntipainTrypsin 187.8 430 4 AntipainPlasmin 8167 6600 5 Arachidonyl TFMKFAAH 3984 550 6 Arachidonyl TFMKMGLL* 267.7 2900 6 BoceprevirCMA1 4517 32 7 ArgatrobanThrombin <5 12 8 BortezomibCMA1 4650 280 9 BortezomibDPP7 8512 8700 9 ChymostatinChymotrypsin* 128.8 94 10 ChymostatinCMA1 1085 420 10 DabigatranThrombin <5 4.5 11 DabigatranFXa 28109 3760 11 DabigatranTrypsin* 1611 50.3 11 DabigatranTrypsin* 1611 50.3 11 GabexatePLAU 1348 1300 14 GabexatePLG 364.4 1600 15 GabexateThrombin 1487 970 15 JP104FAAH <5 7.3 16	Ala-boroPro	DPP8	1034	13	3
AntipainTrypsin187.84304AntipainPlasmin816766005Arachidonyl TFMKFAAH39845506Arachidonyl TFMKMGLL*267.729006BoceprevirCMA14517327ArgatrobanThrombin<5	Ala-boroPro	DPP9	189.1	2.8	3
AntipainPlasmin 8167 6600 5 Arachidonyl TFMKFAAH 3984 550 6 Arachidonyl TFMKMGLL* 267.7 2900 6 BoceprevirCMA1 4517 32 7 ArgatrobanThrombin <5 12 8 BortezomibCMA1 4650 280 9 BortezomibDPP7 8512 8700 9 ChymostatinChymotrypsin* 128.8 94 10 ChymostatinCMA1 1085 420 10 DabigatranThrombin <5 4.5 11 DabigatranFXa 28109 3760 11 GabexatePLAU 1348 1300 14 GabexatePLG 364.4 1600 15 GabexateKLKB1 488.2 200 15 GabexateThrombin 1487 970 15 JP104FAAH < 5 7.3 16	Antipain	Trypsin	187.8	430	4
Arachidonyl TFMKFAAH39845506Arachidonyl TFMKMGLL* 267.7 2900 6BoceprevirCMA1 4517 32 7ArgatrobanThrombin <5 12 8BortezomibCMA1 4650 280 9BortezomibDPP7 8512 8700 9ChymostatinChymotrypsin* 128.8 94 10ChymostatinCMA1 1085 420 10DabigatranThrombin <5 4.5 11DabigatranFXa 28109 3760 11DabigatranFXa 278.6 5.7 12 EmetineRBBP9 6008 7800 13 GabexatePLAU 1348 1300 14 GabexateFLAU 488.2 200 15 GabexateThrombin 1487 970 15 JP104FAAH < 5 7.3 16	Antipain	Plasmin	8167	6600	5
Arachidonyl TFMK MGLL* 267.7 2900 6 Boceprevir CMA1 4517 32 7 Argatroban Thrombin <5	Arachidonyl TFMK	FAAH	3984	550	6
BoceprevirCMA1 4517 32 7ArgatrobanThrombin<5	Arachidonyl TFMK	MGLL*	267.7	2900	6
ArgatrobanThrombin<5128BortezomibCMA146502809BortezomibDPP7 8512 8700 9ChymostatinChymotrypsin*128.89410ChymostatinCMA1108542010DabigatranThrombin<5	Boceprevir	CMA1	4517	32	7
BortezomibCMA1 4650 280 9BortezomibDPP7 8512 8700 9ChymostatinChymotrypsin* 128.8 94 10 ChymostatinCMA1 1085 420 10 DabigatranThrombin <5 4.5 11 DabigatranFXa 28109 3760 11 DabigatranFXa 28109 3760 11 DabigatranTrypsin* 1611 50.3 11 DonepezilACHE* 278.6 5.7 12 EmetineRBBP9 6008 7800 13 GabexatePLAU 1348 1300 14 GabexateKLKB1 488.2 200 15 GabexateThrombin 1487 970 15 JP104FAAH < 5 7.3 16	Argatroban	Thrombin	<5	12	8
BortezomibDPP7 8512 8700 9ChymostatinChymotrypsin* 128.8 94 10 ChymostatinCMA1 1085 420 10 DabigatranThrombin <5 4.5 11 DabigatranFXa 28109 3760 11 DabigatranTrypsin* 1611 50.3 11 DabigatranTrypsin* 1611 50.3 11 DonepezilACHE* 278.6 5.7 12 EmetineRBBP9 6008 7800 13 GabexatePLAU 1348 1300 14 GabexatePLG 364.4 1600 15 GabexateKLKB1 488.2 200 15 GabexateThrombin 1487 970 15 JP104FAAH < 5 7.3 16	Bortezomib	CMA1	4650	280	9
ChymostatinChymotrypsin*128.89410ChymostatinCMA1108542010DabigatranThrombin <5 4.511DabigatranFXa28109376011DabigatranTrypsin*161150.311DonepezilACHE*278.65.712EmetineRBBP96008780013GabexatePLAU1348130014GabexatePLG364.4160015GabexateKLKB1488.220015GabexateThrombin148797015JP104FAAH<5	Bortezomib	DPP7	8512	8700	9
Chymostatin CMA1 1085 420 10 Dabigatran Thrombin <5 4.5 11 Dabigatran FXa 28109 3760 11 Dabigatran FXa 28109 3760 11 Dabigatran Trypsin* 1611 50.3 11 Donepezil ACHE* 278.6 5.7 12 Emetine RBBP9 6008 7800 13 Gabexate PLAU 1348 1300 14 Gabexate PLG 364.4 1600 15 Gabexate KLKB1 488.2 200 15 Gabexate Thrombin 1487 970 15 JP104 FAAH < 5 7.3 16	Chymostatin	Chymotrypsin*	128.8	94	10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Chymostatin	CMA1	1085	420	10
DabigatranFXa 28109 3760 11DabigatranTrypsin* 1611 50.3 11DonepezilACHE* 278.6 5.7 12EmetineRBBP9 6008 7800 13GabexatePLAU 1348 1300 14GabexatePLG 364.4 1600 15GabexateKLKB1 488.2 200 15GabexateThrombin 1487 970 15JP104FAAH < 5 7.3 16	Dabigatran	Thrombin	<5	4.5	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dabigatran	FXa	28109	3760	11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dabigatran	Trypsin*	1611	50.3	11
Emetine RBBP9 6008 7800 13 Gabexate PLAU 1348 1300 14 Gabexate PLG 364.4 1600 15 Gabexate KLKB1 488.2 200 15 Gabexate Thrombin 1487 970 15 JP104 FAAH < 5	Donepezil	ACHE*	278.6	5.7	12
Gabexate PLAU 1348 1300 14 Gabexate PLG 364.4 1600 15 Gabexate KLKB1 488.2 200 15 Gabexate Thrombin 1487 970 15 JP104 FAAH < 5 7.3 16	Emetine	RBBP9	6008	7800	13
Gabexate PLG 364.4 1600 15 Gabexate KLKB1 488.2 200 15 Gabexate Thrombin 1487 970 15 JP104 FAAH < 5 7.3 16	Gabexate	PLAU	1348	1300	14
Gabexate KLKB1 488.2 200 15 Gabexate Thrombin 1487 970 15 JP104 FAAH <5	Gabexate	PLG	364.4	1600	15
Gabexate Thrombin 1487 970 15 JP104 FAAH < 5	Gabexate	KLKB1	488.2	200	15
JP104 FAAH <5 7.3 ¹⁶	Gabexate	Thrombin	1487	970	15
	JP104	FAAH	< 5	7.3	16
JP83 FAAH < 5 1.6 10	JP83	FAAH	< 5	1.6	16
JW642 MGLL 53.7 3.7 ¹⁷	JW642	MGLL	53.7	3.7	17
JW642 FAAH 4742 14000 ¹⁷	JW642	FAAH	4742	14000	17
JW642 ABHD6* 51.3 107 ¹⁷	JW642	ABHD6*	51.3	107	17
JZL195 MGLL* 350.8 19 ¹⁸	JZL195	MGLL*	350.8	19	18
JZL195 FAAH* 12.1 13 ¹⁸	JZL195	FAAH*	12.1	13	18
JZL195 ABHD6* 55 50 ¹⁸	JZL195	ABHD6*	55	50	18
K579 DPP4 <5 5 ¹⁹	K579	DPP4	< 5	5	19
KML29 MGLL 22 5.9 ¹⁷	KML29	MGLL	22	5.9	17
MAFP FAAH 5.1 2.5 ²⁰	MAFP	FAAH	5.1	2.5	20
Melagatran Thrombin < 5 2 ²¹	Melagatran	Thrombin	< 5	2	21
Melagatran Trypsin* 15.75 4 ²²	Melagatran	Trypsin*	15.75	4	22
Melagatran PLG 2874 1400 ²²	Melagatran	PLG	2874	1400	22
Melagatran KLKB1 363 690 22	Melagatran	KLKB1	363	690	22
Melagatran FXa 2398 9400 ²²	Melagatran	FXa	2398	9400	22
N-arachidonyl maleimide MGLL 194.1 140 ²³	N-arachidonyl maleimide	MGLL	194.1	140	23
Orlistat PLA2G7 260 50 24	Orlistat	PLA2G7	260	50	24
Palmityl TFMK FAAH 3967 73 ⁶	Palmityl TFMK	FAAH	3967	73	6
PPACK Thrombin <5 18 ²⁵	PPACK	Thrombin	<5	18	25
PF-3845 FAAH <5 18 ²⁶	PF-3845	FAAH	<5	18	26
Physostigmine ACHE* 1236 70 ²⁷	Physostigmine	ACHE*	1236	70	27
Physostigmine BCHE 5 35 27	Physostigmine	BCHE	5	35	27
RHC 80267 PLA2G7 7438.5 23000 24	RHC 80267	PLA2G7	7438.5	23000	24

RHC 80267	FAAH	8106	10000	24
Rivaroxaban	FXa	<5	0.7	28
S17092	PREP	<5	0.9	29
Saxagliptin	DPP4	<5	1.3	30
Saxagliptin	DPP8	5323	508	30
Saxagliptin	DPP9	583.9	98	30
Sitagliptin	DPP4	7.1	18	30
Telaprevir	CMA1	725.2	26	7
Telaprevir	CELA1	221.8	30	7
URB597	FAAH	27.98	45	16
Val-boroPro	DPP4	<5	0.18	31
Val-boroPro	DPP8	<5	1.5	31
Val-boroPro	DPP9	<5	0.76	31
Vildagliptin	DPP4	<5	13	30
Vildagliptin	DPP9	219.2	258	30
WWL70	ABHD6*	25.23	70	32
Z-prolyl-prolinal	PREP	<5	14	33

Supplementary Table 5 The serine hydrolase targets of bortezomib. An asterisk (*) indicates that enzymes from different species were used to obtain the two values shown. Published values are from ref. 9. New targets were defined as enzymes inhibited >40% at 33 μ M in the EnPlex assay. ND, not determined.

			Publish	ed values	En	Plex
		Initial Target		% inhibition		% inhibition
	Enzyme	Identification Method	IC50 (µM)	(at 10 µM)	IC50 (µM)	(at 33 µM)
	Chymotrypsin*	Enzyme panel	ND	95	> 33	53
	CMA1	Enzyme panel	0.28	95	4.7	84.2
Previously	CTSA	MS-ABPP	2.5	ND	> 33	32.4
known targets	CTSG	Enzyme panel; MS-ABPP	0.95	95	36	61.8
	DPP7	MS-ABPP	8.7	ND	8.5	78.7
	ELANE	Enzyme panel	ND	40	> 33	36.1
	HTRA2	In silico database mining	0.003	ND	> 33	< 5
	C1R	EnPlex	-	-	>33	44.5
	FXa	EnPlex	-	-	>33	48.8
Previously	GZMA	EnPlex	-	-	11.9	72.4
unknown targets	KLKB1	EnPlex	-	-	2.0	94.2
	PRCP	EnPlex	-	-	12.4	77.9
	PRSS22	EnPlex	-	-	>33	44.4
	ST14	EnPlex	-	-	>33	51.5

Supplementary Table 6 Numbers, names, structures, and chemical characterization of the boronic acid and nitrile library. The compound number (left column) corresponds to the compound numbers in Figure 5 and Supplementary Figure 8.

Compound	Compound	Compound Structure	Characterization or Reference
Number	Name		
		s	¹ H NMR (D ₂ O) δ 4.44 (dd, J = 8.2, 6.2
		Ĵ	Hz, 1H), 3.91(dd, <i>J</i> = 6.1, 5.8 Hz, 1H),
			3.01 (dd, <i>J</i> = 7.8, 7.1 Hz, 2H), 2.75 (t,
			J = 7.8 Hz, 1H), 2.58 (t, $J = 7.3$ Hz,
			2H), 2.41 (t, <i>J</i> = 7.2 Hz, 2H), 2.12 (s,
			3H), 2.00 - 1.60 (m, 10H), 1.50 - 1.40
			(m, 2H). MS (ESI ⁺) m/z (rel intensity):
	Aad(Lys-		202.1 ([[M - H_2O]/2 + H] ⁺ , 100),
1	boroMet)	NH ₂	403.3 ($[M - H_2O + H]^+$, 60).
		0	¹ H NMR (D ₂ O) δ 4.79 (t, J = 6.6 Hz,
		OH NO RECOH	1H), 3.21 (s, 3H), 2.53 (s, 2H), 2.01 -
			1.96 (m, 2H), 1.03 (t, <i>J</i> = 7.5 Hz, 3H).
		NH ₂ OH	¹³ C NMR (D ₂ O) δ 174.39, 47.50,
			47.01, 38.44, 17.57. MS (ESI ⁺) <i>m/z</i>
			(rel intensity): 157.2 ($[M - H_2O + H]^+$,
2	Abu-boroSar		100).
		0	¹ H NMR (D ₂ O) δ 4.86 (dd, J = 7.5, 5.4
			Hz, 1H), 4.32 (t, <i>J</i> = 6.0 Hz, 1H), 3.79
			- 3.65 (m, 2H), 2.42 - 2.33 (m, 2H),
			2.25 - 2.13 (m, 2H), 2.05 - 1.96 (m,
		N ⁷⁷	2H), 1.05 (t, $J = 7.5$ Hz, 3H). MS
			(ESI ⁺) m/z (rel intensity): 182.1 ([M +
3	Abu-Pro-CN		H] ⁺ , 100).
		s Ś	¹ H NMR (D ₂ O) δ 4.46 (dd, J = 8.7, 6.0
			Hz, 1H), 4.24 (q, <i>J</i> = 4.8 Hz, 1H) 2.99
			(t, J = 7.5 Hz, 2H), 2.76 (m, 1H), 2.55
			(t, J = 7.4 Hz, 2H), 2.10 (s, 3H), 2.01
			(s, 3H), 1.67 - 1.85 (m, 6H), 1.44 -
			1.47 (m, 2H), 1.37 (d, <i>J</i> = 7.2 Hz, 1H).
	A A1 T		MS (ESI ⁺) m/z (rel intensity): 373.1
	Ac-Ala-Lys-	 NHa	$([M - H_2O + H]^+, 100).$
4	DoroMet		

		NH ₂	¹ H NMR (D ₂ O) δ 8.10 (d, J = 7.8 Hz,
			1H), 8.0 (d, <i>J</i> = 7.3 Hz, 1H), 7.91 (d, <i>J</i>
			= 8.0 Hz, 1H), 7.65 - 7.42 (m, 4H),
			4.67 (m, 1H), 4.31 (dd, $J = 8.3$, 6.2
			Hz, 1H), 3.60 - 3.50 (m, 2H), 2.92 (t, J
			= 7.5 Hz, 2H), 2.63 (t, <i>J</i> = 8.1 Hz, 1H),
			1.94 (s, 3H), 1.62 - 1.51 (m, 5H), 1.33
			-1.24 (m, 4H), 0.92 (d, $J = 4.1$ Hz,
	Ac-Ala(1-	O'	3H), 0.90 (d, $J = 4.0$ Hz, 3H). MS
	naph)-Lys-		(ESI ⁺) <i>m/z</i> (rel intensity): 481.3 ([M -
5	boroLeu		$H_2O + H]^+$, 100).
			¹ H NMR (D ₂ O) δ 8.21 (d, J = 8.3 Hz,
			1H), 8.01 (d, <i>J</i> = 8.0 Hz, 1H), 7.94 (d,
			J = 8.3 Hz, 1H), 7.77 - 7.59 (m, 2H),
			7.51 - 7.40 (m, 2H), 5.00 - 4.80 (m,
		HN_O	1H), 4.65 - 4.60 (m, 1H), 3.78 (dd, <i>J</i> =
		Ť	13.1, 4.9 Hz, 1H), 3.39 (t, <i>J</i> = 11.1 Hz,
		l l	2H), 3.20 (dd, J = 16.8, 8.0 Hz, 1H),
			2.02 - 1.90 (m, 5H), 1.71 - 1.60 (m,
			1H), 1.41 - 1.34 (m, 1H). MS (ESI ⁺)
	Ac-Ala(1-		m/z (rel intensity): 358.1 ([M + Na] ⁺ ,
6	naph)-Pro-CN		71), 336.1 ([M + H] ⁺ , 100).
		HN	¹ H NMR (D ₂ O) δ 8.63 (s, 1H), 7.31 (s,
		N J	1H), 4.67 (dd, $J = 7.5$, 6.6 Hz, 1H),
			4.44 (dd, J = 8.1, 6.6 Hz, 1H), 3.42 -
			3.15 (m, 3H), 2.98 (t, <i>J</i> = 7.6 Hz, 3H),
			2.80 - 2.60 (m, 2H), 2.55 (t, $J = 7.2$
			Hz, 2H), 2.10 (s, 3H), 1.99 (s, 3H),
			1.98 (br, 1H), 1.84 - 1.68 (m, 8H),
			1.50 - 1.30 (m, 4H). MS (ESI ⁺) m/z
	Ac-His-Lys-	NП2	(rel intensity): 439.2 ($[M - H_2O + H]^+$,
7	boroMet		100).
		NH ₂	¹ H NMR (D ₂ O) δ 4.46 - 4.35 (m, 2H),
			3.64 (t, $J = 6.6$ Hz, 2H), 3.0 (dd, $J =$
			7.4, 7.0 Hz, 1H), 2.77 (dd, <i>J</i> = 9.0, 6.3
		о он	Hz, 1H), 2.34 - 2.29 (m, 1H), 2.11 (s,
			3H), 2.00 - 1.30 (m, 15H), 0.90 (d, J
		I I I I I I I I I I I I I I I I I I I	= 3.9 Hz, 3H), 0.88 (d, $J = 3.7$ Hz,
	Ac-Pro-Lys-		3H). MS (ESI ⁺) m/z (rel intensity):
8	boroLeu		$381.2 ([M - H_2O + H]^+, 100).$

	1	NHa	¹ H NMR (D ₂ O) δ 4.48 - 4.43 (m. 1H).
			440 - 435(m 1H) 364(t J = 66 Hz)
			2H) 3.0 (t $I = 7.3H_7$ 2H) 2.78 - 2.73
			(m 1H) 255 (dd $I = 75, 72$ Hz
			(III, III), 2.55 (uu, 5 7.5, 7.2 II2, 211), 2.25 2.25 (m 1H) 2.11 (c 2H)
			$2H$, 2.35 - 2.25 (III, 1 Π), 2.11 (5, 511), 2.00 (- 211) - 2.00 - 1.64 (m. 10H)
			2.09 (s, $3H$), $2.00 - 1.04$ (III, $10H$),
			1.55 - 1.35 (m, 2H). MS (ESI) m/z
	Ac-Pro-Lys-	Ś	(rel intensity): 399.2 ([M - H ₂ O + H] ,
9	boroMet		100).
		O II	¹ H NMR (D ₂ O) δ 2.78 (q, J = 7.4 Hz,
		N N B OH	1H), 1.56 (s, 3H), 1.55 (s, 3H), 1.08
		H₂N´ Ĥ ĭ OH	$(d, J = 7.4 \text{ Hz}, 3\text{H}). \text{ MS } (\text{ESI}^+) m/z \text{ (rel})$
			intensity): 313.2 ([2 × (M - $H_2O)$ +
			$H]^+$, 100), 157.3 ($[M - H_2O + H]^+$,
10	Aib-boroAla		18).
		0	¹ H NMR (D ₂ O) 2.68 (s, 2H), 1.59 (s,
		он	6H). MS (ESI+) m/z , (rel Intensity):
		H_{2N} H_{1} H_{2} H_{2} H_{2} H_{1} H_{2} $H_{$	143.2 ($[M - H_2O + H]^+$, 70), 285.2 ($[2$
11	Aib-boroGly	Ć I OH	$x (M - H_2O) + H]^+$, 100).
	1	HO	¹ H NMR (D ₂ O) δ 2.93 (dd, J = 8.0, 7.4
			Hz, 1H), 1.60 (s, 6H), 1.50 (m, 1H),
			1.45 - 1.30 (m, 2H), 0.90 (t, $J = 4.2$
		H_2N H	Hz, 3H). MS (ESI ⁺) m/z (rel intensity):
			199.2 ($[M - H_2O + H]^+$, 100), 397.3 ($[2$
12	Aib-boroLeu		$x (M - H_2O) + H]^+, 50).$
	1	HO _N _OH	¹ H NMR (D ₂ O): δ 2.83 (t, J = 7.5 Hz,
		O BÍ	1H), 1.63 (s, 6H), 1.56 - 1.47 (m, 2H),
			1.40 - 1.28 (m, 2H), 0.90 (t, $J = 7.2$
		H_2N H	Hz, 3H). MS (ESI ⁺) m/z (rel intensity):
			$553.4 ([3 \times (M - H_2O) + H]^+, 4), 369.3$
			$([2 \times (M - H_2O) + H]^+, 100), 185.2$
13	Aib-boroNva		$([M - H_2O + H]^+, 16).$
		но он 🔿	¹ H NMR (D ₂ O) δ 7.55 - 7.25 (m, 5H),
		0 B S S S S S S S S S S S S S S S S S S	3.42 - 3.35 (m. 1H), 3.30 - 3.14 (dd, J
			= 102.59 Hz. 1H), 2.98 (dd. $J = 13.7$.
		H ₂ N H	5.9 Hz, 1H), 2.80 (dd, $J = 13.7, 10.2$
			H_7 1H) 155 (s 3H) 150 (s 3H)
			MS (FSI+) m/τ (rel Intensity): 245 1
			$(IM - H_{2}O + H)^{+}$ 100) 263 1 (IM +
14	Aib-boroPhe		H ¹⁺ 40)
17	Allo-boloi ne	НО	34
		O B-OH	тC
		H_2N N \rangle	
15	Aib-boroPro		

		0 	¹ H NMR (D ₂ O) δ 3.31 (s, 3H), 2.57 (s,
		N B-OH	2H), 1.76 (s, 6H). 13 C NMR (D ₂ O) δ
		H ₂ N I OH	1/5.92, 5/.79, 50.89, 40.09, 24.64. MS (FSI ⁺) m/z (rel intensity): 157.1
16	Aib-boroSar		$([M - H_2O + H]^+, 100).$
		Q	¹ H NMR (D ₂ O): δ 3.93 - 3.85 (m, 2H),
			3.78 - 3.69 (m, 1H), 2.34 - 2.14 (m,
		H ₂ N	4H), 1.73 (s, 3H), 1.69 (s, 3H). MS
17	Aib Dro CN	N	(ESI) $m/2$ (ref intensity). 182.1 ([M + H] ⁺ , 100).
17	Alb-Plo-CN	0 -	¹ H NMR (D ₂ O) δ 4 10 (a J = 6 4 Hz
		、 ↓ ↓ ∠он	1H), 2.92 (q, $J = 7.5$ Hz, 1H), 1.53 (d,
		N B' H I	J = 6.4 Hz, 3H), 1.16 (d, $J = 7.5$ Hz,
		NH ₂ OH	3H). MS (ESI ⁺) m/z (rel intensity):
19	Ala horo Ala		285.2 ([2 × (M - H ₂ O) + H] ⁺ , 100), 142.2 ([M + O + H] ⁺ 26)
18	Ala-DoloAla	0	¹ H NMR (D ₂ O): δ 4.06 (a. J = 6.9 Hz.
		он	1H), 2.78 (d, $J = 16.9$ Hz, 1H), 2.70
			(d, J = 16.9 Hz, 1H), 1.50 (d, J = 6.9
			Hz, 3H). MS (ESI ⁺) m/z (rel intensity):
19	Ala-boroGly		$257.1 ([2 \times (M - H_2O) + H], 100),$ 129.1 ([M - H_2O + H] ⁺ 73)
		НО. 20Н	35
		O B	
20	Ala-boroLeu	NH ₂	
		HO_B_OH	¹ H NMR (D ₂ O): δ 4.08 (q, J = 7.1 Hz,
			1H), 2.86 (t, $J = 7.5$ Hz, 1H), 1.56 - 1.48 (m 5H) 1.37 - 1.26 (m 2H)
		I I I I I I I I I I I I I I I I I I I	0.88 (t, $J = 7.2$ Hz, 3H). MS (ESI ⁺)
		2	m/z (rel intensity): 511.3 ([3 × (M -
			$H_2O) + H]^+$, 32), 341.2 ([2 × (M -
			H_2O) + H] ⁺ , 100), 171.1 ([M - H_2O +
21	Ala-boroNva		(1), (58) . (1) NMR (D ₂ O) (57) , (7) ,
			4.0 (q, $J = 7.0$ Hz, 1H), 3.42 - 3.35 (m,
			1H), 3.00 - 2.90 (m, 1H), 2.85 - 2.60
		NH ₂ ⊓	(m, 1H), 1.44 (d, <i>J</i> = 7.0 Hz, 3H). MS
			(ESI+) m/z (rel Intensity): 219.1 ([M - H ₂ O + H] ⁺ 100) 437.2 (I2 x (M -
22	Ala-boroPhe		$H_2O + H_1^+, 100, 457.2 (12 \times (M - H_2O) + H_1^+, 40).$

		НО	34
		O B OH	
	Ala-boroPro	$1 \qquad 1 \qquad N >$	
23		NH ₂	
		HO	See Supplementary Note 2
		S B-OH	
	Ala-boroPro		
	thioxoamide		
24	(ARI-2243)		
		0 0	¹ H NMR (D ₂ O) δ 4.63 (q, J = 6.4 Hz,
		∖ ↓ ОН	1H), 3.19 (s, 3H), 2.53 (s, 2H), 1.56
			$(d, J = 6.4 \text{ Hz}, 3\text{H}).$ ¹³ C NMR (D ₂ O) δ
		NH ₂ OH	174.39, 47.01, 38.44, 17.57, MS
			$(ESI^{+}) m/z$ (rel intensity): 143.1 ([M -
25	Ala-boroSar		$H_2O + H_1^+$, 100).
-		8	¹ H NMR (D ₂ O) δ 4 69 (a $J = 6.7$ Hz
			1H) 3 50 3 30 (m 5H) 1 48 (d $I =$
		N B OH	(7, 11-21) $(3, 50-5, 50)$ $(11, 511)$ (140) $(10, 50-5)$
		NH₂ OH	6.7 HZ, 3H). C NMR (D ₂ O) 6
		-	197.77, 53.23, 51.94, 44.72, 20.30.
			MS (ESF) m/z (rel intensity): 317.1
			$([2 \text{ x} (\text{M} - \text{H}_2\text{O}) + \text{H}]^{+}, 25), 177.1 ([\text{M})$
	Ala-boroSar		$+ H]^{+}$, 52), 159.0 ([M - H ₂ O + H] ⁺ ,
26	thioxoamide		100).
		0	36
		$1 \qquad 1 \qquad N >$	
		NH ₂	
27	Ala-Pro-CN	N	
		0 -	¹ H NMR (D ₂ O) δ 8 07 - 7 93 (m 3H)
		Ŭ	7.66 = 7.47 (m AH) + 2.8 (dd I = 6.6
		N B ^{OH}	$9.4 H_7$ 1H) $3.75 - 3.50 (m)$ 2H) 2.61
			(2, I = 7.5 Hz, 111), 0.75 (A, I = 7.5 Hz, 111), 0.7
			(q, J - I.S nz, 1n), 0.75 (q, J = I.S)
			112, 511). INIS (ESI) m/z (rel intensity):
	Ala(1-naph)-		$53/.3 ([2 \times (M - H_2O) + H]', 25),$
28	boroAla		269.2 ($[M - H_2O + H]^+$, 100).
		O	¹ H NMR (D ₂ O) δ 8.07 - 7.93 (m, 3H),
		HO. A L A JOH	7.71 - 7.45 (m, 4H), 4.29 (dd, <i>J</i> = 8.4,
		I Y Y N B ^r	7.1 Hz, 1H), 3.73 - 3.60 (m, 2H), 2.51
		└─────́№Н₂ О́Н	(d, J = 17.0 Hz, 1H), 2.31 (d, J = 17.0
			Hz, 1H). MS (ESI+) m/z (rel
	Ala(1-naph)-		Intensity): 255.1 $([M - H_2O + H]^+,$
29	boroGly		100), 273.2 ([M + H] ⁺ , 40).
L	1		

		HO, OH	¹ H NMR (D ₂ O) δ 8.02 -7.80 (m, 3H),
			7.62 - 7.38 (m, 4H), 4.33 (dd, <i>J</i> = 10.5,
			6.0 Hz, 1H), 3.72 (dd, $J = 13.8$, 6.0
		NH _a	Hz, 1H), 3.55 (dd, J = 13.8, 10.5 Hz,
			1H), 2.52 (dd, $J = 10.0$, 5.2 Hz, 1H),
			1.00 - 0.55 (m, 9H). MS (ESI ⁺) m/z
	Ala(1-naph)-		(rel intensity): $311.2 ([M - H_2O + H]^+,$
30	boroLeu		100).
		A H0, 20H	¹ H NMR (D ₂ O): δ 8.05 - 7.90 (m, 3H),
			7.65 - 7.40 (m, 4H), 4.33 (dd, J = 10.2,
			6.1 Hz, 1H), 3.80 - 3.65 (m, 1H), 3.65
		H H	- 3.50 (m. 1H), 2.50 - 2.47 (m. 1H),
			1 10 -1 00 (m. 1H), 0.90 - 0.65 (m.
			6H) MS (ESI ⁺) m/z (rel intensity):
			593.3 ($12 \times (M - H_2O) + H_1^+$ 13)
	Ala(1-nanh)-		$3371 ([M + N_2]^+ 12) 2972 ([M - 12])$
31	horoNva		$H_{-}O + HI^{+} 100)$
31	DOIOINVa	^	$\Pi_2 \cup \top \Pi_1$, $\Pi_2 \cup 0$.
		NH ₂	H NMIK $(D_2 U)$ 0 8.09 - 7.90 (III, 511),
			1.75 - 1.45 (m, 5n), 1.16 (m, 5n),
			6./3 (m, 2H), 4.32 (ad, $J = 9.8$, 0.5
		HO BOH	Hz, 1H), $3./8$ (dd, $J = 13.0$, 0.3 Hz,
			1H), 3.70 (dd, $J = 13.6$, 10.0 Hz, 1H),
			2.85 (dd, $J = 10.0, 5.3$ Hz, 1H), 2.65
			(dd, J = 13.9, 5.3 Hz, 1H), 2.12 (dd, J)
			= 13.9, 10.5 Hz, 1H). MS (ESI) m/z
			(rel Intensity): $345.1 ([M - H_2O + H])^2$,
	Ala(1-naph)-		100), 689.3 ($[2 \times (M - H_2O) + H]$ ',
32	boroPhe		40).
			See Supplementary Note 2
	Ala(1-nanh)-		
33	boroPro	NH ₂	
	0010110	0	¹ H NMR (D_2O) δ 8 13 - 7 97 (m 3H)
			773 - 743 (m 4H) 491 (dd J = 54
		N B OIT	10.9 Hz 1H) 3.91 (dd. $J = 13.7, 5.4$
		NH ₂ OH	Hz. 1H). 3.60 (dd. $J = 10.9$, 13.7 Hz.
			1H) 2.25 (d $J = 14.9$ Hz 1H) 2.16
			(d $I = 14.9 \text{ Hz}$ 1H) 2.08 (s 3H) ¹³ C
			NMR (D.O) & 172 71 136 08 133 67
			131.72 131.20 131.13 129.87
			131.72, 131.20, 131.13, 129.87,
			129.02, 128.39, 124.96, 50.32, 47.36,
	$Al_{2}(1, \dots, h)$		37.87, 30.15. MS (ESI) m/z (rel
	Ala(1-naph)-		intensity): 269.2 ($[M - H_2O + H]^2$,
34	boroSar		100).
		NH ₂	¹ H NMR (D ₂ O) δ 8.0 (d, J = 6.6 Hz,
----	------------------	---	---
			2H), 7.90 (d, $J = 7.6$ Hz, 1H), 7.65 -
			7.42 (m. 4H). 4.31 (dd. $J = 8.0, 7.6$
			Hz 1H) 4.08 (t $I = 7.0$ Hz 1H) 3.68
		и и	2.59 (m 211) - 2.96 (dd I = 9.0, 7.5)
			-5.38 (m, 2H), 2.80 (dd, $J = 8.0, 7.5$
			Hz, 2H), 2.59 (t, $J = 8.0$ Hz, 1H), 1.60
		но-В_он	- 1.48 (m, 5H), 1.31 - 1.16 (m, 4H),
			0.90 (d, $J = 4.7$ Hz, 3H), 0.88 (d, $J =$
		~	4.7 Hz, 3H). MS (ESI ⁺) m/z (rel
	Ala(1-naph)-		intensity): 220.2 ([[M - H_2O]/2 + H] ⁺ ,
35	Lys-boroLeu		100), 439.2 ($[M - H_2O + H]^+$, 75).
		Ν	See Supplementary Note 2
		o ∭	
	Ala(1-nanh)-	\downarrow \downarrow \uparrow \uparrow \uparrow	
36	Pro CN	NH ₂	
50	FIO-CN	,	
		■ O ^{HO} _B ~OH	¹ H NMR (D_2O) 8 4.20 (t, $J = 3.8$ Hz,
			1H), 3.67 (t, $J = 9.1$ Hz, 1H), 3.47 -
			3.38 (m, 1H), 3.02 (dd, $J = 11.4$, 6.9
		NH ₂	Hz, 1H), 2.11 - 1.87 (m, 4H), 1.70 -
			1.55 (m, 1H), 1.47 - 1.31 (m, 2H),
			0.95 - 0.88 (m, 6H). MS (ESI ⁺) m/z
			(rel intensity): 229.2 ([M + H] ⁺ , 20),
37	allo-Ile-boroPro		211.2 ($[M - H_2O + H]^+$, 100).
			37
	Allo Ile	Han	
29	Ano-ne-		
	Isoliidoliile		
		NH O II II	¹ H NMR (D ₂ O) δ 4.01 (t, $J = 6.6$ Hz,
			1H), 3.23 (t, $J = 6.8$ Hz, 2H), 2.96 (q,
			J = 7.5 Hz, 1H), 1.94 - 1.88 (m, 2H),
			1.68 - 1.62 (m, 2H), 1.17 (d, $J = 7.5$
			Hz, 3H). MS (ESI ⁺) m/z (rel intensity):
39	Arg-boroAla		246.1 ([M + H] ⁺ , 100).
		NH O	¹ H NMR (D ₂ O) δ 4.00 (t, J = 6.6 Hz,
			1H), 3.22 (t, $J = 6.8$ Hz, 2H), 2.81 (d.
		$H_2N^{\prime} N^{\prime} N^{\prime} N^{\prime} B^{\prime}$	J = 16.9 Hz, 1H), 2.73 (d. $J = 16.9$ Hz
		NH ₂ OH	1H) $2 07 - 1.80 (m 2H) 1.75 - 1.50$
			(m 2H) MS (ESI ^{$+$}) w/z (red Interactive)
40	Ang hor-Cl-		(iii, 211). WIS (EST) $m/2$ (let intensity):
40	Alg-boroGly		$232.1 ([WI + \Pi], 100).$
			'H NMR (D_2O) δ 4.0 (t, $J = 6.6$ Hz,
			1H), 3.21 (t, <i>J</i> = 6.8 Hz, 2H), 2.97 (dd,
			J = 9.4, 6.3 Hz, 1H), 1.95 - 1.86 (m,
		NH ₂	2H), 1.67 - 1.34 (m, 5H), 0.90 (d, J =
41	Arg-boroLeu		5.8 Hz, 3H), 0.88 (d, <i>J</i> = 5.3 Hz, 3H).

			MS (ESI ⁺) m/z (rel intensity): 270.2
			$([M - H_2O + H]^+, 10), 288.2 ([M +$
			H] ⁺ , 100).
		НО、 _ ОН	¹ H NMR (D ₂ O): δ 4.01 (t, J = 6.6 Hz),
		NH O B' II II -	3.22 (t, J = 6.8 Hz, 2H), 2.90 (t, J =
			7.5 Hz, 1H), 1.95 - 1.87 (m, 2H), 1.66
		É H I H NH₂	- 1.61 (m, 2H), 1.56 - 1.49 (m, 2H),
			1.37 - 1.29 (m, 2H), 0.90 (t, $J = 7.2$
			Hz, 3H). MS (ESI ⁺) m/z (rel intensity):
			274.2 ($[M + H]^+$, 100), 256.1 ($[M -$
42	Arg-boroNva		$H_2O + H]^+, 9).$
		HOOH	¹ H NMR (D ₂ O) δ 7.50 - 7.25 (m, 5H),
			3.91 (t, $J = 6.7$ Hz, 1H), 3.30 - 3.12
		H ₂ N N N	(m, 3H), 3.10 - 2.85 (m, 2H), 1.88 -
		- H ▲ H NH ₂	1.77 (m, 2H), 1.56 - 1.48 (m, 2H). MS
			(ESI ⁺) <i>m/z</i> (rel Intensity): 322.1 ([M +
43	Arg-boroPhe		H] ⁺ , 100).
		HO	¹ H NMR (D ₂ O) δ 4.34 (t, J = 6.1 Hz
			1H), 3.74 (t, $J = 8.3$ Hz, 1H), 3.50 -
			3.41 (m, 1H), 3.23 (t, <i>J</i> = 6.9 Hz, 2H),
		H H NH ₂	3.10 (dd, <i>J</i> = 10.8, 7.0 Hz, 1H), 2.15 -
		2	2.07 (m, 2H), 2.00 - 1.85 (m, 3H),
			1.75 - 1.60 (m, 3H). MS (ESI ⁺) m/z
			(rel intensity): 272.2 ($[M + H]^+$, 50),
44	Arg-boroPro		254.2 ($[M - H_2O + H]^+$, 100).
		NH O	¹ H NMR (D ₂ O) δ 4.66 (t, J = 6.5 Hz
		и Листрон	1H), 3.25 (t, <i>J</i> = 6.7 Hz, 2H), 3.22 (s,
		H_2N N \checkmark N B H	3H), 2.57 (s, 2H), 2.04 - 1.96 (m, 2H),
		NH ₂ ' OH	1.76 - 1.64 (m, 2H). ^{13}C NMR (D_2O) δ
			173.38, 159.27, 50.10, 49.65, 47.51,
			42.83, 38.89, 29.69, 25.89. MS (ESI ⁺)
			m/z (rel intensity): 228.1 ([M - H ₂ O +
45	Arg-boroSar		H] ⁺ , 100).
		NH O	38
		$H_2 N H H$	
		NH2	
46	Arg-Pro-CN	N ⁷⁷	
		ОН <u>.</u> <u>N</u> H ₂ О	¹ H NMR (D ₂ O) δ 4.32 (t, J = 5.9 Hz,
		I III B III III III III III III IIII I	1H), 3.04 - 2.86 (m, 3H), 1.16 (d, <i>J</i> =
		$HU \qquad MU \qquad MH_2$	7.5 Hz, 3H). MS (ESI ⁺) m/z (rel
		• 0	intensity): 371.2 ([2 \times (M - H_2O) +
			H] ⁺ , 63), 226.1 ([M + Na] ⁺ , 34), 186.2
47	Asn-boroAla		$([M - H_2O + H]^+, 100).$

			1
		0 	¹ H NMR (D ₂ O) δ 4.33 (dd, J = 6.9, 6.1
			Hz, 1H), 3.02 - 2.89 (m, 2H), 2.82 (d,
			J = 17.1 Hz, 1H), 2.75 (d, J = 17.1 Hz,
			1H). MS (ESI ⁺) m/z (rel Intensity):
			172.0 ($[M - H_2O + H]^+$, 100), 343.1 ($[2$
48	Asn-boroGly		$x (M - H_2O) + H]^+, 50).$
		HO	35
		NH2	
49	Asn-borol eu	H <u>-</u> II NH ₂ O	
47	Asir-borolecu	-	$\frac{1}{10000000000000000000000000000000000$
		B OH	H NMR (D_2O): 8 4.34 (t, $J = 6.5HZ$,
		$\land \downarrow \downarrow \land \land NH_2$	1H), 3.02 - 2.88 (m, 3H), 1.59 -1.51
		$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	(m, 2H), 1.43 - 1.23 (m, 2H), 0.90 (t, J)
		NH ₂ Ö	= 7.3 Hz, 3H). MS (ESI) m/z (rel
			intensity): 427.3 ([2 × (M - $H_2O)$ +
50	Asn-boroNva		H_{1}^{+} , 100), 214.1 ([M - H ₂ O + H] ⁺ , 67).
		NH ₂ O	See Supplementary Note 2
51	Asn-boroPhe	но-в_он	
		OH OH	¹ H NMR (D ₂ O) δ 4.10 - 4.05 (m, 1H),
		HO~B U	3.75 - 3.70 (m, 1H), 3.55 - 3.35 (m,
		NH ₂	1H), 3.15 - 3.05 (m, 1H), 3.00 - 2.75
			(m. 2H), 2.20 - 2.05 (m. 2H), 2.02 -
		NH ₂ U	1.85 (m. 1H), 1.80 - 1.65 (m. 1H), MS
			$(ESI^{+}) m/z$ (rel intensity): 212.1 (IM -
52	Asn-boroPro		$H_2O + H_1^+$ 100)
			The obtained sample was a mixture of
			As horoSar $\begin{pmatrix} 6\\ \end{pmatrix}$ and As horoSar
		HO _B N ^N NH ₂	Asin-bolosar (-77) and Asp-bolosar (177) Eor. Asp boroSar 1 H NMP
		<u>-</u> OH NH ₂ O	(-177). For Asi-borosar, 11 NMR
			$(D_2O) \circ 4.90 (dd, J = 6.0, 7.4 HZ, 1H),$
			3.21 (s, 3H), 3.00 - 2.93 (m, 2H), 2.58
			(s, 2H). MS (ESI) m/z (rel intensity):
53	Asn-boroSar		$186.1 ([M - H_2O + H], 100).$
		0	¹ H NMR (D_2O): δ 7.45 - 7.30 (m, 5H),
		HaN	5.03 (t, $J = 7.6$ Hz, 1H), 4.24 (t, $J =$
			6.3 Hz, 1H), 3.33 - 3.09 (m, 2H), 2.86
		H ₂ N :	$(d, J = 6.2 \text{ Hz}, 2\text{H}). \text{ MS} (\text{ESI}^+) m/z \text{ (rel})$
			intensity): 261.1 ($[M + H]^+$, 100).
54	Asn-Phe-CN		

		N	¹ H NMR (D ₂ O): δ 4.86 (dd, J = 7.2,
			5.4 Hz, 1H), 4.63 (dd, J = 7.7, 5.4 Hz,
		$\left(\begin{array}{c} \mathbf{N} \mathbf{H}_2 \\ \mathbf{V} \end{array} \right)$	1H), 3.79 - 3.65 (m, 2H), 3.05 - 2.85
		N NH2	(m, 2H), 2.43 - 2.30 (m, 2H), 2.25 -
			2.10 (m 2H) MS (ESI ⁺) m/z (rel
55	Asn-Pro-CN	Ŭ	intensity): 211 1 ($[M + H]^+$ 100)
			$\frac{1}{10000000000000000000000000000000000$
		U UH NH2 U L H ▼	H = H = 2.15 - 2.00 (m = 210 - 1.18 (d)
		но В Л Л ОН	Hz, 1H), 3.15 - 2.90 (m, 3H), 1.18 (d,
			J = 7.5 Hz, 3H). MS (ESI) m/z (rel
			intensity): 373.2 ($[2 \times (M - H_2O) +$
			$H]^+$, 44), 187.1 ($[M - H_2O + H]^+$,
56	Asp-boroAla		100).
		0	¹ H NMR (D ₂ O) δ 4.33 (dd, J = 7.2, 5.4
		но он	Hz, 1H), 3.15 - 2.91 (m, 3H), 2.90 -
		B N Ž Ŭ	2.70 (m, 2H). MS (ESI ⁺) m/z (rel
		OH NH ₂ O	Intensity): 173.1 ($[M - H_2O + H]^+$,
57	Asp-boroGly		100).
		HO、 _OH	¹ H NMR (D ₂ O) δ 4.34 (dd, J = 6.3, 6.0
		B [´] O I II	Hz, 1H), 3.11 - 2.96 (m, 3H), 1.60 -
			1.44 (m, 2H), 1.38 - 1.21 (m, 1H),
			0.89 (d, $J = 4.9$ Hz, 3H), 0.88 (d, $J =$
			4.9 Hz, 3H). LCMS (ESI ⁺) m/z (rel
			intensity): 229.1 ($[M - H_2O + H]^+$,
			100). 457.3 ([2 x (M - H ₂ O) + H] ⁺ .
58	Asp-boroLeu		55)
	· · · · · · · · ·	но он	¹ H NMR (D ₂ O): δ 4 35 (dd $J = 6.9$
		B O	1 3 Hz 1H) 3 06 - 3 02 (m 2H) 2 93
		ОН	$(t \ I = 7.6 \ \text{Hz} \ 1\text{H}) \ 1.57 \ \text{-} \ 1.49 \ \text{(m)}$
			(i, $v = 7.6$ Hz, H), $H = 1.0$ (ii, 2H) 1.36 - 1.28 (m. 2H) 0.88 (t. $I = 1.0$
		NH ₂ O	7.2 Hz 3H) MS (ESI ⁺) m/z (rel
			intensity): $420.2 (12 \ mmodel{eq:alpha}) (120.2 \ mmodel{eq:alpha})$
50	A h N		M^{+}_{11} M = M^{+}_{22}
59	Asp-boronva		H_{1} , 89), 213.1 ([M - $H_{2}O + H_{1}]$, 100).
		NH2 O H ▼	See Supplementary Note 2
60	Asp-boroPhe	ноготон	
		HO COH	39
		N OH	
61	Asp horoPro	1 1 1 1 1 1 1 1 1 1	
01	Asp-0010110		¹ H NMR (D ₂ O) major isomer $(-2/1)$ s
			4.28 (d I = 7.2 Hz 1H) - 3.05 (d I - 1)
		HU _B N UH	7.20 (u, $J = 7.2$ Hz, H1), 5.05 (u, $J = 19.2$ Hz, H1), 2.04 (c, 21), 2.70 (d, $J = 10.2$
		<u>-</u> OH NH ₂ O	10.5 ΠZ , 1 Π , 2.94 (S, 5 Π), 2.79 (d, $J =$
			18.5 Hz, 1H), 2.63 (d, $J = 14.5$ Hz,
62	Asp-boroSar		1H), 2.45 (d, $J = 14.5$ Hz, 1H); minor

			isomer (~ $^{1}/_{3}$) δ 4.91 (dd, J = 5.5, 7.9
			Hz, 0.5H), 3.45 (s, 1.5H), 3.20 - 3.00
			(m, 1H), 2.58 (s, 1H). 13 C NMR (D ₂ O)
			major isomer δ 174.30, 172.20, 47.07,
			38.95, 36.29; minor isomer & 174.71,
			172.20, 52.89, 48.57, 39.89, 35.55.
			MS (ESI ⁺) <i>m/z</i> (rel intensity): 187.0
			$([M - H_2O + H]^+, 100).$
		Ν	¹ H NMR (D ₂ O) δ 7.43 - 7.28 (m, 5H),
			5.02 (t, $J = 7.8$ Hz, 1H), 4.26 - 4.20
			(m, 1H), 3.30 - 3.10 (m, 2H), 2.91 (d,
			J = 6.2 Hz, 2H). MS (ESI ⁺) m/z (rel
		NH ₂ NH ₂	intensity): 262.2 $([M - H_2O + H]^+,$
			100), 523.2 ([2 x (M - H ₂ O) + H] ⁺ ,
63	Asp-Phe-CN		30).
		N	¹ H NMR (D ₂ O) δ 4.86 (dd, J = 6.9, 5.1
		NHa O	Hz, 1H), 4.64 (dd, $J = 7.9$, 5.1 Hz,
		$\langle \rangle_{N}$ $\tilde{\Gamma}^{2}$ \tilde{I}	1H), 3.79 - 3.68 (m, 2H), 3.14 (dd, <i>J</i> =
		ОН	17.7, 5.4 Hz, 1H), 3.0 (dd, $J = 17.7$,
		ö	8.1 Hz, 1H), 2.42 - 2.30 (m, 2H), 2.25
			- 2.10 (m, 2H). MS (ESI ⁺) m/z (rel
			intensity): 212.2 $([M + H]^+, 100),$
64	Asp-Pro-CN		$422.9 ([2M + H]^+, 50).$
			40
65	Bortezomib	N HO OH	
			¹ H NMR (D_2O) δ 7.62 (s, 5H), 5.32 (s,
			2H), 4.58 (q, $J = 7.2$ Hz, 1H), 4.24 (q,
			J = 6.9 Hz, 1H), 2.93 (dd, $J = 8.0, 6.9$
			HZ, 1H), 1.77 (m, 3H), $1.60 - 1.41$ (m,
			(FSI^{+}) m/z (rel intensity): 200 1 (FM
	Chz-ala-ala-		$H_{a}O + H^{+}_{1}$ 100) 770 2 (12 v (M
66	boroLeu		$H_2O) + H_1^+, 50)$
		<u> </u>	1 H NMR (D ₂ O) δ 7 65 (s 5H) 5 32 (s
			2H), 4.16 (s. 2H), 4.05 (s. 2H), 3.23 -
			3.08 (m, H), 1.84 - 1.35(m, 3H). 1.07
			(t, J = 4.8 Hz, 6H). MS (ESI ⁺) m/z (rel
			intensity): 362.2 ($[M - H_2O + H]^+$,
	Cbz-Gly-Gly-	\sim	100), 723.1 ($[2 \times (M - H_2O) + H]^+$,
67	boroLeu		90).
	L		

		^	
			H NMR (D_2O) o 3./6 (d, $J = 6.6$ Hz,
		↓ ↓ ↓он	1H), 2.87 (q, $J = 7.4$ Hz, 1H), 1.90 -
		→ → N [×] → B [×]	1.60 (m, 6H), 1.30 - 1.05 (m, 8H). MS
		NH ₂ OH	(ESI ⁺) m/z (rel intensity): 421.3 ([2 ×
			$(M - H_2O) + H]^+$, 86), 211.2 ($[M -$
68	Chg-boroAla		$H_2O + H]^+$, 100).
		\wedge	¹ H NMR (D ₂ O) δ 3.74 (d, J = 6.7 Hz,
			1H). 2.80 (d. $J = 16.9$ Hz. 1H). 2.68
		N B OH	$(d_{-}J = 16.9 \text{ Hz} 1\text{H}) = 1.86 - 1.63 \text{ (m}$
			(a, e^{-1} 10) 11, 11), 10 e^{-1} 100 (iii, 7H) 127 - 103 (m 6H) MS (FSI ⁺)
			m/z (rel Intensity): 197.2 (IM - H.O +
			H_{2}^{+} (1c) intensity): 197.2 ([W - H ₂ O + H] ⁺
(0)			Π , 100), 595.5 ([2 X (M- Π_2 O) + Π],
69	Chg-boroGly		/0).
		O ^{HO} _B OH	35
70	Chg-boroLeu	NH₂	
	eng corozeu	110 011	¹ H NMR (D.O): $\delta 3.80$ (d. $I = 6.4$ Hz
		O O B OH	111) 2.82 (t. $I = 7.6$ Hz, 111) 1.80
			100, 2.82 (t, $3 - 7.0$ Hz, 111), $1.00 - 100$
		\sim \sim \sim \sim \sim	1.05 (m, 15H), 0.90 (t, $J = 7.2$ Hz,
		NH ₂	3H). MS (ESI) m/z (rel intensity):
			477.4 ([2 × (M - H ₂ O) + H] ⁺ , 26),
71	Chg-boroNva		239.2 ($[M - H_2O + H]^+$, 100).
			¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			3.75 (d, <i>J</i> = 5.6 Hz, 1H), 3.18 (dd, <i>J</i> =
			10.3, 5.4 Hz, 1H), 2.99 (dd, J = 14.2,
		H NH₂	5.4 Hz, 1H), 2.82 (dd, J = 14.2, 10.3
		2	Hz, 1H), 1.80 - 1.64 (m, 6H), 1.30 -
			0.95 (m, 5H). MS (ESI ⁺) m/z (rel
			Intensity): 287.2 ($[M - H_2O + H]^+$,
			100). 573.3 ([2 x (M - H ₂ O) + H] ⁺ .
72	Chg-boroPhe		40)
			¹ H NMP (D O) 8 4 05 (d $I = 5.6$ Hz
		$\left \begin{array}{c} \mathbb{N} \mathbb{P}_2 \\ \overline{\mathbb{P}} \end{array} \right $	111) 2.66 (dd $L = 0.1.85$ Hz 111)
			11, 5.00 (ad, $J = 9.1, 8.5$ Hz, 11),
			3.44 (dd, J = 6.9, 6.6 Hz, 1H), 3.00
		НО́ОП	(dd, J = 7.2, 6.0 Hz, 1H), 2.06 - 1.58
			(m, 9H), 1.18 - 1.04 (m, 5H). MS
			$(ESI^{+}) m/z$ (rel intensity): 237.2 ([M -
73	Chg-boroPro		$H_2O + H]^+$, 100).
		\frown 0	¹ H NMR (D ₂ O) δ 4.40 (d, J = 6.8 Hz,
			1H), 3.23 (s, 3H), 2.51(d, J = 14.9 Hz,
			2H), 2.00 - 1.08 (m, 11H). ¹³ C NMR
		NH ₂ OH	(D ₂ O) δ 173.45, 54.70, 47.93, 41.84,
			39.11, 30.65, 30.14, 27.76, 27.62 MS
74	Cha-boroSar		$(FSI^{+}) m/z$ (rel intensity): A21.3 (f2 \times
/4	Cing-00105ai		(101) m/2 (101 michsity). 421.5 ([2 X

			$(M - H_2O) + H]^+$, 100), 211.1 ([M -
			$H_2O + H]^+$, 16).
		N	41
		NH2 NH2	
75	Chg-Pro-CN		
		ş-	¹ H NMR (D ₂ O) δ 4.46 (dd, J = 7.1, 7.0
			Hz, 1H), 4.37 (dd, $J = 8.3$, 4.5 Hz,
			1H), 2.96 (t, $J = 7.3$ Hz, 2H), 2.77 (dd,
			J = 8.3, 6.9 Hz, 1H), 2.65 - 2.48 (m,
		О ТОН	3H), 2.42 (dd, $J = 8.3$, 7.0 Hz, 2H), 2.00 (s, 2H), 2.08, 2.00 (m, 2H), 1.05
			- 1 55 (m 6H) 1 50 - 1 40 (m 2H)
	D-pGlu-Lvs-		$MS(ESI^+)$ m/z (rel intensity): 373.3
76	boroMet	NH ₂	$([M - H_2O + H]^+, 100).$
		· · · · · · · · · · · · · · · · · · ·	¹ H NMR (D ₂ O) δ 7.26 (m, 5H), 4.92
		J	(s, 1H), 4.28 (dd, <i>J</i> = 9.3, 5.3 Hz, 1H),
		NH ₂ O	2.49 (m, 3H), 2.31 (dd, $J = 7.2$, 6.9
			Hz, 2H), 1.84 (s, 3H), 1.58 - 1.35 (m,
			4H), 1.25 - 1.15 (m, 2H), 0.95 - 0.80
			(m, 2H). MS (ESI ^{$+$}) m/z (rel intensity):
	D-Phg-Lys-		$393.2 ([M - H_2O + H]^2, 100).$
77	boroMet	NH ₂	
		<u>- 0 0</u>	31
78	Gln-boroAla		
			¹ H NMR (D ₂ O) δ 4.03 (t, J = 6.6 Hz,
		HO _B N NH ₂	(d. $I = 16.9 \text{ Hz}$, 1H), 2.52, 2.22 (m)
		OH NH ₂	(u, $J = 10.9$ Hz, 1H), 2.52 - 2.52 (m, 2H), 2.15 (dd, $J = 7.3, 7.1$ Hz, 2H)
			MS (ESI ⁺) m/z (rel Intensity): 186.1
79	Gln-boroGly		$([M - H_2O + H]^+, 100).$
		HO	¹ H NMR (D ₂ O) δ 4.44 (dd, J = 9.0, 4.9
			Hz, 1H), 2.81 (dd, $J = 8.4$, 7.2 Hz,
		N NH2	1H), 2.60 - 2.40 (m, 3H), 2.15 - 2.08
		NH ₂	(m, 1H), 1.61 - 1.56 (m, 1H), 1.41 -
			1.38 (m, 1H), 1.37 - 1.29 (m, 1H),
			0.89 (t, $J = 4.2$ Hz, 6H). MS (ESI ⁺)
			m/z (ref intensity): 225.1 ([M - H ₂ O + H] ⁺ 100) 449.3 ([2 x (M - H,O) +
80	Gln-horol eu		H_1^{+} 90)
00	Sin-boloneu		···j , 70 <i>j</i> .

		HO	¹ H NMR (D ₂ O): δ 4.05 (t, J = 6.6 Hz,
			1H), 2.93 (t, $J = 7.4$ Hz, 1H), 2.50 -
		N NH2	2.41 (m, 2H), 2.19 - 2.12 (m, 2H),
		H <u>-</u> NH ₂	1.58 - 1.51 (m, 2H), 1.40 - 1.28 (m,
		-	2H), 0.89 (t, $J = 7.2$ Hz, 3H). MS
			(ESI ⁺) m/z (rel intensity): 455.4 ([2 ×
			$(M - H_2O) + H]^+$, 65), 268.2 ($[M +$
			$Na]^+$, 15), 228.2 ($[M - H_2O + H]^+$,
81	Gln-boroNva		100).
		→ H0、∠OH	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			4.38 (dd, J = 10.0, 4.8 Hz, 1H), 3.12
		NH2	(dd, J = 10.2, 5.6 Hz, 1H), 2.95 (dd, J
		H ÷ ····2 NHa	= 14.0, 5.6 Hz, 1H), 2.72 (dd, <i>J</i> = 14.0,
			10.4 Hz, 1H), 2.55 - 2.35 (m, 3H),
			2.05 - 1.95 (m, 1H). MS (ESI ⁺) m/z
			(rel Intensity): 259.1 ([M - H ₂ O -NH ₃
82	Gln-boroPhe		+ H] ⁺ , 100).
		UN OH	¹ H NMR (D ₂ O) δ 4.36 (t, J = 6.0 Hz,
			1H), 3.70 (dt, $J = 8.3$, 2.1 Hz, 1H),
			3.52 - 3.42 (m, 1H), 3.09 (dd, <i>J</i> = 10.8,
		NH ₂	7.0 Hz, 1H), 2.51 - 2.41 (m, 2H), 2.21
			- 2.07 (m, 4H), 1.97 - 1.92 (m, 1H),
			1.75 - 1.71 (m, 1H). MS (ESI ⁺) m/z
			(rel intensity): 209.1 ([M - H ₂ O - NH ₃
			$+ H]^{+}$, 15), 226.1 ([M - H ₂ O + H] ⁺ ,
83	Gln-boroPro		100), 244.1 ([M + H] ⁺ , 10).
		0 0	¹ H NMR (D ₂ O) δ 4.85 (dd, J = 7.5, 5.4
			Hz, 1H), 4.42 (t, <i>J</i> = 5.9 Hz, 1H), 3.80
			- 3.64 (m, 2H), 2.63 (t, J = 10.8, 7.0
		NH₂	Hz, 2H), 2.43 - 2.12 (m, 6H). MS
		Ň	(ESI ⁺) m/z (rel intensity): 208.1 ([M -
84	Gln-Pro-CN		$NH_3 + H]^+$, 70), 225.1 ($[M + H]^+$, 100).
			31
85	Glu-boroAla	OH NH ₂	
		0 0	¹ H NMR (D ₂ O): δ 4.20 (t, $J = 6.8$ Hz,
		HO	1H), 2.81 (d, $J = 16.9$ Hz, 1H), 2.71
			(d, $J = 16.9$ Hz, 1H), 2.54 (t, $J = 7.3$
			Hz, 2H), 2.14 (dd, $J = 7.2$, 6.7 Hz,
			2H). MS (ESI ⁺) m/z (rel intensity):
			355.1 ([2 x (M - H ₂ O) - H ₂ O + H] ⁺ ,
			63), 205.2 $([M + H]^+$, 34), 187.1 $([M -$
			$H_2O + H]^+$, 100); 169.1 ([M - 2 x H_2O
86	Glu-boroGly		+ H] ⁺ , 55).

		HOZDOH	¹ H NMR (D ₂ O) δ 4.08 (t, $J = 6.9$ Hz,
			1H), 2.98 (dd, $J = 9.3$, 6.5 Hz, 1H),
		И ОН	2.60 - 2.45 (m, 2H), 2.21 - 2.13 (m,
		H = NH ₂	2H), 1.61 - 1.35 (m, 3H), 0.90 (t, J =
			5.7 Hz, 6H). MS (ESI ⁺) m/z (rel
			intensity): 225.1 ($[M - 2H_2O + H]^+$,
			25), 243.1 ($[M - H_2O + H]^+$, 100),
87	Glu-boroLeu		$467.3 ([2 x (M - H_2O) + H]^+, 90).$
		HO、 ,OH	¹ H NMR (D ₂ O): δ 4.07 (t, J = 6.7 Hz,
		BÉOO I II II	1H), 2.91 (t, J = 7.4 Hz, 1H), 2.57 -
			2.51 (m, 2H), 2.20 - 2.13 (m, 2H),
		H <u>-</u>	1.57 - 1.50 (m, 2H), 1.38 - 1.30 (m,
		1112	2H), 0.89 (t, $J = 7.2$ Hz, 3H). MS
			(ESI ⁺) m/z (rel intensity): 439.2 ([2 ×
			M - 3 × H ₂ O + H] ⁺ 100) 229 1 ([M -
88	Glu-boroNya		$H_{2}O + H_{1}^{+}$ 75)
	olu coloritu	A HQ − QH	1 H NMR (D ₂ O) & 7.45 - 7.25 (m. 5H)
		B O O	3.99 (t I = 6.3 Hz 1H) 3.25 (dd I =
			$10.1 \ 6.2 \ Hz \ 1H) \ 2.98 \ (dd \ J = 14.0$
			6.2 Hz, 1H), 2.88 (dd. $J = 14.0, 10.1$
		ND2	Hz 1H) 2.38 (t $J = 7.5$ Hz 2H) 2.08
			(dt, J = 7.5, 6.3 Hz, 2H), MS (ESI ⁺)
			m/z (rel Intensity): 277.1 ([M - H ₂ O +
89	Glu-boroPhe		$H_{1}^{+}, 100), 295.1([M + H]^{+}, 20).$
		ОН	31
		HO _B O O	
90	Glu-boroPro		
		HO	⁴ H NMR (D_2O) δ 4.65 (t, $J = 6.2$ Hz,
		Ĭ Ĭ , Ĭ	1H), 4.10 - 3.95 (m, 1H), 3.75 - 3.65
		N [×] OH	(m, 1H), 3.58 (t, $J = 8.3$ Hz, 1H), 2.63
		√ NH₂	(t, 2H), 2.30 - 1.85 (H, 6H). MS (ESI)
01	Glu-boroPro		m/z (rel intensity): 261.1 ([M + H] ² ,
91	thioxoamide		
			TH NMR (D_2O) δ 2.21 (dt, $J = 6.4, 7.1$
		HO _B N OH	Hz, 2H), 2.50 (s, 2H), 2.59 (t, $J = 7.1$
			Hz, 2H), 3.22 (s, 3H), 4.69 (t, $J = 6.4$
			Hz, 1H). ¹³ C NMR (D ₂ O) δ 178.12,
			173.15, 49.61, 47.48, 38.74, 30.96,
	<i>a</i> , , <i>a</i>		27.43. MS (ESI ^{$+$}) m/z (rel intensity):
92	Glu-boroSar		$201.1 ([M - H_2O + H]], 100).$
	Glu boroSar	S O 	See Supplementary Note 2
			-
	thioxoamide	HO B N OH	
0.2	thioxoamide		

		0 0	¹ H NMR (D ₂ O) δ 4.85 (dd, J = 7.5, 5.3
			Hz, 1H), 4.45 (t, <i>J</i> = 6.0 Hz, 1H), 3.83
			- 3.66 (m, 2H), 2.63 (t, $J = 10.8$, 7.0
		NH ₂	Hz, 2H), 2.43 - 2.12 (m, 6H). MS
		Ň	(ESI ⁺) m/z (rel intensity): 208.1 ([M -
			$H_2O + H]^+$, 70), 226.1 ([M + H] ⁺ ,
94	Glu-Pro-CN		100).
		0	1 H NMR (D ₂ O) δ 3.82 (s, 2H), 2.98 (q,
		H ₂ N H ₂ OH	J = 7.5 Hz, 1H), 1.16 (d, $J = 7.5$ Hz,
		H I OH	3H). MS (ESI ⁺) m/z (rel intensity):
			257.2 ([2 × (M - H ₂ O) + H] ⁺ , 100),
			169.2 ($[M + Na]^+$, 6), 129.3 ($[M -$
95	Gly-boroAla		$H_2O + H_3^+, 23).$
		0	¹ H NMR (D ₂ O) δ 3.80 (s, 2H), 2.76
		H ₂ N OH	(s, 2H). ${}^{13}C$ NMR (D ₂ O) δ 171.19,
		H I	47.07, 38.09. MS (ESI ⁺) <i>m/z</i> (rel
		ОП	intensity): 115.1 ($[M - H_2O + H]^+$,
96	Gly-boroGly		100).
		HO B OH	35
07	Chu haral au	N N N N N N N N N N N N N N N N N N N	
91	Gly-boloLeu		1 UNMB (D O): \$ 2.84 (c. 20) 2.08
		O B OH	H NMK (D_2O): 0 3.84 (S, 2H), 2.98 (t. $L = 7.3$ Hz, 1H), 1.50, 1.51 (m)
		H ₂ N	(1, 5 - 7.5, 112, 111), 1.59 - 1.51 (III, 2H) 1.39 - 1.29 (m, 2H) 0.90 (t, $I -$
		V N V V	71 Hz $3H$ MS (ESI ⁺) m/z (rel
			intensity): $469.3 (13 \times (M - H_2O) +$
			H_{1}^{+} 20) 313 2 ([2 × (M + O) + H] ⁺
98	Gly-boroNya		$113, 203, 313.2 ([2 \times (14 - 1120) + 11]),$ 100) 1571 ([M - H-O + H] ⁺ 63)
20	Gly-bololiva	НО ОН	See Supplementary Note 2
		o B - OH	See Supprementary Note 2
		H ₂ N	
99	Gly-boroPhe	H	
		0 0	42
		H ₂ N	
		$\langle N \rangle$	
		HO	
100	Gly-boroPro	\ ОН	
		0	¹ H NMR (D ₂ O) δ 4.18 (s. 2H), 3.10 (s.
			3H), 2.55 (s. 2H), 13 C NMR (D ₂ O) &
		N B ST	171.19, 46.47, 39.84, 38.11. MS
		і он	(ESI^+) m/z (rel intensity): 129.2 (IM -
101	Gly-boroSar		$H_2O + H^{+}_1, 100).$
			- · · ·

	·	1	
		0 	43
		H ₂ N N	
102	Gly Pro CN	N	
102	Gly-110-CIV		¹ H NMR (D ₂ O) 8 70 (s 1H) 7 44 (s
			1H), 4.23 (dd, $J = 7.8$, 6.6 Hz, 1H),
			3.40 - 3.35 (m, 2H), 2.99 (g, $J = 7.5$
		NH2 OH	Hz, 1H), 1.09 (d, <i>J</i> = 7.5 Hz, 3H). MS
			(ESI ⁺) m/z (rel intensity): 417.3 ([2 ×
			$(M - H_2O) + H]^+, 21), 209.2$ ($[M -$
103	His-boroAla		$H_2O + H]^+$, 100).
		0	¹ H NMR (D ₂ O) δ 8.70 (s, 1H), 7.44 (s,
			1H), 4.26 (t, <i>J</i> = 7.1 Hz, 1H), 3.38 (d,
		HN X X B'	J = 7.1 Hz, 2H), 2.75 (s, 2H). MS
		N NH ₂ OH	(ESI ⁺) m/z (rel Intensity): 195.0 ([M -
			$H_2O + H]^+$, 100), 213.0 ([M + H] ⁺ ,
104	His-boroGly		20).
		HO B OH	35
105	His-boroLeu	N NH2	
		HO _Р _ОН	¹ H NMR (D ₂ O): δ 8.72 (s, 1H), 7.45
			(s, 1H), 4.25 (dd, <i>J</i> = 8.3, 6.3 Hz, 1H),
			3.43 - 3.31 (m, 2H), 2.95 (dd, <i>J</i> = 8.5,
		HN - NH ₂	2.1 Hz, 1H), 1.51 - 1.38 (m, 2H), 1.22
			- 1.14 (m, 2H), 0.86 (t, $J = 7.3$ Hz,
			3H). MS (ESI ^{\circ}) m/z (rel intensity):
10.6	··· 1		473.3 ($[2 \times (M - H_2O) + H]^+$, 19),
106	His-boroNva		237.2 ([M - H ₂ O + H] ⁺ , 100).
		O B OH	¹ H NMR (D_2O) 8 8.63 (s, 1H), 7.45 -
			1.07 (m, on), 4.20 (ad, $J = 1.4$, $1.1Hz 1H) 3.40 = 3.20 (m, 13H) 2.02$
		K I I H Č	(dd I = 141 63 Hz 1H) 2.79 (dd I)
			= 14.1, 9.6 Hz. 1H). MS (ESI ⁺) m/z
			(rel Intensity): 285.1 ($[M - H_2O + H^+]$,
107	His-boroPhe		100).
		HO, OH	34
108	His-boroPro	NH NH ₂	

		0	¹ H NMR (D ₂ O) δ 8.76 (s, 1H), 7.49 (s,
			1H), 4.83 (dd, $J = 7.2$, 5.3 Hz, 1H),
			4.67 (t. $J = 6.9$ Hz. 1H). 3.74 - 3.65
		\bigvee NH_2	(m. 1H), 3.51 - 3.41 (m. 3H), 2.37 -
			2.27 (m 2H) 2.14 - 2.06 (m 2H) MS
		N	(FSI^+) m/z (rel intensity): 234 1 (IM +
100	His Pro CN		H] ⁺ 100)
107	1113-110-01		$\frac{1}{1} + \frac{1}{1} + \frac{1}$
		S S	H NMR (D_2O) 8 7.42 - 7.25 (m, 4H),
			4.78 (br, 1H), 4.50 (t, $J = 7.3$ Hz, 1H),
			3.71 (d, J = 10.0 Hz, 1H), 3.36 (d, J =
		N N B OH	6.0 Hz, 1H), 2.99 (t, $J = 7.5$ Hz, 2H),
			2.78 (dd, J = 8.3, 6.3 Hz, 1H), 2.04 (s,
			3H), 1.95 - 1.60 (m, 6H), 1.50 - 1.40
			(m, 2H). MS (ESI ⁺) m/z (rel intensity):
	Ica-Lys-		405.1 ($[M - H_2O + H]^+$, 100).
110	boroMet	NП ₂	
		E Q I	¹ H NMR (D ₂ O) δ 3.88 (d, $J = 6.4$ Hz,
			1H), 2.89 (q, $J = 7.5$ Hz, 1H), 2.00 -
			1.93 (m, 1H), 1.60 -1.19 (m, 2H), 1.16
		NH ₂ OH	(d, $J = 7.5$ Hz, 3H), 1.00 (d, $J = 7.0$
			Hz, 3H), 0.93 (t, <i>J</i> = 6.7 Hz, 3H). MS
			(ESI ⁺) m/z (rel intensity): 553.3 ([2 ×
			$(M - H_2O) + H]^+$, 100), 185.2 ($[M -$
111	Ile-boroAla		$H_2O + H]^+$, 28).
		= 0	¹ H NMR (D ₂ O) δ 3.85 (d, J = 6.2 Hz,
		, ↓ ∧ ,OH	1H), 2.81 (d, $J = 16.8$ Hz, 1H), 2.70
		Y Y N' B' H H I	(d, J = 16.8 Hz, 1H), 1.98 - 1.92 (m)
		NH ₂ OH	2H), 1.56 - 1.48 (m, 1H), 0.98 (d, J =
			6.9 Hz, 3H), 0.93 (t, $J = 7.4$ Hz, 3H).
			MS (ESI ⁺) m/z (rel Intensity): 171.1
			$([M - H_2O + H]^+, 100), 341.2 ([2 x (M$
112	Ile-boroGly		$- H_2O) + H]^+$, 80).
		НО, ДОН	¹ H NMR (D ₂ O) δ 3.90 (d, J = 5.8 Hz,
			1H), 2.90 (dd, $J = 9.4$, 6.5 Hz, 1H),
			2.03 - 1.97 (m, 1H), 1.57 - 1.25 (m,
		I H H NH₂	5H), 1.00 (d, $J = 6.9$ Hz, 3H), 0.98 -
			0.88 (m, 9H). MS (ESI ⁺) m/z (rel
			intensity): 227.1 ($[M - H_2O + H]^+$, 70).
113	Ile-boroLeu		453.3 ([2 x (M - H ₂ O) + H] ⁺ , 100).
		НО ОН	¹ H NMR (D ₂ O): δ 3 88 (d. J = 5.9 Hz
		O B	1H) 2.81 (t. $J = 7.5$ Hz 1H) 1.99 -
			1.93 (m. 1H), 1.55 - 1.23 (m. 6H)
			1.00 - 0.86 (m, 9H) MS (ESI ⁺) $m/7$
		NH ₂	(rel intensity): 637.5 ($13 \times (M + O) \pm$
			$(101 \text{ mensity}), 057.5 ([5 \times (11 - 1120) + 1114])$
	11 1 37		Π_{j} , 4), 425.5 ([2 × (M - H ₂ O) + H] ⁺ ,
114	Ile-boroNva		100), 213.2 ($[M - H_2O + H]^+$, 29).

		HO OH A	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			3.76 (m. 1H). 3.10 (m. 1H), 2.95 -
			2.92 (m. 1H). 2.79 - 2.73 (m. 1H).
		H H	1.88 (m, 1H), 1.21 - 1.10 (m, 1H),
		N⊓2	$0.97 (d_{-J} = 6.9 Hz, 3H), 0.91 (t_{-J} = 10.000 Hz, 3H)$
			7.4 Hz 3H) MS (ESI ⁺) m/z (rel
			Intensity): 261.1 ([M - H ₂ O + H] ⁺
			100) 5213 ([2 x (M - H ₂ O) + H] ⁺
115	Ile boroPhe		$100), 521.5 ([2 \times (m - m_2 0) + m_1]),$
115	110-00101 110	110	40).
		- 0 ^{HU} B-OH	34
		\bigvee \bigvee \bigvee \bigvee	
116	Ile-boroPro	NH₂ └∕	
		∎ Q	¹ H NMR (D ₂ O) δ 4.47 (d, $J = 6.4$ Hz,
		∖ ↓ ↓	1H), 3.24 (s, 3H), 2.54 (dd, J = 14.9,
		$\bigvee \qquad \bigvee \qquad \bigvee \qquad \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N}$	7.9 Hz, 2H), 1.60 - 1.21 (m, 2H), 2.12
		NH ₂ OH	- 2.07 (m, 1H), 1.04 (d, $J = 7.0$ Hz,
			3H), 0.94 (t, $J = 6.7$ Hz, 3H). ¹³ C
			NMR (D ₂ O) δ 173.49, 54.59, 47.85,
			39.16, 38.91, 26.34, 16.44, 12.84. MS
			(ESI^{+}) m/z (rel intensity): 185.1 ([M -
117	Ile-boroSar		$H_{2}O + H_{1}^{+}$, 100).
			44
118	Ile-Isoindoline		
-		Ν.	45
		\mathbb{NH}_2	
119	Ile-Pro-CN		
		0.	¹ HNMR (D ₂ O) δ 3.96 (t, J = 7.2 Hz,
		, , Щ , _{он}	1H). 2.82 (q, $J = 7.5$ Hz, 1H), 1.71 -
			1.55 (m. 3H). 1.08 (d, $J = 7.5$ Hz, 3H),
		NH ₂ OH	0.90 - 0.86 (m. 6H). MS (ESI ⁺) m/z
			(rel intensity): $369.3([2 \times (M - H_2O) +$
			H_{1}^{+} 100) 185.2 ([M - H ₂ O + H] ⁺
120	Leu-boroAla		57)
	Lou-boron	0	¹ H NMR (D.O) $\&$ 3.99 (dd $I = 7.4, 7.1$
		Ĭ	H ₇ 1H) 2 80 (d $I = 16.8$ H ₇ 1H)
		N B ^{-OH}	112, 111, 2.00 (a, 3 - 10.0 112, 111), 2 70 (d $I = 16.8 Hz (1H) (1.80 - 1.58)$
			(m, 2H) = 0.06 = 0.88 (m, 6H) MS
			(m, 2H), 0.96 - 0.88 (m, 6H). MS
			(ESI) m/z (rel intensity): 1/1.1 ([M -
121	Leu-boroGly		$H_2O + H$, 100), 341.2 ([2 x (M -

			$H_2O) + H]^+, 95).$
		_HOOH	35
122	Leu-boroLeu	NH₂ ⊓	
		но он	¹ H NMR (D ₂ O): δ 4.03 (t, J = 7.0 Hz,
		O B	1H) 2.85 (t $J = 7.3$ Hz, 1H) 1.78 -
			1.63 (m. 3H). 1.56 - 1.49 (m. 2H),
		I I I	1.39 - 1.28 (m. 2H), 0.97 - 0.90 (m.
		NП2	9H). MS (ESI ⁺) m/z (rel intensity):
			$637.6 ([3 \times (M - H_2O) + H]^+, 3), 425.3$
			$(12 \times (M - H_2O) + H)^+$, 100), 213.2
123	Leu-boroNva		$([2 + (12 + 122)^{+}, 57)]$
-		но он о	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m. 5H).
		O B	3.91 (t, $J = 7.0$ Hz, 1H), 3.16 (dd, $J =$
			10.0, 5.7 Hz, 1H), 2.99 (dd, $J = 14.0$,
			5.7 Hz, 1H), 2.79 (dd, J = 14.0, 10.0
		1912 	Hz, 1H), 1.50 - 1.30 (m, 3H), 0.95 -
			0.91 (m, 6H). MS (ESI ⁺) m/z (rel
			Intensity): 261.1 ($[M - H_2O + H]^+$,
			100), 521.3 ([2 x (M - H ₂ O) + H] ⁺ ,
124	Leu-boroPhe		40).
	1	HO _{LOH}	34
125	Leu-boroPro	NH₂ ↓	
-		0	¹ H NMR (D ₂ O) δ 4.58 (dd, J = 5.3, 3.2
		, , Ŭ , ,oh	Hz, 2H), 3.21 (s, 3H), 2.54 (s, 2H),
			1.86 - 1.72 (m, 3H), 0.99 (d, $J = 5.3$
		^I NH₂ ^I ÓH	Hz, 6H). ¹³ C NMR (D ₂ O) δ 174.13,
			49.18, 47.55, 41.17, 38.68, 26.27,
			24.98, 24.59, 23.10, 22.79. MS (ESI ⁺)
			m/z (rel intensity): 185.1 ([M - H ₂ O +
126	Leu-boroSar		H] ⁺ , 100).
		O	¹ H NMR (D ₂ O) δ 4.86 (dd, J = 7.5, 5.2
			Hz, 1H), 4.33 - 4.29 (m, 1H), 3.74 -
		$\downarrow \qquad \downarrow \qquad$	3.66 (m, 2H), 2.45 - 2.25 (m, 2H),
		NH ₂	2.23 - 2.12 (m, 2H), 2.10 - 1.73 (m,
		N	3H), 1.01 (t, $J = 2.5$ Hz, 6H). MS
			(ESI ⁺) m/z (rel intensity): 210.2 ([M +
127	Leu-Pro-CN		H] ⁺ , 100).
		0	¹ H NMR (D ₂ O) δ 4.00 (t, $J = 6.6$ Hz,
		H ₂ N H ₂ OH	1H), 3.02 - 2.92 (m, 3H), 1.96 - 1.88
			(m, 2H), 1.76 - 1.66 (m, 2H), 1.50 -
128	Lys-boroAla		1.40 (m, 2H), 1.18 (d, <i>J</i> = 7.5 Hz, 3H).

			MS (ESI ⁺) m/z (rel intensity): 399.3
			$([2 \times (M - H_2O) + H]^+, 48), 200.2 ([M$
			$-H_2O + H_1^+$, 20), 182.2 ([M - 2 × H ₂ O
			$+ H]^{+}, 100).$
		0	¹ H NMR (D ₂ O) δ 3.96 (t. J = 6.7 Hz.
			1H). 2.98 (t. $J = 2.6$ Hz. 2H). 2.80 (d.
			J = 16.9 Hz 1H) 2.71 (d $J = 16.9$ Hz
		NH ₂ OH	1H) $1.98 - 1.80$ (m, 2H) $1.74 - 1.63$
			(m 2H) 148 - 137 (m 2H) MS
			$(ESI^{\dagger}) m/z$ (rel Intensity): 168.2 (IM -
			$(201)^{+}$ (101) Intensity). From (111) 2H ₂ O + H] ⁺ , 100), 186.2 ([M - H ₂ O +
129	Lys-boroGly		H_{1}^{+} (5)
	J J	но он	¹ H NMR (D ₂ O) δ 4.0 (dd J = 6.7.66
		O B I	H_{7} (H) 2.92 (m 3H) 1.96 - 1.87 (m
		H ₂ N	2H) 1.73 - 1.67 (m. 2H) 1.58 - 1.36
			(m, 5H), 0.90 (t, $J = 6.0$ Hz, 6H), MS
		Nn ₂	$(ESI^{+}) m/z$ (rel intensity): 242.1 ([M -
130	Lvs-boroLeu		$(120)^{+}$ $(120$
	5	но он	¹ H NMR (D ₂ O): δ 3.99 (t. J = 6.6 Hz.
		0 B 0 B	1H). $3.01 - 2.88$ (m, 3H). $1.90 - 1.86$
		H ₂ N	(m, 2H), 1.75 - 1.30 (m, 8H), 0.89 (t, J
		I H H	= 7.2 Hz, 3H). MS (ESI ⁺) m/z (rel
			intensity): 455.3 ($[2 \times (M - H_2O) +$
			H^{+}_{1} , 26), 228.2 ([M - H ₂ O + H] ⁺ , 34),
131	Lys-boroNya		210.2 ([M - 2 × H ₂ O + H] ⁺ , 100).
	5	НО ОН о	¹ H NMR (D ₂ O) & 7.45 - 7.25 (m. 5H).
		O B OI	3.92 (dd. J = 6.6, 6.3 Hz, 1H), 3.26
		H ₂ N	(dd, J = 9.8, 6.3 Hz, 1H), 3.10 - 2.85
		H H	(m, 4H), 2.10 - 1.61 (m, 4H), 1.42 -
		NT2	1.31 (m. 2H). MS (ESI ⁺) m/z (rel
			Intensity): 259.2 ($[M - H_2O - NH_3 +$
132	Lys-boroPhe		$H^{+}_{1}, 100), 276.2 ([M - H_2O + H]^+, 80).$
		HO	34
		O B OH	
		H ₂ N	
133	Lvs-boroPro	NH ₂	
	,	0	¹ H NMR (D ₂ O) δ 4.63 (t. J = 6.6 Hz.
			1H), 3.22 (s, 3H), 3.00 (t, J = 7.1 Hz.
			2H), 2.50 (s, 2H), 2.03 - 1.94 (m, 2H),
		ŇH ₂ ÓH	1.77 - 1.66 (m, 2H), 1.56 - 1.43 (m,
			2H). ¹³ C NMR (D ₂ O) δ 173.56, 50.31.
			50.23, 47.56, 41.54, 38.87, 32.04,
			28.89, 23.58, 23.24. MS (ESI ⁺) <i>m/z</i>
			(rel intensity): 200.1 ($[M - 2 \times H_2O +$
134	Lys-boroSar		H] ⁺ , 100).
1	,		a / 11/1

		N	44
		$\left \begin{array}{c} \mathbf{N} \mathbf{n}_2 \\ \overline{\mathbf{n}} \\ \overline{\mathbf{n}} \end{array} \right\rangle$	
		H ₂ N	
135	Lys-Pro-CN	li O	
	-	ОН	¹ H NMR (D ₂ O) δ 4.61 (g, J = 7.1 Hz.
		/ / B	1H). 4.52 (dd. $J = 8.5, 5.0$ Hz. 1H).
		о Утон	4.30 (g. $J = 7.2$ Hz, 1H), 3.84 - 3.72
		O NH	(m. 3H). 3.71 (s. 3H). 2.75 - 2.55 (m.
			4H), 2.40 - 2.30 (m, 1H), 2.12 - 1.99
			(m, 3H), 1.39 (d, $J = 7.2$ Hz, 3H), 1.37
		0 0 - 🤍	(d, J = 7.9 Hz, 3H), 1.07 (d, J = 7.7)
	MeOSu-Ala-		Hz, 3H). MS (ESI ⁺) m/z (rel
	Ala-Pro-		intensity): 425.2 ($[M - H_2O + H]^+$,
136	boroAla		100).
		0 -	¹ H NMR (D ₂ O) δ 4.11 (t. J = 6.7 Hz.
		S A L OH	0.7H, <i>trans</i> -form), 3.90 - 3.80 (m,
			0.2H, <i>cis</i> -form), 2.93 (q, $J = 7.5$ Hz,
		NH ₂ OH	1H), 2.69 - 2.59 (m, 2H), 2.25 - 2.10
			(m, 5H), 1.18 (d, $J = 7.5$ Hz, 2.5H,
			<i>trans</i> -form), 1.08 (d, $J = 7.3$ Hz, 0.6H,
			<i>cis</i> -form). MS (ESI ⁺) m/z (rel
			intensity): 405.2 ($[2 \times (M - H_2O) +$
			H^{+}_{1} , 100), 203.3 ($[M - H_2O + H]^+$,
137	Met-boroAla		24).
		0	¹ H NMR (D ₂ O) δ 4.12 (t, J = 6.7 Hz,
		S, A L A OH	1H), 2.83 (t, <i>J</i> = 16.9 Hz, 1H), 2.74 (d,
		$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	<i>J</i> = 16.9 Hz, 1H), 2.54 - 2.70 (m, 2H),
		NH ₂ OH	2.16 - 2.21 (m, 2H), 2.12 (s, 3H). MS
			(ESI ⁺) <i>m/z</i> (rel Intensity): 189.0 ([M -
			$H_2O + H]^+$, 100), 207.0 ([M + H] ⁺ ,
138	Met-boroGly		15).
		_ HO、OH	¹ H NMR (D ₂ O) δ 4.05 (t, $J = 6.7$ Hz,
			1H), 2.87 (m, 1H), 2.55 - 2.46 (m,
		S ∧ N ∧ ∧	2H), 2.12 - 2.04 (m, 2H), 2.01 (s, 3H),
		I H NH₂	1.50 - 1.25 (m, 3H), 0.82 - 0.77 (m,
		-	6H). MS (ESI ⁺) m/z (rel intensity):
			245.0 ($[M - H_2O + H]^+$, 60), 489.2 ($[2$
139	Met-boroLeu		$x (M - H_2O) + H]^+, 100).$
		_HOOH	¹ H NMR (D ₂ O): δ 4.14 (t, $J = 6.7$ Hz,
			1H), 2.92 (t, $J = 7.9$ Hz, 1H), 2.74 -
			2.58 (m, 2H), 2.37 -2.14 (m, 2H), 2.12
		H NH₂	(s, 3H), 1.58 - 1.51(m, 2H), 1.39 - 1.29
			(m, 2H), 0.91 (t, <i>J</i> = 7.3 Hz, 3H). MS
140	Met-boroNva		(ESI ⁺) m/z (rel intensity): 461.3 ([2 ×

			$(M - H_2O) + H]^+$, 83), 271.1 ($[M +$
			$Na]^{+}$, 4), 231.1 ([M - H ₂ O + H] ⁺ , 100).
		НО, ОН 🔨	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			4.03 (m, 1H), 3.24 (m, 1H), 3.02 -
		S N N	2.80 (m, 2H), 2.52 - 2.47 (m, 2H),
		I H NHa	2.13 - 1.90 (m, 5H). MS (ESI ⁺) m/z
		10172	(rel Intensity): 279.1 ($[M - H_2O + H]^+$,
			100), 557.2 ([2 x (M - H ₂ O) + H] ⁺ ,
141	Met-boroPhe		40).
		НО	¹ H NMR (D ₂ O) δ 4.40 (dd J = 7.0, 5.5
		Q [™] _B ∽OH	Hz. 1H) 3 69 (t. $J = 8.8$ Hz. 1H) 3 47
		s	(dd J = 96.71 Hz 1H) 3.04 (dd J =
		$\mathbf{I} \mathbf{N} $	77, 66 Hz 1H) 267 - 259 (m 2H)
		NH ₂	2 20 - 2 14 (m 2H) - 2 12 (s 3H) - 1 74
			-160 (m 2H) 145 - 130 (m 2H)
			$MS (ESI^+) m/z$ (rel intensity): 229.1
			$(IM - H_{2}O + H)^{+} 40) 457.3 (I2 x (M - H_{$
142	Met-boroPro		$(101 - 11_{2}0^{-1} + 11_{1}^{-1}, 40), 457.5 (12 \times 101^{-1})$
142	Wiet-0010110		¹ μ NMP (D O) § 4.76 (br. 14) 2.24
			$\begin{array}{c} \text{H NMR (D_2O) 0 4.70 (01, 111), 3.24} \\ \text{(a. 211) 2.66 (t. L = 7.0 Hz, 211) 2.55} \end{array}$
		S N B OH	$(5, 5\Pi), 2.00 (I, J - 7.0 \Pi Z, 2\Pi), 2.55$
		NH₂ OH	$(s, 2\pi), 2.24$ (dt, $J = 0.9, 7.0$ Hz, $2\pi), (s, 2\pi), ($
		_	2.12 (s, 3H). C NMR (D ₂ O) 8
			1/3.19, 50.32, 49.58, 47.43, 38.85,
			31.59, 30.58, 16.58. MS (ESI) m/z
			(rel intensity): 203.1 ($[M - H_2O + H]^2$,
143	Met-boroSar		100).
		N	¹ H NMR (D ₂ O) δ 4.87 (dd, J = 7.5, 5.2
		NH2	Hz, 1H), 4.48 (dd, $J = 6.4$, 6.0 Hz,
		$\langle \rangle \sim \langle \rangle \rangle \sim \langle \rangle \rangle \sim \langle \rangle \sim \langle \rangle \rangle \rangle \rangle$	1H), $3.81 - 3.68$ (m, 2H), 2.70 (t, $J =$
		s' v T v	7.2 Hz, 2H), 2.43 - 2.16 (m, 5H), 2.14
		0	(br, 1H), 2.13 (s, 3H), 1.74 - 1.60 (m,
			2H), 1.45 - 1.30 (m, 2H). MS (ESI ⁺)
			m/z (rel intensity): 228.1 ([M + H] ⁺ ,
144	Met-Pro-CN		100).
		S	¹ H NMR (D ₂ O) δ 8.25 (d, $J = 5.7$ Hz,
			1H), 8.13 (d, J = 8.3 Hz, 1H), 7.95 -
			7.83 (m, 2H), 7.70 - 7.50 (m, 2H),
			4.60 (m, 1H), 2.78 (dd, $J = 7.3$, 7.2
			Hz, 1H), 2.57 (dd, $J = 7.9$, 6.7 Hz,
			1H), 2.35 (dd, $J = 7.5$, 7.2 Hz, 2H),
	N-(1-		1.85 (s, 3H), 1.80 - 1.30 (m, 8H). MS
	isoquinoyl)-		(ESI ⁺) m/z (rel Intensity): 415.2 ([M -
145	Lys-boroMet	NH2	$H_2O + H]^+$, 100).

146	N-(1- naphcarbonyl)- Gly-Pro-Ala- boroPro Thioxoamide	NH N N N N N N N N N N N N N N N N N N	¹ H NMR (DMSO- d_6): δ 8.60 - 8.55 (m, 1H), 8.36 - 8.34 (m, 1H), 8.20 - 8.10 (m, 1H), 8.02 - 7.98 (m, 2H), 7.63 - 7.50 (m, 4H), 4.80 - 4.60 (m, 1H), 4.59 - 4.40 (m, 1H), 4.39 - 4.15 (br, 2H), 3.90 - 3.60 (br, 4H), 1.98 - 1.74 (m, 7H), 1.25 (d, 3H, $J = 7.2$ Hz). MS (ESI ⁺) m/z (rel intensity): 493.2 ([M - H ₂ O + H] ⁺ , 100).
147	N-(1- naphthoyl)-Lys- boroMet	H H H OH OH NH2	¹ H NMR (D ₂ O) δ 7.90 - 7.78 (m, 3H), 7.52 - 7.30 (m, 4H), 4.55 (dd, <i>J</i> = 8.1, 5.4 Hz, 1H), 2.81 (t, <i>J</i> = 7.2 Hz, 2H), 2.58 (m, 1H), 2.40 (t, <i>J</i> = 7.2 Hz, 2H), 1.87 (s, 3H), 1.80 - 1.30 (m, 8H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 414.2 ([M - H ₂ O + H] ⁺ , 100).
148	N-(1- napthalenecarb onyl)-Gly- boroPro	N N N N N N N N N N N N N N N N N N N	42
149	N-(2-(1H- indole-3- yl)acetyl)-Lys- boroMet	HN O HN B HN O HN B H H O H O H	¹ H NMR (D ₂ O) δ 7.65 (d, $J = 7.9$ Hz, 1H), 7.56 (d, $J = 8.0$ Hz, 1H), 7.37 (s, 1H), 7.30 (dd, $J = 8.0$, 7.0 Hz, 1H), 7.21 (dd, $J = 7.9$, 7.0 Hz, 1H), 4.47 (dd, $J = 9.4$, 5.5 Hz, 1H), 3.84 (d, $J =$ 4.4 Hz, 2H), 2.85 - 2.65 (m, 3H), 2.45 (t, $J = 7.5$ Hz, 2H), 2.06 (s, 3H), 1.90 - 1.60 (m, 6H), 1.50 - 1.40 (m, 2H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 417.2 ([M - H ₂ O + H] ⁺ , 100).
150	N-(2-(2- chlorophenyl)ac etyl)-Lys- boroMet	CI H O H OH OH OH OH OH OH OH OH OH	¹ H NMR (D ₂ O) δ 7.22 (m, 1H), 7.09 (m, 3H), 4.24 (m, 1H), 3.6 (s, 2H), 2.73 (m, 2H), 2.44 (m, 1H), 2.28 (m, 2H), 1.82 (s, 3H), 1.80 - 1.30 (m, 6H), 1.27 - 1.10 (m, 2H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 412.2 ([M - H ₂ O + H] ⁺ , 100).

		/	¹ H NMR (D ₂ O) δ 7.45 - 7.30 (m. 2H)
		S´	7.26 - 7.15 (m 2H) $4.48 (dd I = 8.8$
		F O	5.8 Hz 1H) 2.76 (c. 2H) 2.0 (t. $I =$
			7.5 Hz, 211, 2.75 (dd I = 9.5, 6.2 Hz
		N B OIT	7.5 Hz, 2 H), 2.75 (dd, J - 8.5, 6.5 Hz)
			1H), 2.54 (dd, $J = /.6$, $/.3$ Hz, 2H),
	N-(2-(2-		2.09 (s, 3H), 1.90 - 1.60 (m, 6H), 1.50
	fluorophenyl)ac		- 1.40 (m, 2H). MS (ESI ⁺) m/z (rel
	etyl)-Lys-		Intensity): 396.1 $([M - H_2O + H]^+,$
151	boroMet	INT 12	100).
		s	¹ H NMR (D ₂ O) δ 8.38 (d, J = 5.5 Hz,
			1H), 8.29 (m, 1H), 7.74 - 7.68 (m,
			2H), 4.18 (dd, $J = 7.3$, 7.0 Hz, 1H),
			3.73 (s, 2H), 2.71 (dd, <i>J</i> = 7.6, 7.4 Hz,
			2H), 2.44 (m, 1H), 2.22 (t, <i>J</i> = 7.4 Hz,
			2H), 1.77 (s, 3H), 1.75 - 1.15 (m, 8H).
	N-(2-(2-		MS (ESI ⁺) m/z (rel Intensity): 190.2
	pyridinyl)acetyl		$([[M - H_2O]/2 + H]^+ 100) 379 2 ([M -$
152)-Lys-boroMet	NH ₂	$H_{2}O + H_{1}^{+} = 85$
102) Lys ooroniet		1 L NMP (D O) \$ 7.22 7.08 (m 2H)
		S´	$\begin{array}{c} \text{II NMK} (D_2 0) 0 7.22 - 7.08 (\text{III}, 311), \\ \text{III} 0 7.00 (\text{III}, 200) 0 7.22 - 7.08 (\text{III}, 311), \\ \text{III} 0 7.00 (\text{IIII}, 311), \\ \text{IIII} 0 7.00 (\text{IIII}, 311), \\ \III$
		F	4.47 (dd, $J = 8.7, 6.0$ Hz, 1H), 5.75 (s,
			2H), 3.0 (I, $J = 7.5$ Hz, 2H), 2.76 (dd,
			J = 8.3, 6.3 Hz, 2H), 2.54 (dd, $J = 7.5,$
	N-(2-(2.5-		7.3 Hz, 2H), 2.09 (s, 3H), 1.90 - 1.60
	difluoronhenvl)		(m, 6H), 1.50 - 1.40 (m, 2H). MS
		F S	$(ESI^{+}) m/z$ (rel Intensity): 414.2 ([M -
152	acetyi)-Lys-	 NHa	$H_2O + H]^+$, 100).
155	boromet		
		ş-	¹ H NMR (D_2O) 8 7.20 - 7.15 (m, 2H),
			7.05 - 7.01 (m, 1H), 4.24 (m, 1H),
			3.86 (s, 2H), 2.75 - 2.70 (m, 2H), 2.45
			- 2.41(m, 1H), 2.30 - 2.25 (m, 2H),
			1.81 (s, 3H), 1.70 - 1.20 (m, 8H). MS
	N-(2-(2,6-		(ESI ⁺) m/z (rel Intensity): 446.1 ([M -
	dichlorophenyl)		$H_2O + H]^+$, 100), 448.1 ([M - $H_2O +$
	acetyl)-Lys-]	H] ⁺ , 60).
154	boroMet	NH ₂	
		s ́	1 H NMR (D ₂ O) δ 8.5 (m, 2H), 8.27 (d,
			J = 7.9 Hz, 1H), 7.80 (dd, J = 7.9, 7.1
		н Ш	Hz, 1H), 4.18 (t, <i>J</i> = 6.9 Hz, 1H), 3.73
			(s, 2H), 2.73 (dd, <i>J</i> = 7.4, 7.0 Hz, 2H),
			2.44 (t, J = 7.1 Hz, 1H), 2.23 (dd, J =
			7.2, 7.1 Hz, 2H), 1.78 (s, 3H), 1.75 -
			1.30 (m, 6H), 1.25 - 1.10 (m, 2H). MS
	N-(2-(3-		$(ESI^{+}) m/z$ (rel Intensity): 190.2 ([[M -
	pyridinyl)acetvl	NH ₂	$H_2O]/2 + H^+], 100), 379.2 ([M - H_2O +$
155)-Lys-boroMet		H] ⁺ , 60).
100	, 1,5 551011101], 00).

156	N-(2-(3,5- dichlorophenyl) acetyl)-Lys- boroMet	CI CI CI CI CI CI NH ₂ NH ₂	¹ H NMR (D ₂ O) δ 7.48 (s, 1H), 7.31 (s, 2H), 4.45 (m, 1H), 3.68 (s, 2H), 2.98 (dd, <i>J</i> = 7.8, 7.5 Hz, 2H), 2.78 - 2.70 (m, 1H), 2.51 (dd, <i>J</i> = 7.5, 7.2 Hz, 1H), 2.07 (s, 3H), 1.85 - 1.60 (m, 4H), 1.46 - 1.40 (m, 2H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 446.1 ([M - H ₂ O + H] ⁺ , 100), 448.1 ([M - H ₂ O + H] ⁺ , 60).
157	N-(2-(3,5- difluorophenyl) acetyl)-Lys- boroMet	F F F NH ₂ NH ₂	¹ H NMR (D ₂ O) δ 6.92 (m, 3H), 4.45 (t, <i>J</i> = 6.0 Hz, 1H), 3.68 (s, 2H), 2.97 (t, <i>J</i> = 7.3 Hz, 2H), 2.72 (m, 1H), 2.49 (t, <i>J</i> = 7.5Hz, 2H), 2.07(s, 3H), 2.00 - 1.60 (m, 6H), 1.46 - 1.40 (m, 2H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 446.1 ([M - H ₂ O + H] ⁺ , 100), 414.2 ([M - H ₂ O + H] ⁺ , 60).
158	N-(2-(3,5- difluorophenyl) acetyl)-Trp- boroMet		¹ H NMR (D ₂ O-CD ₃ CN, 4 : 1) δ 7.68 (d, <i>J</i> = 6.8 Hz, 1H), 7.53 (d, <i>J</i> = 7.9 Hz, 1H), 7.25 - 7.15 (m, 3H), 6.91 (m, 1H), 6.74 (m, 2H), 3.60 (s, 2H), 3.45 - 3.25 (m, 2H), 2.64 (m, 1H), 2.22 (s, 3H), 1.97 - 1.25 (m, 4H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 472.1 ([M - H ₂ O + H] ⁺ , 100), 512.3 ([M - H ₂ O + Na] ⁺ , 10).
159	N-(2-(3,5- dimethoxyphen yl)acetyl)-Lys- boroMet	NH ₂	¹ H NMR (D ₂ O) δ 6.58 (s, 3H), 4.45 (t, J = 5.5 Hz, 1H), 3.85 (s, 6H), 3.62 (s, 2H), 2.96 (dd, $J = 7.6$, 7.5 Hz, 2H), 2.73 (dd, $J = 8.5$, 6.2 Hz, 1H), 2.47 (t, J = 7.5 Hz, 2H), 2.06 (s, 3H), 2.00 - 1.60 (m, 6H), 1.50 - 1.40 (m, 2H). MS (ESI ⁺) <i>m/z</i> (rel Intensity): 438.2 ([M - H ₂ O + H] ⁺ , 100).
160	N-(2-(4- hydroxyphenyl) acetyl)-Lys- boroMet	HO HO HO HO HO HO HO HO HO HO HO HO HO H	¹ H NMR (D ₂ O) δ 6.94 (d, $J = 7.1$ Hz, 2H), 6.18 (d, $J = 7.1$ Hz, 2H), 4.17 (m, 1H), 3.31(s, 2H), 2.67 (m, 2H), 2.37 (m, 1H), 2.18 (m, 2H), 1.79 (s, 3H), 1.70 - 1.30 (m, 6H), 1.20 - 1.10 (m, 2H). MS (ESI ⁺) m/z (rel Intensity): 394.1 ([M - H ₂ O + H] ⁺ , 100).

		S	¹ H NMR (D ₂ O) δ 7.30 (d, $J = 8.7$ Hz,
			2H), 7.02 (d, <i>J</i> = 8.7 Hz, 2H), 4.44 (t,
		н ш	J = 6.0 Hz, 1H), 3.86 (s, 3H), 3.62 (s,
		N N B-OH	2H), 2.97 (dd, $J = 7.8$, 7.4 Hz, 2H),
			2.72 (dd, $J = 8.5$, 6.2 Hz, 1H), 2.47
	N-(2-(4-		(dd, <i>J</i> = 7.6, 7.4 Hz, 2H), 2.07 (s, 3H),
	methoxyphenyl		2.00 - 1.60 (m, 6H), 1.50 - 1.40 (m,
)acetyl)-Lys-]	2H). MS (ESI ⁺) m/z (rel Intensity):
161	boroMet	NH ₂	408.2 ([M - H ₂ O + H] ⁺ , 100).
		s ́	¹ H NMR (D ₂ O) δ 8.48 (d, $J = 5.7$ Hz,
		j	2H), 7.72 (d, $J = 5.7$ Hz, 2H), 4.18
		н Ш	(dd, J = 6.9, 6.8 Hz, 1H), 3.79 (s, 2H),
			2.72 (t, <i>J</i> = 7.0 Hz, 2H), 2.78 (dd, <i>J</i> =
			7.3, 6.8 Hz, 1H), 2.23 (dd, <i>J</i> = 7.1, 7.0
			Hz, 2H), 1.79 (s, 3H), 1.75 - 1.30 (m,
			6H), 1.25 - 1.10 (m, 2H). MS (ESI ⁺)
	N-(2-(4-		<i>m/z</i> (rel Intensity): 190.2 ([[M -
	pyridinyl)acetyl	NH ₂	$H_2O]/2 + H]^+$, 100), 379.2 ([M - $H_2O +$
162)-Lys-boroMet		H] ⁺ , 50).
		8	¹ H NMR (D ₂ O) δ 7.47 (d, J = 8.9 Hz,
			1H), 7.36 (s, 1H), 7.19 (d, <i>J</i> = 8.0 Hz,
			1H), 6.97 (dd, $J = 8.9$, 8.0 Hz, 1H),
			4.47 (dd, <i>J</i> = 5.2, 4.2 Hz, 1H), 3.90 (s,
			3H), 3.80 (s, 2H), 2.80 (t, <i>J</i> = 7.2 Hz,
			2H), 2.70 (t, <i>J</i> = 6.3 Hz, 1H), 2.42 (t, <i>J</i>
	N-(2-(5-		= 7.5 Hz, 2H), 2.05 (s, 3H), 1.90 -
	methoxyindole-]	1.50 (m, 6H), 1.35 - 1.20 (m, 2H). MS
	3-yl)acetyl)-	NH ₂	(ESI ⁺) <i>m/z</i> (rel Intensity): 447.2 ([M -
163	Lys-boroMet		$H_2O + H]^+$, 100).
		ş.	¹ H NMR (D ₂ O) δ 8.60 (s, 1H), 8.23 (d,
			J = 8.6 Hz, 2H), 8.13 (d, $J = 8.3$ Hz,
			2H), 7.64 - 7.52 (m, 4H), 4.39 (dd, <i>J</i> =
			9.3, 5.5 Hz, 1H), 2.85 - 2.80 (m, 2H),
			2.63 (m, 1H), 2.33 (dd, $J = 7.6, 7.4$
	N-(2-(9-		Hz, 1H), 1.89 (s, 1H), 1.81 - 1.51 (m,
	phenanthryl)ace		6H), 1.40 - 1.29 (m, 2H). MS (ESI ⁺)
	tyl)-Lys-		m/z (rel Intensity): 478.2 ([M - H ₂ O +
164	boroMet	14172	H] ⁺ , 100).

¹ H NMR (D ₂ O) δ 4.48 (dd, J = 5.1, 4.5
Hz, 1H), 4.13 (s, 2H), 4.04 (m, 4H),
3.46 (m, 4H), 3.01 (t, <i>J</i> = 7.5 Hz, 2H),
2.83 (dd, $J = 8.1$, 6.6 Hz, 1H), 2.58
(dd, <i>J</i> = 7.5, 7.2 Hz, 2H), 2.12 (s, 3H),
1.95 - 1.60 (m, 6H), 1.50 - 1.30 (m,
2H). MS (ESI ⁺) m/z (rel Intensity):
194.2 ([[M - H_2O]/2 + H] ⁺ , 100),
387.2 ([M - H ₂ O + H] ⁺ , 98).
¹ H NMR (D ₂ O) δ 7.72 - 7.70 (m, 3H),
7.40 - 7.10 (m, 4H), 4.21 (m, 1H),
3.93 (s, 2H), 2.79 (m, 2H), 2.58 (m,
1H), 2.19 (m, 2H), 1.76 (s, 3H), 1.75 -
1.30 (m, 6H), 1.06 (m, 2H). MS (ESI ⁺)
m/z (rel Intensity): 428.2 ([M - H ₂ O +
H] ⁺ , 100).
¹ H NMR (D ₂ O) δ 7.71 - 7.68 (m, 3H),
7.60 (s, 1H), 7.33 - 7.29 (m, 2H), 7.20
(d, J = 7.9 Hz, 1H), 4.20 (m, 1H), 3.58
(s, 2H), 2.56 (t, <i>J</i> = 7.4 Hz, 2H), 2.40
(m, 1H), 2.11 (t, $J = 7.2$ Hz, 2H), 1.71
(s, 3H), 1.70 - 1.30 (m, 6H), 1.10 -
0.96 (m, 2H). MS (ESI') <i>m/z</i> (rel
Intensity): 428.2 ($[M - H_2O + H]^+$,
100).
¹ H NMR (D ₂ O) δ 4.48 (dd, J = 8.5, 6.1
Hz, 1H), 3.88 (s, 2H), 3.02 (t, $J = 7.5$
Hz, 2H), 2.77 (dd, $J = 8.5$, 6.2 Hz,
1H), 2.55 (dd, $J = 7.6$, 7.3 Hz, 2H),
2.10 (s, 3H), 1.95 - 1.60 (m, 6H), 1.55
- 1.40 (m, 2H). MS (ESI') <i>m/z</i> (rel
Intensity): $408.1 ([M - H_2O + H])$,
100).
¹ H NMR (D ₂ O) δ 7.10 (d. J = 4.8 Hz
1H), $6.80 - 6.70$ (m. 2H), 4.20 (dd. $J =$
5.7. 5.4 Hz. 1H). 3.63 (s. 2H). 2.69 (t.
J = 7.4 Hz, 2H), 2.42 (dd, $J = 7.2, 6.7$
Hz, 1H), 2.25 (t, $J = 7.4$ Hz, 2H), 1.82
(s, 3H), 1.60 - 1.35 (m, 6H), 1.39 -
1.16 (m, 2H). MS (ESI ⁺) m/z (rel
Intensity): 384.1 ($[M - H_2O + H]^+$,
100).

			¹ H NMR (D ₂ O) δ 8.08 (d, J = 9.0 Hz,
			1H), 7.95 (d, <i>J</i> = 8.2 Hz, 1H), 7.71 (d,
			J = 8.4 Hz, 1H), 7.65 - 7.45 (m, 3H),
		↓ , № ↓ , он	4.01 (s, 3H), 3.03 (t, $J = 7.5$ Hz, 2H),
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.89 (dd. $J = 8.5, 6.3$ Hz, 1H), 2.63
		_0 0 - ОН	(m 2H) 2 10 (s 3H) 2 05 - 1 50 (m 2H) 2 10 (s 3H) 2 05 - 1 50 (m 2H) 2 10 (s 3H) 2 05 - 1 50 (m 2H) 2 05 (m 2H) 2 05 (m 2H) 2 0 (m 2H) 2
	N-(2-methoxy-		8H) MS (ESI ⁺) m/z (rel Intensity):
	1-napthoyl)-		444.2 ([M - H ₂ O + H] ⁺ 100)
170	Lvs-boroMet	NH ₂	444.2 ([M - 1120 + 11] , 100).
-	,	0 —	¹ H NMR (D ₂ O) δ 7 57 (d $J = 6.9$ Hz
		Ĭ N	1H) 746 (d $I = 64$ Hz 1H) 715
			(dd J = 69.64 Hz 1H) 420 (s 2H)
			3.64 (hr 1H) 3.60 (s 2H) 3.54 - 3.50
		NH HO	(m 1H) 3.08 - 3.04 (m 1H) 2.20 -
	N (2		(m, 111), 5.08 = 5.04 (m, 111), 2.20 = 2.00 (m 3H) 1.75 1.70 (m 1H) MS
	avoindolino 7	0	$(ESI^{+}) m/z$ (rel intensity): 214.2 (IM
	oxonidonne-/-		(ESI) m/2 (ref intensity). 514.2 (IM -
171	b and Dec		$H_2O + H_1$, 100), 617.2 ([2 X (M -
1/1	DOFOPTO		$H_2O + H_1, 60).$
		ş	¹ H NMR (D_2O) 8 7.20 - 7.11 (m, 5H),
		О ОН	4.60 (s, 1H), 4.23 (dd, $J = 9.1$, 4.8 Hz,
			1H), 2.60 - 2.55 (m, 2H), 2.46 (dd, $J =$
		N N B OH	7.8, 7.2 Hz, 2H), 2.40 - 2.20 (m, 2H),
			1.84 (s, 3H), 1.55 - 1.50 (m, 1H), 1.49
	N-(2-phenyl-2-		- 1.41 (m, 4H), 1.35 - 1.25 (m, 2H),
	hydroxycarbon		1.10 - 1.03 (m, 2H). MS (ESI ⁺) m/z
	yl)acetyl-Lys-	 NHa	(rel Intensity): 422.2 ($[M - H_2O + H]^+$,
172	boroMet		100).
		s	¹ H NMR (D ₂ O) δ 9.20 (d, J = 1.3 Hz,
		N	1H), 8.85 (d, <i>J</i> = 2.5Hz, 1H), 8.78 (dd,
			J = 2.5, 1.3 Hz, 1H), 3.02 (t, $J = 7.5$
			Hz, 2H), 2.82 (dd, $J = 8.2$, 6.4 Hz,
			1H), 2.56 (t, J = 7.5 Hz, 2H), 2.07 (s,
	N-(2-		3H), 2.06 - 2.02 (m, 2H), 1.90 - 1.70
	pyrazinecarbon		(m, 4H), 1.60 - 1.50 (m, 2H). MS
	yl)-Lys-		(ESI ⁺) <i>m/z</i> (rel Intensity): 366.1 ([M -
173	boroMet	NH ₂	$H_2O + H]^+$, 100).
			¹ H NMR (D ₂ O) δ 8.61 (d. J = 8.5 Hz.
			1H). 8.21 (d. $J = 8.7$ Hz. 1H). 8.14 (d.
			J = 8.5 Hz. 1H). 8.10 (d. $J = 8.5$ Hz.
		L L L N L CH	1H) 797 (dd $J = 85$ 7.2 Hz 1H)
		$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	7.81 (dd J = 8.7.72 Hz 1H) 3.04
		о - он	(dd I = 7573 Hz 2H) 2.82 (dd I = 100)
	N-(2-		85 62 Hz 1H) 256 (t I = 75 Hz)
	quinolineearbon		2H) $2 10 - 205 (m 2H) 203 (m 2H)$
	vl)-I ve	NH ₂	210, 2.10 - 2.03 (m, $211, 2.03$ (s, $31), 1.00 - 1.20$ (m, $6H$) MS (ESI ⁺)
174	y1)-Lys-		1.20 - 1.20 (III, 01). NIS (ESI) m/Z
1/4	ooroiviet		(1e) intensity): 208.0 ([[M - H ₂ O]/2 +

			$H]^{+}$, 100), 415.1 ($[M - H_2O + H]^{+}$, 90).
		s ·	¹ H NMR (D ₂ O) δ 7.43 - 7.25 (m, 5H),
			4.50 (t, $J = 7.3$ Hz, 1H), 3.70 (m, 1H), 3.36 (m, 1H), 2.98 (m, 2H), 2.78 (dd)
		И. Ц. И. Ц. Д. ОН	J = 8.4, 6.3 Hz, 1H), 2.51 (t, $J = 7.5$
		$ \begin{array}{c} & & \\ & & $	Hz, 2H), 2.04 (s, 3H), 1.95 - 1.65 (m,
	N-(2-	ОЧ	6H), 1.60 - 1.50 (m, 2H). MS (ESI ⁺)
	quinoxalinecarb		$\it m/z$ (rel Intensity): 416.2 ([M - H ₂ O +
175	onyl)-Lys- boroMet	 NH ₂	H] ⁺ , 100).
			¹ H NMR (D ₂ O) δ 7.15 - 6.99 (m, 5H),
			4.03 (dd, J = 9.4, 5.1 Hz, 1H), 2.71 -
		н о	2.57 (m, 4H), 2.43 - 2.37 (m, 3H),
		N N B OH	1.83 (s, 3H), 1.50 - 1.20 (m, 6H), 1.00
	N-(3-		- 0.80 (m, 2H). MS (ESI) m/z (rel Intensity): 202.2 (IM = H O + H] ⁺
	phenyl)propano		100).
	yl)-Lys-		
176	boroMet	NH ₂	
		ş	¹ H NMR (D ₂ O) δ 7.99 (d, $J = 6.5$ Hz,
		F O	1H), 7.89 (d, $J = 6.7$ Hz, 1H), 7.37 (m, 2U), 7.04 (dd, $L = 0.2, 8.5$ Hz, 1U)
		Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л Л	3H, 7.04 (dd, $J = 9.5$, 8.5 HZ, 1H), 4.50 (m. 1H) 2.78 (m. 2H) 2.55 (dd, L
			= 7.7, 6.2 Hz, 1H), 2.36 (m, 2H), 1.84
		ОЧ	(s, 3H), 1.80 - 1.25 (m, 8H). MS
	N-(4-fluoro-1-		(ESI^+) m/z (rel Intensity): 432.2 ([M -
177	naphthoyl)-Lys-	 NH ₂	$H_2O + H]^+$, 100).
1//	borowiet		¹ H NMR (D ₂ O) & 7.02 (m. 2H), 6.87
			(m, 2H), 4.20 (dd, $J = 8.6$, 5.9 Hz,
			1H), 3.41 (s, 2H), 2.70 (m, 2H), 2.45 -
			2.40 (m, 1H), 2.24 (t, <i>J</i> = 7.3 Hz, 2H),
	N (4		1.82 (s, 3H), 1.80 - 1.29 (m, 6H), 1.20
	fluorophenylace	F'	- 1.10 (m, 2H). MS (ESI ⁺) m/z (rel
	tyl)-Lys-		100) 1001 1001 1001 1001 1001 1001 1001
178	boroMet	NH ₂	100).
		ş	¹ H NMR (D ₂ O) δ 7.78 (d, $J = 8.7$ Hz,
		но	2H), 7.0 (d, $J = 8.7$ Hz, 2H), 4.71 (dd,
		но. 🚶 🕺 🦌 📙	J = 8.7, 0.3 Hz, 1H), 3.03 (dd, $J = 7.6$, 7 4 Hz 2H) 2.77 (dd $J = 8.4.6$ 3 Hz
		N B	1H), 2.57 (t, $J = 7.4$ Hz, 2H), 2.06 (s,
		ООН	3H), 2.00 - 1.500 (m, 8H). MS (ESI ⁺)
	N-(4-		m/z (rel Intensity): 380.1 ([M - H ₂ O +
170	hydroxybenzoyl	 NH2	H] ⁺ , 100).
1/9	j-Lys-borowiet		

			¹ H NMR (D ₂ O) & 4.83 (m. 1H), 4.13
			(dd J = 7870 Hz 1H) 348 (m)
			(12, 3, 20 (m 4H), 2.74 (dd I = 6.8)
			6 7 Hz 2H) 2 44 - 2 25 (m 3H) 1 84
			(2, 2H) = 1.61 = 1.20 (m, SH), 1.04
	N-(4-	о – он	(S, SH), 1.01 - 1.20 (III, $SH). MS$
	morpholinylcar		(ESI) $m/2$ (ref linefisity). $3/3.2$ ([M -
	bonyl)-Lys-		$H_2O + H_1$, 100).
180	boroMet	NH ₂	
			¹ H NMR (D ₂ O) δ 9 26 (s 1H) 9 02 (d
		S ⁻	I = 51 Hz 1H) 8.06 (d $I = 5$ Hz
			1H) 4.68 (br 1H) 2.97 (dd $I = 8.4$
			55 H_7 2H) 270 (dd $I = 80.7.2 \text{ H}_7$
			111) 250 (t I = 7.4 Hz 2H) 201 (z)
			11), 2.30 (1, $J = 7.4$ Hz, 2H), 2.01 (s,
	N-(4-		5H, 2.00 - 1.43 (III, $8H$). MS (ESI)
	nyrimidinovl)-		$m/2$ (ref intensity). 500.1 ([M - H_2O +
181	Lys-boroMet	I NH ₂	H], 100).
101	Lys-bolowiet		¹ H NMP (D O) $\$$ 9 20 (d $I = 5.5$ Hz
		S ⁻	$\begin{array}{c} \text{II NMR} (D_2 0) \ 0 \ 9.20 \ (\text{d}, J = 3.5 \ \text{Hz}, \\ \text{III}) \ 8 \ 20 \ (\text{d}, J = 8.8 \ \text{Hz}, 211) \ 8 \ 10 \end{array}$
		N N	1H), 8.29 (d, $J = 8.8$ Hz, 2H), 8.19
			(dd, J = 8.3, 7.4 Hz, 1H), 8.10 (d, J = 8.5 Hz, 1H), 8.02 (dd, L = 8.0, 7.4 Hz)
			8.5 Hz, 1H), 8.02 (dd, $J = 8.0$, 7.4 Hz,
		О Т ОН	1H), $3.03 - 2.90$ (m, 3H), 2.00 (t, $J =$
	N (4		7.2 Hz, 2H), 2.08 (s, 3H), 2.00 - 1.50
	N-(4-		(m, 8H). MS (ESI) m/z (rel Intensity):
100	quinolinoyl)-	I NH ₂	$208.1 ([[M - H_2O]/2 + H]^2, 100),$
182	Lys-boroMet	-	$415.2 ([M - H_2O + H]^2, 90).$
		ş-	¹ H NMR (D ₂ O) δ 8.08 (d, J = 8.3 Hz,
			1H), 7.63 (d, $J = 8.6$ Hz, 1H), 7.54 (d,
			J = 7.0 Hz, 1H), 7.43 - 7.30 (m, 2H),
		H N N B OH	7.08 (dd, $J = 9.8$, 8.6 Hz, 1H), 4.51
			(dd, J = 7.4, 6.9 Hz, 1H), 2.78 (dd, J =
			7.4, 7.0 Hz, 2H), 2.53 (t, $J = 7.4$ Hz,
			1H), 2.36 (t, $J = 7.2$ Hz, 2H), 1.84 (s,
	N-(5-fluoro-1-	 NHa	3H), 1.75 - 1.25 (m, 8H). MS (ESI ⁺)
	naphthoyl)-Lys-		m/z (rel Intensity): 432.2 ([M - H ₂ O +
183	boroMet		H] ⁺ , 100).
		Ş.	¹ H NMR (D ₂ O) δ 7.15 (m, 5H), 4.30
			(m, 1H), 2.67 (m, 2H), 2.53 (m, 1H),
			2.34 (m, 5H), 1.85 (s, 3H), 1.70 - 0.90
			(m, 8H). MS (ESI ⁺) m/z (rel Intensity):
	N-(5-methyl-3-		445.2 ($[M - H_2O + H]^+$, 100).
	phenyl-		
	isoxazole-4-		
	carbonyl)-Lys-		
184	boroMet	NH ₂	

		/	¹ H NMR (D ₂ O) δ 8 05 (d $I = 8.2$ Hz
		S	1H) 7.60 (d. $I = 6.5H_7$ 1H) 7.38 (d
			I = 78 Hz 2H) 6.00 (t $I = 8.0 Hz$
			1H) $451 (m 1H) 278 (m 2H) 237$
			(dd I = 7.6, 6.6, Hz, 1H) 2.34 (t I = -7.6, Hz, 1H)
	N-(5.7-	О С С ОН	(uu, J = 7.0, 0.0 Hz, 111), 2.34 (t, J = 6.7 Hz, 211), 1.82 (s, 211), 1.80 + 1.25
	difluoro-1-		(m, 211), $(1.05, (5, 511), (1.00 - 1.25))$
	nanhthovl)-Lys-	F	(iii, δH). MS (ESI) $m/2$ (ref intensity).
185	horoMet	NH ₂	$450.1 ([M - H_2O + H], 100).$
100			¹ H NMP (D.O) δ 7 87 (m. 1H) 7.8 (d.
		S S	I = 0.8 Hz 1H) 7.45 7.30 (m, 3H)
			7 = 9.6 Hz, HI, 7.45 = 7.50 (III, 5H), 7.24 = 7.18 (m H) 4.50 (m H)
			7.24 - 7.18 (m, 111), 4.30 (m, 111), 2.78 (m, 211) 2.56 (m, 111), $2.40 - 2.20$
			2.78 (III, 2H), 2.30 (III, 1H), $2.40 - 2.30$
		ОН	(m, 2H), 1.85 (s, 3H), 1.80 - 1.30 (m, 2H), 1.80 (TOT)
	N-(6-fluoro-1-		8H). MS (ESI) m/z (rel intensity):
	naphthoyl)-Lys-		432.2 ([M - H ₂ O + H] , 100).
186	boroMet	NH ₂	
		~/	¹ H NMR (D ₂ O) δ 8.45 - 8.00 (m. 5H)
			7.65 - 7.50 (m, 3H), 2.99 (dd, $J = 7.5$.
			7.2 Hz 2H 2.78 (dd J = 7.8 6.8 Hz
			1H) 2.53 (dd. $J = 7.3, 7.1$ Hz 2H).
		$ \begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	2.02 (s 3H) $2.00 - 1.50$ (m 8H) MS
		О ТОН	$(ESI^{+}) m/z$ (rel Intensity): 441.3 (IM -
	N-(6-		$H_2O + H_1^+$ 100)
	phenylpicolinoy		1120 · 11] , 100).
187	l)-Lys-boroMet	NH ₂	
		s	¹ H NMR (D ₂ O-CD ₃ CN, 4 : 1) δ 8.27 -
		j j	8.18 (m, 3H), 8.07 - 8.03 (m, 2H),
			7.86 (d, $J = 8.0$ Hz, 1H), 7.77 - 7.72
			(m, 4H), 7.67 (d, $J = 8.5$ Hz, 1H),
			7.53 (s, 1H), 7.36 (t, $J = 7.7$ Hz, 1H),
			7.21 (t, <i>J</i> = 7.7 Hz, 1H), 5.18 (m, 1H),
			3.67 (d, <i>J</i> = 7.1Hz, 1H), 3.01 (m, 1H),
		HN -/	2.52 - 2.38 (m, 2H), 2.06 (s, 3H), 1.57
	N-(6-		- 1.40 (m, 4H). MS (ESI ⁺) m/z (rel
	phenylpicolinoy		Intensity): 499.1 $([M - H_2O + H]^+,$
188	l)-Trp-boroMet		100), 539.1 ([M - $H_2O + Na^+$], 20).
		s	1 H NMR (D ₂ O) δ 9.83 (s, 1H), 8.55 (d,
			J = 6.6 Hz, 1H), 8.48 (d, $J = 6.4$ Hz,
			1H), 8.38 (dd, $J = 7.2$, 6.0 Hz, 1H),
			8.22 - 8.17 (m, 2H), 2.98 (dd, <i>J</i> = 7.5,
			7.4 Hz, 2H), 2.84 (m, 1H), 2.55 (t, <i>J</i> =
			7.3 Hz, 2H), 2.04 (s, 3H), 2.00 - 1.52
	N-(8-		(m, 8H). MS (ESI ⁺) m/z (rel Intensity):
	isoquinolinoyl)-))	208.0 ([[M - H_2O]/2 + H] ⁺ , 100),
189	Lys-boroMet	NH ₂	

			415.2 ($[M - H_2O + H]^+$, 50).
		s	¹ H NMR (D ₂ O) δ 7.90 - 7.40 (m, 5H),
		, j	4.66 (dd, $J = 8.7$, 5.8 Hz, 1H), 2.98
		н и	(dd, J = 7.5, 7.3 Hz, 2H), 2.79 (m,
			1H), 2.55 (dd, $J = 7.3$, 7.0 Hz, 2H),
			2.06 (s, 3H), 2.00 - 1.50 (m, 8H). MS
			(ESI ⁺) m/z (rel Intensity): 364.2 ([M -
			$H_2O + H]^+$, 100).
	N-(benzoyl)-		
190	lys-boroMet	NH ₂	
		S	¹ H NMR (D ₂ O) δ 8.97 (d, $J = 6.5$ Hz,
			2H), 8.37 (d, <i>J</i> = 6.5 Hz, 2H), 4.72 (br,
			1H), 3.0 (dd, <i>J</i> = 7.5, 7.3 Hz, 2H), 2.80
			(m, 1H), 2.56 (t, <i>J</i> = 7.2 Hz, 2H), 2.08
			(s, 3H), 2.00 - 1.50 (m, 8H). MS
	N		$(ESI^{-}) m/z$ (rel Intensity): 183.1 ([[M -
	IN-	\sim	$H_2O/2 + H^-$, 100), 415.2 ([M - $H_2O + H_2O)$
101	(Isolicotilioyi)-	l NH2	H] ⁺ , 90).
171	Lys-bolomet		¹ H NIMP (D O) 8.0.22 (c. 1H) 8.07 (d.
		\$´	I = 67 Hz 2H) 8 21 (t $I = 67 Hz$
			J = 0.7 Hz, 2H), 0.21 (i, $J = 0.7$ Hz, 1H) 3.0 (dd $J = 7.5$ 7.3 Hz 2H) 2.80
		N L H L .OH	(m 1H) 2.56 (dd, $J = 7.3, 7.1$ Hz
			(11, 11), 200 (22, 0 + 10, 11), 200 (22, 0 + 10, 10), 200 (22, 0 + 10, 0), 200 (22, 0), 200 (2
		ю - ́он	MS (ESI ⁺) m/z (rel Intensity): 183.1
		L	$([[M - H_2O]/2 + H]^+, 90), 415.2 ([M - 100])^{-1}$
	N-(nicotinoyl)-		$H_2O + H]^+$, 100).
192	Lys-boroMet	NH ₂	
		8	¹ H NMR (D ₂ O) δ 7.25 - 7.08 (m, 2H),
		, j	6.85 - 6.70 (m, 3H), 4.48 (s, 2H), 4.29
			(m, 1H), 2.60 (m, 2H), 2.41 (t, <i>J</i> = 6.6
			Hz, 1H), 2.25 (t, <i>J</i> = 7.0 Hz, 2H), 1.80
			(s, 3H), 1.70 - 1.00 (m, 6H). MS
			(ESI ⁺) m/z (rel Intensity): 394.2 ([M -
	N-		$H_2O + H]^+$, 100).
	(phenoxyacetyl)		
193	-Lys-boroMet		
		ş	⁴ H NMR (D ₂ O) δ 7.20 - 7.07 (m, 5H),
			4.21 (dd, $J = 8.8$, 5.6 Hz, 1H), 3.42 (s,
			2H), 2.68 (t, $J = 6.2$ Hz, 2H), 2.42 (m,
			111), 2.22 (I, $J = 7.4$ HZ, 2H), 1.82 (S, 2H) 1.80 1.25 (m 4H) 1.20 1.10
		└	5Π , 1.80 - 1.55 (M, 6H), 1.30 - 1.10 (m, 2H) MS (ESI ⁺) = (m, 6H), 1.30 - 1.10
	N-	Ì	(III, 2H). WIS (ESI) m/z (rel intensity): 278.2 (IM, H $O \pm UI^+$ 100)
	(phenylacetyl)-		$5/6.2 ([WI - \Pi_2 O + \Pi], 100).$
194	Lys-boroMet	NH ₂	
	,		

		s'	¹ H NMR (D ₂ O) δ 7.48 (s, 5H), 4.52 (s,
		5	2H), 3.85 (m, 1H), 2.97 (t, <i>J</i> = 7.5 Hz,
			2H), 2.79 (m, 1H), 2.56 (dd, J = 8.1,
			7.0 Hz, 1H), 2.10 (s, 3H), 1.90 - 1.30
			(m, 8H). MS (ESI ^{$+$}) m/z (rel Intensity):
	N-	ОН	414.2 ($[M - H_2O + H]^+$, 100).
	(phenylmethane		
	sulfonyl-Lys-		
195	boroMet	NH ₂	
		NH ₂	¹ H NMR (D ₂ O) δ 8.66 (d, $J = 4.2$ Hz,
			1H), 8.07 (m, 2H), 7.69 (d, <i>J</i> = 4.5Hz,
			1H), 4.51 (m, 1H), 3.0 (m, 2H), 2.80
		о с он	(m, 1H), 2.55 (dd, $J = 7.4$, 6.3 Hz,
			2H), 2.08 (s, 3H), 2.00 - 1.40 (m,
			11H). MS (ESI ⁺) m/z (rel Intensity):
	N-(picolinoyl)-	ö = ¨ ö -	436.2 ($[M - H_2O + H]^+$, 100).
	Ala-Lys-		
196	boroMet	5	
		0	¹ H NMR (D ₂ O) δ 8.83 (d, $J = 5.1$ Hz,
			1H), 8.58 (dd, $J = 7.8$, 5.1 Hz, 1H),
		н П	8.43 (d, <i>J</i> = 7.8 Hz, 1H), 8.10 (m, 1H),
			4.67 (br, 1H), 3.45 (t, <i>J</i> = 6.1 Hz, 2H),
			3.25(s, 3H), 2.95(t, J = 7.5 Hz, 2H),
			2.74 (t, $J = 7.4$ Hz, 1H), 2.05 - 1.40
	N-(picolinoyl)-		(m, 8H). MS (ESI ^{$+$}) m/z (rel Intensity):
	Lys-boroMet		175.1 ([[M - $H2O$]/2 + H] ⁺ , 100),
197	(0)	NH ₂	$349.2 ([M - H_2O + H]^+, 95).$
		NH ₂	¹ H NMR (D ₂ O) δ 8.72 - 8.50 (m, 1H),
			8.30 - 8.00 (m, 1H), 7.95 - 7.60 (m,
			2H), 4.70 - 4.51 (m, 1H), 3.80 - 3.65
		о с он	(m, 2H), 3.0 (t, J = 7.5 Hz, 2H), 2.80
			(m, 1H), 2.55 - 2.40 (m, 3H), 2.10 -
		(N') (V) (N') (V) $(V$	1.40 (m, 11H). MS (ESI ⁺) m/z (rel
	N-(picolinoyl)-	ö↓- ö -	Intensity): 462.2 ($[M - H_2O + H]^+$,
	Pro-Lys-		100).
198	boroMet	5	
		NH ₂	¹ H NMR (D ₂ O) δ 8.95 (s, 1H), 8.02
			(m, 2H), 7.67 (m, 2H), 7.50 (d, <i>J</i> = 7.8
			Hz, 1H), 7.35 (s, 1H), 7.24 (t, 1H, <i>J</i> =
		С ОН	7.0 Hz), 7.15 (m, 1H), 4.31 (m, 1H),
		I I I I I I I I I I I I I I I I I I I	3.44 (d, <i>J</i> = 6.6 Hz, 2H), 2.86 (m, 2H),
			2.65 (m, 1H), 2.52 (m, 2H), 2.08 (s,
			3H), 2.00 - 1.30 (m, 8H). MS (ESI ⁺)
	N-(nicolinovi)		<i>m/z</i> (rel Intensity): 551.2([M - H_2O +
	Trp-I ve	NH \	H] ⁺ , 100).
100	horoMot	Ľ	
199	Dorowiet		

		NH ₂	¹ H NMR (D ₂ O) δ 8.63 (d, J = 7.5 Hz,
			1H), 8.04 - 8.00 (m, 2H), 7.68 - 7.62
			(m, 2H), 7.50 (d, J = 8.1 Hz, 1H), 7.35
		о с он	(s, 1H), 7.25 (dd, <i>J</i> = 8.1, 7.2 Hz, 1H),
			7.15 (t, <i>J</i> = 7.3 Hz, 1H), 4.80 (m, 1H),
		$N' \qquad \qquad N' \qquad \qquad $	4.30 (dd, <i>J</i> = 8.4, 6.0 Hz, 1H), 3.44 (d,
		0 _ 0 _	J = 6.6 Hz, 2H), 2.86 (t, $J = 7.5$ Hz,
			2H), 2.68 (dd, $J = 8.4$, 7.2 Hz, 1H),
		NH	1.70 - 1.24 (m, 10H), 0.89 (d, $J = 2.7$
			Hz, 3H), 0.87 (d, <i>J</i> = 2.7Hz, 3H). MS
	N-(picolinoyl)-	~	(ESI ⁺) <i>m/z</i> (rel intensity): 267.1 ([M -
	Trp-Lys-		$H_2O + H]^+$, 100), 533.3 ([2 x (M -
200	boroLeu		$H_2O) + H]^+, 95).$
			¹ H NMR (D ₂ O) δ 9.20 (s, 1H), 8.82 (s,
		N O	1H), 8.75 (s, 1H), 4.70 (br, 1H), 2.97
			(t, J = 7.5 Hz, 2H), 2.69 (t, J = 7.5 Hz,
		N B OI	1H), 2.05 - 1.90 (m, 3H), 1.72 (t, J =
		О – Он	7.5 Hz, 2H), 1.53 - 1.41 (m, 4H), 1.29
			(dt, $J = 7.2$, 7.0 Hz, 2H), 0.86 (t, $J =$
			7.2 Hz, 3H),. MS (ESI^+) m/z (rel
	N-(pyrazinoyl)-	NH ₂	Intensity): 334.3 $([M - H_2O + H]^+,$
201	Lys-boroNva		100).
		s	1 H NMR (D ₂ O) δ 7.48 (s, 5H), 5.26 (s,
		Ĵ	1H), 4.51 (dd, $J = 8.4$, 5.1 Hz, 1H),
		он о	2.93 (t, J = 7.5 Hz, 2H), 2.74 (t, J =
			6.6 Hz, 1H), 2.48 (dd, <i>J</i> = 7.7, 7.3 Hz,
			2H), 2.07 (s, 3H), 2.00 - 1.55 (m, 6H),
	N-(R-2-		1.40 - 1.30 (m, 2H). MS (ESI ⁺) m/z
	hydroxy-2-		(rel Intensity): 394.2 ($[M - H_2O + H]^+$,
• • •	phenyl)acetyl-	 NH-	100).
202	Lys-boroMet	112	1
		ОНИ	¹ H NMR (D ₂ O) δ 4.26 (s, 2H), 3.20(q,
		N N B OH	J = 7.3 Hz, 2H), 3.09 (s, 3H), 2.57 (s,
		Î Î OH	2H), 1.32 (t, $J = 7.3$ Hz, 3H). ¹³ C
			NMR (D ₂ O) δ 170.41, 46.48, 46.22,
			45.95, 38.10, 12.87. MS (ESI ⁺) m/z
	N(Et)Gly-		(rel intensity): 157.1 ($[M - H_2O + H]^+$,
203	boroSar		100).
		О Н Ш	'H NMR (D ₂ O) δ 4.54 (q, 1H, J =
		N N B OH	7.0Hz, 1H), 3.19 (s, 3H), 2.74 (s, 3H),
			2.56 (s, 2H), 1.57 (d, $J = 7.0$ Hz, 3H).
			¹³ C NMR (D_2O) δ 173.38, 54.87,
			47.24, 38.63, 33.91, 16.45. MS (ESI ⁺)
	N(Me)Ala-		m/z (rel intensity): 157.1 ([M - H ₂ O +
204	boroSar		H] ⁺ , 100).

			Hz, 1H), 4.23 (q, $J = 6.9$ Hz, 1H), 3.76
			- 3.62 (m, 2H), 2.73 (s, 3H), 2.40 -
			2.12 (m, 4H), 1.57 (d, $J = 6.9$ Hz, 3H).
	N(Me)Ala-Pro-	N Ý	MS (ESI ⁺) m/z (rel Intensity): 182.1
205	CN		([M + H] ⁺ , 100).
		0 	¹ H NMR (D ₂ O) δ 4.58 (t, $J = 6.7$ Hz,
			1H), 3.20 (s, 3H), 2.53 (s, 1H), 1.89
			(dt, J = 7.0, 8.8 Hz, 2H), 1.46 - 1.35
			(m, 2H), 0.94 (t, $J = 7.3$ Hz, 1H). ¹³ C
			NMR (D_2O) δ 173.97, 50.49, 47.64,
			38.70, 34.47, 20.01, 15.32. MS (ESI ⁺)
			m/z (rel intensity): 171.1 ([M - H ₂ O +
206	Nva-boroSar		H] ⁺ , 100).
		\$	¹ H NMR (D ₂ O) δ 4.46 (t, J = 7.2 Hz,
			1H), 4.37 (dd, $J = 8.4$, 4.7 Hz, 1H),
		○⇒) H II (ou	2.98 (t, <i>J</i> = 7.3 Hz, 2H), 2.77 (dd, <i>J</i> =
		HN I N BOH	7.8, 6.9 Hz, 1H), 2.55 (t, $J = 7.2$ Hz,
		⊎ = ⊓ ы	1H), 2.42 (dd, $J = 8.3$, 6.9 Hz, 2H),
			2.08 (s, 3H), 1.95 - 1.55 (m, 6H), 1.50
			- 1.30 (m, 2H). MS (ESI) m/z (rel
	pGlu-Lys-	NH ₂	Intensity): $371.2 ([M - H_2O + H])^2$,
207	boroMet	~	
		O NH ₂	¹ H NMR (D_2O) δ 7.45 - 7.31 (m, 5H),
			4.56 (m, 1H), 4.29 (dd, $J = 7.2, 6.7$
			Hz, 1H), 3.34 - 3.14 (m, 2H), 3.00 -
			2.80 (m, 1H), 2.50 - 2.28 (m, 2H), 2.00 - 1.80 (m, 2H) - 1.44 (d $L = 7.2$
			2.00 - 1.80 (m, 211), 1.44 (u, $J - 7.2$
	Phe-Ala-	6 011	$(ESI^{+}) m/z$ (rel Intensity): 347.3 (IM -
208	boroGln		(LSF) m/2 (for intensity). 547.5 ([W -
200	borodin		¹ H NMR (D ₂ O) δ 7.45 - 7.21 (m 5H)
			4.95 (a I = 6.7 Hz 1H) 4.29 (t I = 1.27 Hz 1H)
			7 2Hz 1H) 3 99 - 3 95 (m 1H) 3 71 -
		NH ₂ S B-OH	3.66 (m, 1H), 3.50 - 3.43 (m, 1H), 3.34
		но	- 3.09 (m. 2H), 2.21 - 2.15(m. 3H).
			1.90 - 1.85 (m, 1H), 1.39 (d, $J = 6.7$
	Phe-Ala-S-		Hz, 3H). MS (ESI ⁺) m/z (rel Intensity):
209	boroPro		332.4 ([M - H ₂ O + H] ⁺ , 100).
		0	¹ H NMR (D ₂ O) δ 7.52 - 7.35 (m, 5H),
			4.27 (t, J = 7.6 Hz, 1H), 3.26 (d, J =
			8.0Hz, 2H), 2.90 (q, J = 7.5 Hz, 1H),
		NH ₂ ÓH	1.07 (d, $J = 7.5$ Hz, 3H). MS (ESI ⁺)
			m/z (rel intensity): 437.3 ([2 × (M -
			$H_2O) + H]^+$, 65), 219.2 ([M - H_2O +
210	Phe-boroAla		H] ⁺ , 100).

		٥	¹ H NMB (D O) $\&$ 7.45 7.28 (m 5H)
			$\frac{1}{100} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
			4.20 (t, $J = 7.4$ Hz, 1H), 3.20 (d, $J =$
			7.4 Hz, 2H), 2.74 (d, <i>J</i> = 16.9 Hz, 1H),
			2.55 (d, $J = 16.9$ Hz, 1H). MS (ESI ⁺)
			m/z (rel Intensity): 205.2 ([M - H ₂ O +
			H_{1}^{+} , 100), 409.2 ([2 x (M - H ₂ O) +
211	Phe-boroGly		H] ⁺ , 60).
	-	НО ОН	35
		O B	
212	Phe-boroLeu	NH ₂	
	The conclus		¹ H NMP (D O): § 7.50 7.25 (m 2H)
		O B OH	H NMR (D_2O) : 0 /.30 - /.35 (m, 3H),
			7.35 - 7.20 (m, 2H), 4.21 (dd, J = 8.4,
			6.8 Hz, 1H), 3.26 - 3.11 (m, 2H), 2.72
		NH ₂	(dd, J = 8.5, 6.2 Hz, 1H), 1.38 - 1.24
		~	(m, 2H), 1.09-1.01 (m, 2H), 0.80 (t, J
			= 7.2 Hz, 3H). MS (ESI ⁺) m/z (rel
			intensity): 493.3 ([2 × (M - $H_2O)$ +
			H^{+}_{1} , 93), 287.1 ([M + Na] ⁺ , 4), 247.1
213	Phe-boroNya		$(IM - H_2O + H)^+$ 100)
210	1 10-00101.1.0	110 011	$([W - H_2O + H_1], 100).$
		O ^{HU} B ^{OH}	¹ H NMK (D_2O) 0 /.45 - /.25 (m, δn),
			7.15 - 7.05 (m, 2H), 4.19 (t, $J = 7.7$
			Hz, 1H), 3.22 - 3.05 (m, 3H), 2.87 (dd,
		NH ₂	J = 13.9, 5.8 Hz, 1H), 2.59 (dd, $J =$
		·	13.9, 10.2 Hz, 1H). MS (ESI ⁺) <i>m/z</i>
			(rel Intensity): 295.1 ($[M - H_2O + H]^+$,
			100), 589.3 ([2 x (M - H ₂ O) + H] ⁺ ,
214	Phe-boroPhe		30).
		НО	34
		O B OH	
215	Phe-boroPro	NH ₂	
		0	¹ H NMR (D ₂ O) δ 7 42 - 7 30 (m 5H)
		Ŭ ou	4.77 (hr 1H) $3.35 - 3.17$ (m 2H)
		N B OH	2.65 (c) $2H$) 2.42 (c) $2H$) ^{13}C NMP
		NH₂ I I NH₂ OH	2.03 (S, 3H), 2.42 (S, 2H). C NMR
			(D_2O) 8 172.77, 135.31, 132.13,
			131.92, 130.99, 51.68, 47.46, 39.91,
			38.24. MS (ESI ⁺) m/z (rel Intensity):
216	Phe-boroSar		219.1 ($[M - H_2O + H]^+$, 100).
		0	See Supplementary Note 2
		NH ₂	
217	Phe-Pro-CN	N	

		0	¹ H NMR (D ₂ O) δ 4.21 (t, J = 7.5 Hz,
		H L A	1H), 4.13 (s, 2H), 3.85 (dd, $J = 14.5$,
			8.1 Hz, 1H), 3.64 - 3.40 (m, 5H), 3.10
		HN HO	(t, J = 8.1 Hz, 1H), 2.65 - 2.59 (m,
			1H). 2.33 - 2.26 (m, 1H), 2.13 - 1.90
		ОН	(m, 3H), 1.80 - 1.75 (m, 1H). MS
			(ESI^+) m/z (rel Intensity): 224.5 ([M -
			$H_2O + H_1^+$, 70), 242.5 ($[M + H_1]^+$,
218	PHX1149		100).
		0 •	¹ H NMR (D ₂ O) δ 4.41 (t, J = 7.1 Hz,
		Н Д Д ОН	1H). $3.55 - 3.40$ (m, 2H), 3.04 (q, $J =$
			7.5 Hz, 1H), 2.54 - 2.41 (m, 1H), 2.24
		ОН ОН	- 2.07 (m. 3H), 1.23 (d, $J = 7.5$ Hz,
			3H). MS (ESI ⁺) m/z (rel intensity):
			$337.2 ([2 \times (M - H_2O) + H]^+, 100),$
219	Pro-boroAla		$169.2 ([M - H_2O + H]^+, 43).$
		0	¹ H NMR (D ₂ O) δ 4.36 (dd, $J = 7.6$,
		Н ∭ ~ ОН	7.14 Hz. 1H). 3.50 - 3.30 (m, 2H),
			2.47 (d, $J = 16.9$ Hz, 1H) 2.40 (d, $J =$
		ОН ОН	16.9 Hz, 1H), 2.82 - 2.37 (m, 3H),
			2.11 - 1.83 (m, 2H). MS (ESI^+) m/z
			(rel Intensity): 155.1 $([M - H_2O + H]^+,$
220	Pro-boroGly		100), 173.2 $([M + H]^+, 75)$.
		НО, ДОН	¹ H NMR (D ₂ O) δ 4.28 (dd, J = 7.8, 6.9
			Hz, 1H), 3.38 - 3.28 (m, 2H), 2.90 (dd,
			J = 9.0, 6.6 Hz, 1H), 2.35 (m, 1H),
			2.03 - 1.90 (m, 3H), 1.53 - 1.25 (m,
			3H), 0.85 - 0.79 (m, 7H). MS (ESI ⁺)
			m/z (rel intensity): 211.0 ([M - H ₂ O +
			$H]^{+}$, 80), 421.2 ([2 x (M - H ₂ O) + H] ⁺ ,
221	Pro-boroLeu		100).
		_H0、OH	¹ H NMR (D ₂ O): δ 4.35 (t, <i>J</i> = 7.7 Hz,
			1H), 3.43 - 3.35 (m, 2H), 2.91 (t, J =
			7.5 Hz, 1H), 2.43 - 2.04 (m, 4H), 1.57
		NH H	- 1.49 (m, 2H), 1.37 - 1.26 (m, 2H),
			0.88 (t, $J = 7.2$ Hz, 3H). MS (ESI ⁺)
			m/z (rel intensity): 589.5 ([3 \times (M -
			$H_2O) + H]^+$, 3), 393.3 ([2 × (M - H ₂ O)
			+ H] ⁺ , 56), 197.2 ([M - H ₂ O + H] ⁺ ,
222	Pro-boroNva		100).
		/NH	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			4.28 (dd, J = 8.1, 7.2 Hz, 1H), 3.45 -
			3.36 (m, 2H), 3.23 (dd, J = 10.1, 6.2
		ОНО ВОН	Hz, 1H), 2.97 (dd, J = 14.0, 6.1 Hz,
			1H), 2.85 (dd, <i>J</i> = 14.0, 10.1 Hz, 1H),
223	Pro-boroPhe		2.36 - 2.20 (m,1H) 2.06 - 1.90 (m,

			3H). MS (ESI ⁺) m/z (rel Intensity):
			245.1 ([M - $H_2O + H]^+$, 100), 263.1
			$([M + H]^+, 40).$
		н о но	34
		N B-OH	
		N-	
224	Pro-boroPro		
		0	¹ H NMR (D ₂ O) δ 4.85 (br. 1H), 3.51 -
		H II ~ OH	3 40 (m 2H) 3 16 (s 3H) 2 58 (s
			2H), 2.57 - 2.04 (m, 4H), ¹³ C NMR
		∖ о́н	(D_2O) δ 173 06 58 48 49 23 46 49
			$(B_{2}C)$ = 115.00, 50.10, 15.25, 10.15, 38.68 31.06 26.20 MS (ESI ⁺) $m/7$
			(rel intensity): $169.2 \text{ (IM - H_2O + H]}^+$
225	Pro-boroSar		(100)
	110 0010541	0	42
			72
	Py(D)AlaboroP	N H H H H H	
226	ro	HO	
			¹ H NMR (D_2O) δ 4.63 (dd, $J = 8.4, 5.6$
		0 N N N N N N N N N N N N N N N N N N N	Hz, 1H), 4.39 (dd, $J = 8.3$, 5.0 Hz,
			1H), 3.70 (dd, $J = 9.2$, 8.2 Hz, 1H),
			5.46 - 5.58 (m, 2H), 2.57 (dd, $J = 10.7$,
			0.7 Hz, 1H, $2.52 - 2.45 (m, 1H), 2.42 = 2.26 (m, 2H), 2.04 = 1.82 (m, 6H)$
			-2.30 (m, 311), $2.04 - 1.83$ (m, 011), 1.67 - 1.60 (m, 111) MS (ESI ⁺) m/z
			(ral Intensity): 200 1 (IM $H_{*}O + H^{+}$
	pyro-Glu-		(1cf intensity). 209.1 ($[M - H_2O + H]$, 90) 227.1 ($[M + H]^+$ 25) 417.2 ([2 x
227	boroPro		$(M - H_2O) + H_1^+ + 100)$
	0010110	0	1 H NMP (D-O) 8.4.18 (dd. $I = 8.6.4.4$
			Hz 1H) 3 12 (s 3H) 2 60 - 2 37 (m
			5H) 2 12 - 2 06 (m 1H) MS (FSI ⁺)
	PyroGlu-	ОН	m/z (rel Intensity): 182.2 (IM - H ₂ O +
228	boroSar		H_{1}^{+} 100)
		NH-	¹ H NMR (D ₂ O) δ 4 44 (t J = 7.2 Hz
			1H), 4.38 (dd. $J = 4.8$, 8.9 Hz, 1H)
			2.99 (t, $J = 7.5$ Hz 2H) 2.77 (dd $J =$
			9.0, 6.6 Hz, 1H), 2.57 - 2.50 (m. 1H)
			2.43 (dd, $J = 8.1$, 7.3 Hz, 2H), 2.10 -
			1.99 (m, 1H), 1.87 - 1.29 (m, 10H),
			0.90 (d, J = 4.0 Hz, 3H), 0.88 (d, 3H, J)
			= 4.0 Hz). MS (ESI ⁺) m/z (rel
	PyroGlu-Lys-		intensity): 353.2 ($[M - H_2O + H]^+$,
229	boroLeu		100).

		н О	¹ H NMR (D ₂ O) δ 4.83 (br, 1H), 4.67
		O N N	(dd, J = 8.9, 7.7 Hz, 1H), 3.76 - 3.61
		Ň,	(m, 2H), 2.67 - 2.64 (m, 1H), 2.52 -
			2.45 (m, 2H), 2.38 - 2.30 (m, 2H),
		N	2.24 - 2.11 (m, 3H). MS (ESI ⁺) m/z
	PyroGlu-Pro-		(rel Intensity): 208.0 ([M + H] ⁺ , 75),
230	CN		415.0 ([2M + H] ⁺ , 100).
		F	
		F,	46
		F O F	
		H	
		Ö	
231	R-Gly-Pro-CN	Ň	
			1 H NMR (D ₂ O) δ 3.88 (s, 2H), 3.00 (q,
		N OH	J = 7.5 Hz, 1H), 2.76 (s, 3H), 1.18 (d,
			J = 7.5 Hz, 3H). MS (ESI ⁺) m/z (rel
		OH	intensity): 285.1 ([2 \times (M - H_2O) +
			$H]^{+}$, 100), 143.1 ($[M - H_2O + H]^{+}$,
232	Sar-boroAla		16).
		Q	¹ H NMR (D ₂ O) δ 3.87 (s, 2H), 2.38 (s,
		N OH	2H), 2.76 (s, 3H). MS (ESI ⁺) m/z (rel
		H I	Intensity): 129.1 ($[M - H_2O + H]^+$,
233	Sar-boroGly	ОН	100), 147.1 ([M + H] ⁺ , 90).
		НО, ДОН	35
234	Sar-boroLeu	Ĥ	
			¹ H NMR (D ₂ O) δ 4.01 (t, $J = 6.4$ Hz,
			1H), 3.90 (s, 2H), 3.01 (t, <i>J</i> = 7.3 Hz,
			1H), 2.77(s, 3H), 1.62 (br, 1H), 1.53
		н	(m, 1H), 1.40 - 1.29 (m, 2H), 0.90 (dd,
			J = 4.8, 4.6 Hz, 3H). MS (ESI ⁺) m/z
			(rel Intensity): 171.0 ($[M - H_2O + H]^+$,
			90), 189.0 ([M + H] ⁺ , 50), 341.3 ([2 x
235	Sar-boroNva		$(M - H_2O) + H]^+$, 100).
		HOLOH	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			3.82 (dd, J = 15.8, 7.2 Hz, 1H), 3.41
			(dd, <i>J</i> = 9.9, 7.0 Hz, 1H), 2.96 (dd, <i>J</i> =
		н	13.8, 7.0 Hz, 1H), 2.84 (dd, $J = 13.8$,
			9.9 Hz, 1H), 2.57 (s, 3H). MS (ESI^{+})
			$\mathit{m/z}$ (rel Intensity): 219.1 ([M - H_2O +
236	Sar-boroPhe		$H]^{+}$, 100), 237.1 ($[M + H]^{+}$, 30).

		0	¹ H NMR (D ₂ O) δ 4.00 (s, 2H), 3.45 -
		H. L	3.35 (m, 1H), 3.12 - 3.05 (m, 1H),
		\sim \sim \sim \sim	2.78 (s, 2H), 2.14 - 1.94 (m, 3H), 1.76
		HO	- 1.70 (m, 1H). MS (ESI ⁺) m/z (rel
			Intensity): 169.1 $([M - H_2O + H]^+,$
237	Sar-boroPro	011	100).
		0	1 H NMR (D ₂ O) δ 4.25 (s, 2H), 3.08 (s,
		N OH	3H), 2.81 (s, 3H), 2.56 (s, 2H). ¹³ C
		· · · N B ↓	NMR (D2O) & 170.23, 48.52, 46.17,
		OH	38.19, 35.72. MS (ESI ⁺) <i>m/z</i> (rel
			intensity): 143.1 ($[M - H_2O + H]^+$,
238	Sar-boroSar		100).
		0	¹ H NMR (D ₂ O) δ 4.83 (dd, J = 6.7, 4.8
			Hz, 1H), 4.08 (s, 2H), 3.70 - 3.62 (m,
		\sim N $>$	1H), 3.54 - 3.45 (m, m, 1H), 2.82 (s,
			3H), 2.37 - 2.13 (m, 4H). MS (ESI ⁺)
		Ň	m/z (rel Intensity): 168.1 ([M + H] ⁺ ,
239	Sar-Pro-CN		100), 335.2 ([2M + H] ⁺ , 25).
		0	¹ H NMR (D ₂ O) δ 4.00 - 3.95 (m, 1H),
			3.85 - 3.70 (m, 2H), 2.85 - 2.75 (m,
		HO I N B	1H), 1.05 - 0.95 (m, 3H). MS (ESI ⁺)
		NH ₂ OH	$\textit{m/z}$ (rel intensity): 317.2 ([2 \times (M -
			$H_2O) + H]^+$, 100), 159.2 ([M - $H_2O +$
240	Ser-boroAla		H] ⁺ , 39).
		0	¹ H NMR (D ₂ O) δ 4.14 (dd, J = 5.0, 4.8
			Hz, 1H), 3.90 - 4.03 (m, 2H), 2.83 (d,
			<i>J</i> = 16.9 Hz, 1H), 2.76 (d, <i>J</i> = 16.9 Hz,
			1H). MS (ESI ⁺) m/z (rel Intensity):
			145.1 ($[M - H_2O + H]^+$, 100), 289.2 ($[2$
241	Ser-boroGly		$x (M - H_2O) + H]^+, 50).$
		OHO B OH	35
		HO	
242	Ser-boroLeu	NH ₂	
		_H0OH	¹ H NMR (D ₂ O): δ 4.14 (dd, $J = 5.9$,
			4.4Hz, 1H), 3.96 (ddd, <i>J</i> = 22.5, 12.3,
		но	4.4 Hz, 2H), 2.95 (t, <i>J</i> = 7.4 Hz, 1H),
		NH ₂ H	1.59 - 1.51 (m, 2H), 1.41 - 1.27 (m,
			2H), 0.90 (t, $J = 7.3$ Hz, 3H). MS
			(ESI ⁺) m/z (rel intensity): 541.3 ([3 ×
			$(M - H_2O) - H_2O + H]^+$, 4), 373.2 ([2 ×
			$(M \ \text{-} \ H_2 O) \ + \ H]^+ , \ 100), \ 187.3 \ ([M \ \text{-}$
243	Ser-boroNva		$H_2O + H]^+$, 30).

		HOLOH	See Supplementary Note 2
		но	
244	Ser-boroPhe	NH₂	
		10	¹ H NMR (D ₂ O) $\delta A 3A (dd I = 6.7.4.8)$
		Q [™] B∼OH	H ₇ 1H) 40 (dd $I = 125$ 41 H ₇
			1H) 3.82 (dd $I = 12.5, 7.0$ Hz 1H)
		HO \tilde{I} N \rangle	3.67 - 3.60 (m 1H) - 3.49 - 3.42 (m
		NH ₂	1H) 3.05 (dd $I = 11.2$ 6.9 Hz 1H)
			2 10 - 1.89 (m 3H) + 1.72 - 1.62 (m
			1H) MS (ESI ⁺) m/z (rel Intensity):
			$185 1 ([M - H_2O + H]^+ 100) 369 2 ([2])$
245	Ser-boroPro		$x (M - H_2O) + H_1^+ 60)$
		0	1 H NMR (D ₂ O) δ 4 71 (dd I = 5.6.5.0
			H_{7} (H) 40 (m 2H) 3 22 (s 3H)
		HONNB	2.51 (s 2H) 13 C NMR (D ₂ O) δ
		NH ₂ OH	171 90 61 46 52 65 47 35 38 81
			MS (FSI^{+}) m/z (rel intensity): 159.0
246	Ser-boroSar		$(IM - H_2O + H)^+$ 100)
	Ser corosa	0	1 H NMR (D ₂ O) δ 4 87 (dd J = 7.5, 5.3
		, Å	Hz 1H) 445 (dd $J = 5.3$ 45 Hz
		HO	1H) 4 10 - 3 97 (m 2H) 3 79 - 3 69
		NH ₂	(m, 2H), 2.43 - 2.12 (m, 4H) MS
		N	$(ESI^+) m/z$ (rel Intensity): 184.1 (IM +
247	Ser-Pro-CN		H_{1}^{+} , 100), 367.2 ([2M + H] ⁺ , 30).
			¹ H NMR (D_2O) δ 7.41 - 7.27 (m. 5H).
			4.77 (m, 1H), 4.64 (m, 1H), 4.50 (m,
		но	1H), 4.17 (dd, $J = 6.9$, 6.6 Hz, 2H),
			3.92 - 3.88 (m, 2H), 3.13 - 3.03 (m,
			2H), 2.33 (m, 1H), 2.03 - 2.00 (m,
			1H), 1.85 (m, 2H), 1.41 (d, J= 6.9 Hz,
			3H), 0.87(d, J = 6.5 Hz, 6H). LCMS
	Ser-Val-Phe-		(ESI+) <i>m/z</i> , (rel Intensity): 533.1 ([M
248	Ala-boroGln		+ H] ⁺ , 100).
		s	¹ H NMR (D ₂ O) δ 4.48 (dd, J = 9.1, 5.3
		J	Hz, 1H), 2.99 (t, J = 7.5 Hz, 2H), 2.73
			(t, J = 6.6 Hz, 1H), 2.68 - 2.50 (m,
			6H), 2.12 (s, 3H), 1.95 - 1.35 (m, 8H).
			MS (ESI ⁺) m/z (rel Intensity): 360.1
			$([M - H_2O + H]^+, 100).$
	Suc-Lys-		
249	boroMet	NH₂	
		011 0	¹ H NMP (D O) $\& 4.11 - 4.17$ (m 1H)
-----	--------------	--------------------	--
			$\Pi \text{ INVIC} (D_2 O) O + 11 - 7.17 (m, 117),$ $2 \circ A (A I - 65 \text{ Uz} 1\text{H}) 2 \circ 7 (a I - 7.17 (m, 117))$
		N B OH	5.84 (d, $J = 0.5$ Hz, 1H), 2.97 (d, $J = 7.4$ Hz, 1H), 1.20 (1 Hz, 6.5 Hz, 2H)
		I H I NH₂ OH	/.4 Hz, 1H), 1.30 (d, $J = 6.5$ Hz, 3H),
			1.18 (d, $J = 7.4$ Hz, 3H). MS (ESI)
			m/z (rel intensity): 345.2 ([2 × (M -
			$H_2O) + H]^+$, 100), 173.5 ([M - $H_2O +$
250	Thr-boroAla		H] ⁺ , 5).
		OH Q	¹ H NMR (D ₂ O) δ 4.14 (q, J = 6.4 Hz,
		L L A OH	1H), 3.83 (d, $J = 6.4$ Hz, 1H), 2.83 (d,
		N B	J = 16.9 Hz, 1H), 2.76 (d. $J = 16.9$ Hz,
		NH ₂ OH	1H) 1.28 (d. $J = 6.4$ Hz 1H) MS
			$(FSI^{+}) m/z$ (rel Intensity): 159.1 (FM -
			(131) m/2 (ref intensity). 139.1 ([W -
			$H_2O + H_1$, 100), 317.2 ([2 X (M -
251	Thr-boroGly		$H_2O) + H_1^{-}$, 75).
			35
		I I I I I	
252	Thr-boroLeu	NH₂	
_		НО ОН -	¹ H NMR (D ₂ O) δ 7 45 - 7 25 (m 5H)
		OH O B OH	$A_{11} (a_1 L = 6.4 \text{ Hz} 1 \text{H}) = 2.80 (d_1 L = 1.1)$
			4.11 (q, J = 0.4 Hz, HI), 5.80 (q, J = 0.2 Hz)
			6.2 Hz, 1H, $3.26 (ad, J = 9.8, 6.3 Hz, 100)$
		NH ₂	1H), 2.98 (dd, $J = 13.8$, 6.3 Hz, 1H),
			2.86 (dd, $J = 13.8$, 9.8 Hz, 1H), 1.26
			(d, $J = 6.4$ Hz, 3H). MS (ESI ⁺) m/z
			(rel Intensity): 249.1 ($[M - H_2O + H]^+$,
			100), 497.2 ([2 x (M - H ₂ O) + H] ⁺ ,
253	Thr-boroPhe		50).
		HO OH	34
		NHa	
254	Thr-boroPro		1
		OH O	¹ H NMR (D ₂ O) δ 4.53 (d, J = 5.8 Hz,
		OH NOR	1H), 4.26 (dt, $J = 5.8$, 6.5 Hz, 1H),
			3.26 (s, 3H), 2.57 (d, <i>J</i> = 5.2 Hz, 2H),
		NH ₂ OH	1.32 (d, $J = 6.5$ Hz, 3H). ¹³ C NMR
			(D ₂ O) & 172.01, 68.42, 55.64, 47.66,
			39.20, 20.92. MS (ESI ⁺) m/z (rel
			intensity): 173.1 ($[M - H_2O + H]^+$,
255	Thr-boroSar		100)
	- in corobui		1 H NMR (D.O) 8 4 87 (dd 1 - 75 5 4
			$H = H = \frac{1}{20} = \frac$
			Hz, 1H), 4.39 - 4.27 (m, 2H), 3.85 -
			3.69 (m, 2H), 2.44 - 2.10 (m, 4H),
			1.35 (d, $J = 6.0$ Hz, 3H). MS (ESI ⁺)
		N″	m/z (rel Intensity): 198.1 ([M + H] ⁺ ,
256	Thr-Pro-CN		100).

		Q I	¹ H NMR (D ₂ O) δ 3.81 (s, 1H), 2.96 (q,
		У Ц И ОН	J = 7.5 Hz, 1H), 1.23 (d, $J = 7.5$ Hz,
			3H), 1.15 (s, 9H). MS (ESI ⁺) m/z (rel
		NH ₂ OH	intensity): 369.2 ([2 \times (M - H_2O) +
			$H]^+$, 100), 185.2 ($[M - H_2O + H]^+$,
257	Tle-boroAla		69).
		l O	1 H NMR (D ₂ O) δ 3.70 (s, 1H), 2.77 (d,
		У Ц., ОН	<i>J</i> = 16.7 Hz, 1H), 2.67 (d, <i>J</i> = 16.7 Hz,
			1H), 1.05 (s, 9H). MS (ESI ⁺) m/z (rel
		NH ₂ OH	Intensity): 171.2 $([M - H_2O + H]^+,$
			100), 313.2 ([2 x (M - H ₂ O) + H] ⁺ ,
258	Tle-boroGly		50).
		HO	35
259	Tle-boroLeu	NH ₂	
		HO _N OH	¹ H NMR (D ₂ O): δ 3.75 (s, 1H), 2.79
			(t, J = 7.6 Hz, 1H), 1.54 - 1.47 (m,
			2H), 1.39 - 1.28 (m, 2H), 1.07 (s, 9H),
		NH₂	0.89 (t, $J = 7.2$ Hz, 3H). MS (ESI ⁺)
		-	$\textit{m/z}$ (rel intensity): 425.3 ([2 \times (M -
			$H_2O) + H]^+$, 100), 213.2 ([M - $H_2O +$
260	Tle-boroNva		H] ⁺ , 46).
		HOLDOH	¹ H NMR (D ₂ O) δ 7.45 - 7.25 (m, 5H),
			3.70 (s, 1H), 3.15 (dd, $J = 10.6$, 6.0
			Hz, 1H), 2.97 (dd, $J = 14.1$, 6.0 Hz,
		NH ₂	1H), 2.78 (dd, <i>J</i> = 14.1, 10.6 Hz, 1H),
			1.05 (s, 9H). MS (ESI ⁺) m/z (rel
			Intensity): 261.1 $([M - H_2O + H]^+,$
			100), 521.3 ($[2 \times (M - H_2O) + H]^+$,
261	Tle-boroPhe		50).
			34
262	Tle-boroPro	NH ₂	
			¹ H NMR (D ₂ O) δ 4.39 (s, 1H), 3.24 (s,
		И ЛАЛА В ОН	3H), 2.46 (d, <i>J</i> = 14.9 Hz, 2H), 1.09 (s,
			9H). ¹³ C NMR (D ₂ O) δ 172.91, 57.65,
		NH ₂ ' OH	48.09, 39.87, 37.60, 27.96. MS (ESI+)
			m/z (rel intensity): 185.2 ([M - H ₂ O +
263	Tle-boroSar		H] ⁺ , 100).

		N	47
		$\overline{\overline{\overline{z}}}$	
264	The Pro CN		
204	ne-mo-en		
			¹ H NMR (D_2O) 8 /.64 (d, $J = /.8$ Hz,
		N B OH	2H), 7.51 (d, $J = 8.1$ Hz, 2H), 7.32 -
			7.15 (m, 3H), 4.26 (t, $J = 7.6$ Hz, 1H),
		N ² M ² Off	3.38 (d, $J = 7.6$ Hz, 2H), 2.76 (q, $J =$
			7.4 Hz, 1H), 0.90 (d, $J = 7.4$ Hz, 3H).
			MS (ESI ⁺) m/z (rel intensity): 515.3
			$([2 \times (M - H_2O) + H]^+, 37), 258.1$ ([M
265	Trp-boroAla		$- H_2O + H]^+$, 100).
		Q Q	¹ H NMR (D ₂ O) δ 7.62 (d, J = 7.8 Hz,
		OH	1H), 7.54 (d, $J = 8.1$ Hz, 1H), 7.32 -
			7.18 (m, 3H), 4.26 (t, <i>J</i> = 7.1 Hz, 1H),
		HN - NH ₂ OH	3.39 (d, J = 7.1 Hz, 2H) 2.68 (d, J =
			17.0 Hz, 1H), 2.54 (d, J = 17.0 Hz,
			1H). MS (ESI ⁺) m/z (rel Intensity):
			244.1 ([M - $H_2O + H]^+$, 100), 261.1
266	Trp-boroGly		$([M + H]^+, 20).$
		HO	35
267	Trp borol ou		
207	TIP-0010Leu		
		Q ^{HO} B ^{COH}	H NMR (D_2O): 0 /.64 (d, $J = /.9$ Hz,
			1H), 7.52 (d, $J = 8.0$ Hz, 1H), $7.30 - 7.10$ (211), 4.20 (11), $L = 0.0$ (7)
			/.10 (m, 3H), 4.29 (dd, $J = 8.8, 6.7$
		HN NH ₂	Hz, 1H), $5.45 - 5.51$ (m, 2H), 2.05 (t, J
			= 5.9 Hz, 1H), 1.25 - 0.85 (m, 4H),
			0.74 (L, $J = 7.3$ Hz, 3 H). MS (ESI+)
			m/z (rel intensity): 5/1.3 ([2 × (M -
• 10			H_2O + H_1^{+} , 23), 326.2 ([M + Na] ⁺ , 6),
268	Trp-boroNva		$286.2 ([M - H_2O + H]^2, 100).$
		HN <u>NH</u> 2	¹ H NMR (D ₂ O) δ 7.63 (d, $J = 7.9$ Hz,
			1H), 7.59 (d, $J = 8.2$ Hz, 1H), 7.45 -
			7.19 (m, 6H), 6.90 - 6.80 (m, 2H),
		НО-ВОН	4.25 (dd, $J = 8.5$, 7.1 Hz, 1H), 3.45 -
			3.30 (m, 2H), 2.94 (dd, J = 10.4, 5.1
			Hz, 1H), 2.6/ (dd, $J = 13.8$, 5.1 Hz,
			1H), 2.30 (dd, $J = 13.8$, 10.4 Hz, 1H).
			MS (ESI) m/z (rel Intensity): 334.1
	m 1 N		$([M - H_2O + H]^2, 100), 667.3 ([2 x (M - H_2O + H]^2, 100))$
269	Trp-boroPhe		$- H_2O) + H]^{-}, 40).$

		HN HoN	¹ H NMR (D ₂ O) δ 7.69 (d, J = 7.8 Hz,
			1H), 7.55 (d, <i>J</i> = 8.1Hz, 1H), 7.36 (s,
			1H), 7.30 - 7.20 (m, 2H), 4.55 (dd, <i>J</i> =
		O HO OH	9.0, 5.7 Hz, 1H), 3.80 - 3.75 (m, 1H),
			3.49 (dd, <i>J</i> = 15.1, 5.6 Hz, 1H), 3.38 -
			3.06 (m, 3H), 2.09 - 2.01 (m, 3H),
			1.73 - 1.68 (m, 1H). MS (ESI ⁺) m/z
			(rel Intensity): 284.2 ($[M - H_2O + H]^+$,
270	Trp-boroPro		70), 302.2 ($[M + H]^+$, 100).
			¹ H NMR (D ₂ O) δ 7.64 - 7.20 (m, 5H),
		ОН	4.84 (dd, J = 6.6, 8.2 Hz, 1H), 3.55 -
			3.38 (m, 2H), 2.63 (s, 3H), 2.30 (s,
		$HN \sim NH_2 OH$	2H). ¹³ C NMR (D ₂ O) δ 173.25,
			138.80, 128.99, 128.08, 124.91,
			122.34, 120.37 114.79, 108.03, 51.04,
			47.60, 38.28, 28.83. MS (ESI ⁺) m/z
			(rel intensity): 258.1 ($[M - H_2O + H]^+$,
271	Trp-boroSar		100).
		HN H ₂ N	¹ H NMR (D ₂ O) δ 7.70 (d, J = 7.8 Hz,
		N N	1H), 7.57 (d, <i>J</i> = 8.0 Hz, 1H), 7.34 (s,
			1H), 7.33 - 7.18 (m, 2H), 4.59 (dd, <i>J</i> =
			9.1, 5.7 Hz, 1H), 3.56 - 3.34 (m, 3H),
			2.76 - 2.71 (m, 1H), 2.22 - 2.13 (m,
			2H), 1.88 - 1.83 (m, 1H), 1.68 - 1.64
			(m, 1H). MS (ESI ⁺) m/z (rel Intensity):
			283.1 $([M + H]^+, 100), 305.1 ([M +$
272	Trp-Pro-CN		Na] ⁺ , 35).
		0	¹ H NMR (D ₂ O) δ 7.17 (d, $J = 8.5$ Hz,
			2H), 6.89 (d, <i>J</i> = 8.5 Hz, 2H), 4.15 (t,
			J = 7.3 Hz, 1H), 3.14 - 3.10 (m, 2H),
		HO HO	2.83 (q, J = 7.4 Hz, 1H), 1.01 (d, J =
			7.4 Hz, 3H). MS (ESI ⁺) m/z (rel
			intensity): 469.2 ([2 × (M - $H_2O)$ +
			$H]^+$, 67), 235.2 ($[M - H_2O + H]^+$,
273	Tyr-boroAla		100).
		O 11	¹ H NMR (D ₂ O) δ 7.15 (d, $J = 8.1$ Hz,
			2H), 6.89 (d, $J = 8.1$ Hz, 2H), 4.14 (t,
			J = 7.3 Hz, 1H), 3.10 (d, $J = 7.3$ Hz,
		HO HO	2H), 2.73 (d, $J = 16.9$ Hz, 1H), 2.60
			(d, $J = 16.9$ Hz, 1H). MS (ESI ⁺) m/z
			(rel Intensity): 221.1 ($[M - H_2O + H]^+$,
			100), 441.2 ($[2 \times (M - H_2O) + H]^+$,
274	Tyr-boroGly		60).

		HO B OH	35
275	Tyr-boroLeu	HO NH ₂ H	
		_но~он	¹ H NMR (D ₂ O): δ 7.15 (d, $J = 8.4$ Hz,
			2H), 6.88 (d, $J = 8.4$ Hz, 2H), 4.15
			(dd, J = 9.3, 6.4 Hz, 1H), 3.12 (ddd, J)
		HO NH ₂	= 42.0, 13.7, 6.4 Hz, 2H), 2.06 (ad, J = 93.55 Hz, 1H), 1.33 - 1.18 (m, 2H)
			1.04 - 0.94 (m, 2H), 0.80 (t, $J = 7.1$
			Hz, 3H). MS (ESI ⁺) m/z (rel intensity):
			525.3 ([2 × (M - H ₂ O) + H] ⁺ , 65),
276	Tyr-boroNva		263.2 ($[M - H_2O + H]^+$, 100).
		OHO B-OH	¹ H NMR (D ₂ O) & 7.31 - 7.20 (m, 3H),
			7.17 (d, <i>J</i> = 8.4 Hz, 2H), 7.02 (d, <i>J</i> =
			6.9 Hz, 2H), 6.92 (d, $J = 8.4$ Hz, 2H),
		HO NH ₂	4.13 (dd, $J = 8.8, 6.9$ Hz, 1H), 3.20 - 3.00 (m 3H) 2.84 (dd $J = 13.9, 5.2$
			Hz, 1H), 2.51 (dd, $J = 13.9$, 10.7 Hz,
			1H). MS (ESI ⁺) m/z (rel Intensity):
277	Tyr-boroPhe		311.1 ($[M - H_2O + H]^+$, 100).
		0 И И В О Н	34
		N N	
278	Tyr-boroPro	HO NH ₂	
		0	¹ H NMR (D ₂ O) δ 7.17 (d, $J = 8.3$ Hz,
		ОН	2H), 6.90 (d, $J = 8.3$ Hz, 2H), 4.72
			(dd, J = 6.6, 9.4 Hz, 1H), 3.29 - 3.09
		HO HO	(m, 2H), 2.69 (s, 3H), 2.42 (s, 2H). ¹³ C
			NMR (D_2O) δ 172.81, 158.05, 133.59,
			12/.08, $118.5/$, $51.//$, $4/.55$, 58.20 . MS (FSI ⁺) m/z (rel intensity): 235.2
279	Tyr-boroSar		$([M - H_2O + H]^+, 100).$
	-	0	¹ H NMR (D ₂ O) δ 7.21 (d, J = 8.4 Hz,
			2H), 6.92 (d, $J = 8.4$ Hz, 2H), 4.46
			(dd, J = 9.3, 5.4 Hz, 1H), 3.42 - 3.25
		HO	(m, 2H), 3.10 (dd, $J = 13.5$, 9.7 Hz,
		N Ś	1H), $2.72 - 2.69$ (m, 1H), $2.25 - 2.17$ (m, 2H), $1.97 - 1.92$ (m, 1H), 1.79
			(iii, 211), $1.97 - 1.92$ (iii, 111), $1.79 - 1.73$ (m, 1H). MS (ESI ⁺) m/z (rel
			Intensity): $260.1 ([M + H]^+, 100),$
280	Tyr-Pro-CN		519.2 ([2M + H] ⁺ , 75).

		0	48
		↓↓↓↓ _он	
		N' B' H I	
281	Val-boroAla	NH ₂ OH	
		I 0	¹ H NMR (D ₂ O): δ 3.73 (d, <i>J</i> = 6.5 Hz,
		Д Д Д ОН	1H), 2.77 (d, J = 16.7 Hz, 1H), 2.66
		→ N B. H H I	(d, J = 16.7 Hz, 1H), 2.15 (dt, J = 6.6,
		NH ₂ OH	6.5 Hz, 1H), 0.98 (d, <i>J</i> = 6.6 Hz, 6H).
			¹³ C NMR (D ₂ O) δ 172.36, 61.30,
			32.55, 30.90, 20.19, 19.68. MS (ESI ⁺)
			<i>m/z</i> (rel intensity): 313.2 ([2 x (M -
			H_2O) + H_2^{+} , 59), 157.2 ([M - H_2O +
282	Val-boroGly		H] ⁺ , 100).
	-	НО ОН	¹ H NMR (D ₂ O) δ 3.82 (d, J = 6.2 Hz,
			1H), 2.90 (dd, $J = 9.1$, 6.7 Hz, 1H),
			2.28 - 2.17 (m, 1H), 1.62 - 1.33 (m,
		H H	3H), 1.04 (d, $J= 2.8$ Hz, 3H), 1.02 (d,
		1112	J = 2.8 Hz, 3H), 0.91 (d, $J = 4.0$ Hz,
			3H), 0.89 (d, $J = 4.0$ Hz, 3H). LCMS
			(ESI^{+}) m/z (rel intensity): 213.1 ([M -
			$H_2O + H_1^+, 90), 425.2 ([2 x (M - H_2O)])$
			+ H] ⁺ , 100). 637.4 ([3 x (M - H ₂ O) +
283	Val-boroLeu		H] ⁺ , 60).
		НО ОН	¹ H NMR (D ₂ O): δ 3.81 (d. <i>J</i> = 6.2 Hz.
			1H), 2.83 (t, $J = 7.5$ Hz, 1H), 2.25 -
			2.16 (m, 1H), 1.56 - 1.48 (m, 2H),
		H H	1.41 - 1.28 (m, 2H), 1.04 - 1.00 (m,
		1112	6H), 0.89 (t, $J = 7.3$ Hz, 3H). MS
			$(ESI^{+}) m/z$ (rel intensity): 595.5 ([3 ×
			$(M - H_2O) + H_1^+, 6), 397.3 (f2 \times (M -$
			$(12^{-1})^{-1}$ $(12^$
284	Val-boroNya		H_{2}^{+} (1.1 H_{2}^{-} (1.1 H_{2
	, al colorita	НО ОН .	1 H NMR (D ₂ O) & 7.45 - 7.25 (m. 5H)
			3.71 (d I = 5.6 Hz 1H) 3.15 (dd I =
			10.8, 6.1 Hz, 1H), 2.98 (dd $J = 14.1$
		L L H	61 Hz 1H) 2.78 (dd $I = 14.1, 10.8$
		INH ₂	Hz 1H) 2 13 (a $J = 6.6$ Hz 1H) 1 01
			(d J = 6.6 Hz 3H) 0.98 (d J = 6.6 Hz 3H)
			(a, $v = 0.0$ Hz, 5H), 0.70 (a, $v = 0.0$ Hz 3H) MS (ESI ⁺) m/z (rel
			Intensity): 247.1 (IM - H-O + H1 ⁺
			100) 493 2 ([2 x (M - H_2O) + H])
285	Val-horoPhe		(100), (100),
203	val-borophie		50).

		HO	34
		I O B∽OH	-
286	Val-boroPro	NH ₂	
		НО	¹ H NMR (D ₂ O) δ 4.25 (d, J = 7.1 Hz.
		I S B∽OH	1H) 4 05 - 3 95 (m 1H) 3 70 - 3 60
			(m, 1H) 3.55 - 3.45 $(m, 1H)$ 2.35 -
		$\langle N \rangle$	(m, 111), 5.55 = 5.45 (m, 111), 2.55 = 1.80 (m, 5H) 1.07 = 1.00 (m, 6H) MS
	V11 D	NH ₂	(1.80 (m, 51), 1.07 - 1.00 (m, 61). MS
	Val-boroPro		(ESI) m/z (rel intensity): 231.1 ([M +
287	thioxoamide		H] ⁺ , 100).
			¹ H NMR (D ₂ O) δ 4.42 (d, $J = 6.5$ Hz,
			2H), 3.23 (s, 3H), 2.57 (d, <i>J</i> = 14.8 Hz,
			1H), 2.50 (d, J = 14.8 Hz, 1H), 2.32
		NH ₂ OH	(dq, J = 6.9, 6.5 Hz, 1H), 1.05 (d, J =
			6.9 Hz, 3H). ¹³ C NMR (D ₂ O) δ
			173.75, 51.59, 47.62, 38.74, 26.13,
			10.76 MS (ESI ⁺) m/z (rel intensity):
288	Val-boroSar		$171.1 (IM H_{0} + H)^{+} 100)$
200	var-borosar		$\frac{1}{1111111111111111111111111111111111$
			¹ H NMR (D_2O) 8 4.45 (d, $J = 7.4$ Hz,
			2H), 3.55 - 3.30 (m, 5H), 2.30 - 2.20
			(m, 1H), 1.07 (d, $J = 6.7$ Hz, 3H), 1.00
			$(d, J = 6.9 \text{ Hz}, 3\text{H}). \text{ MS} (\text{ESI}^+) m/z \text{ (rel})$
	Val-boroSar		intensity): 205.2 ([M + H] ⁺ , 36), 187.1
289	thioxoamide		$([M - H_2O + H]^+, 100).$
		O, NH ₂	¹ H NMR (D ₂ O) δ 7.43 - 7.30 (m, 5H),
			4.70 (m, 1H), 4.46 (q, <i>J</i> = 7.2 Hz, 1H),
			3.77 (d, $J = 5.7$ Hz, 1H), $3.13 - 2.80$
			(m, 3H), 2.60 - 2.40 (m, 1H), 2.31 -
		H_2N N N N B OH	2.15 (m. 2H), 1.90 - 1.85 (m. 1H).
			1.39 (d $J = 7.2$ Hz 3H) 1.0 (d $J =$
			30 Hz 3H) 0.98 (d $I = 30 Hz$ 3H)
	Val-Phe Ala		MS (ESI ⁺) $m/7$ (rel Intensity): 446.2
200	val-file-Ala-		$(M + H O + H)^+$ 100)
290		-	$(1^{1} - 1^{1} - 1^{1} - 1^{1}), 100).$
			49
291	Val-Pro-CN	N″	

Supplementary Table 7 Evaluation of boronic acid-based ARI-2408 and ARI-2243 compared with clinically used DPP4 inhibitors in enzyme substrate assays for DPP4, DPP8, and DPP9. Monkey toxicity data for ARI-2408 and ARI-2243 is described in detail in **Supplementary Note 1**. The selectivity (for DPP4 over DPP8 and DPP9) and safety of compound ARI-2408, but not compound ARI-2243 or the clinically used drugs vildagliptin and saxagliptin, compares well to sitagliptin.

		IC 50		Fold Selectivity		Monkey	
Compound	Ki (DPP IV)	DPPIV	DPP8	DPP9	DPP8	DPP9	Adverse Events
ARI-2408	0.9 nM	1.7 nM	12 <i>µ</i> M	11 <i>µ</i> M	7,000X	6,500X	No
ARI-2243	27 pM	0.7 nM	3.8 nM	8.4 nM	5.4X	12X	Yes
Vildagliptin	27 nM	58 nM	140 nM	110 nM	2.4X	1.9X	Yes
Sitagliptin	9 nM	18 nM	48 mM	10 mM	2,700X	560X	No
Saxagliptin	1.3 nM	1.0 nM	197 nM	54 nM	200X	60X	Yes

Supplementary Table 8 Safety profile of ARI-2408 and ARI-2243 compared to sitagliptin (Januvia) in monkeys. *Januvia NDA (21-995) Review, 2006; Section 2.6.6.8: pp. 104-111

Proportion of Animals with observed Adverse Events (e.g., skin lesions, edema, or death)						
Dose	ARI-2243	ARI-2408 Sitaglipt				
(mg/kg)	Single	Single Repeat		Repeat*		
0.3	5/12	-	-			
1.0	11/12	-	-	-		
3.0	9/12	-	-	-		
90.0	-	-	-	-		
100.0	-	0/4	0/4	0/6		
300.0	-	0/6	-	-		
500.0	-	-	-	-		

Supplementary Note 1

Detailed compound ARI-2408 monkey toxicity conclusions:

Treatment with a single dose of compound ARI-2408 at 300 mg/kg or seven consecutive days of dosing at 100 mg/kg, did not result in any test article-related alterations in clinical observations or measured clinical chemistry parameters. Absolute neutrophil counts (ANE) and white blood cell (WBC) counts were increased in most animals at both doses at 24 hours postdose. The extent of the increase at 24 hours was similar between doses. Altered hematology parameters had returned to predose levels by Day 7. Notably, ARI-2408 exposure under both dosing regimens did not result in clinical observations of edema or swelling of the extremities in any animal, including four animals which had previously been dosed with compound ARI-2243 and observed to have edema and swelling.

Detailed compound ARI-2243 monkey toxicity conclusions:

This study evaluated the toxicity of compound ARI-2243 when administered as daily oral doses to cynomolgous monkeys for two days at dose levels of 0 (vehicle control), 0.3, 1.0 and 3.0 mg/kg/day. Parameters which were evaluated in all animals to examine test article-related effects were: daily and detailed clinical observations, body weights/body weight change, food consumption, hematology, coagulation, and clinical chemistry. Physical examinations, ophthalmic examination, urinalysis, and electrocardiograms were performed pretest, but these parameters were not evaluated following dosing and so cannot be used to determine test article-related toxicity (except *ad hoc* physical examinations in one monkey when it was in poor health). In addition, plasma samples were collected for determination of whole blood concentrations of compound ARI-2243. Monkeys tolerated two daily doses of compound ARI-2243 at 0.3

mg/kg/day, but one monkey died after a single dose at 1 mg/kg and another was euthanized due to toxicity 10 days after a single dose at 3 mg/kg. Toxicity occurred at all dose levels and was manifested chiefly by clinical signs of edema and/or erythema of the skin of the extremities and peri-oral region, ulceration (noted as abrasions, crusts, sores, or sloughing) of the skin of the feet and tail, and increased lactate dehydrogenase (LDH), aspartate aminotransferase (AST), and creatine kinase (CK) activities. Postmortem findings in the euthanized monkey suggested that the clinical signs and changes in clinical chemistry parameters reflected tissue damage from drugrelated skeletal muscle degeneration, vasculitis and thrombosis of dermal and submucosal blood vessels, and subsequent infarction of overlying skin and mucosa. When the study ended 12 days after dosing stopped, clinical chemistry changes had resolved completely but skin lesions were still present in some monkeys.

Based on these results, a no-observed-adverse-effect level was not identified. At the lowest dose level of 0.3 mg/kg/day, toxicity was limited to skin lesions on the feet of one monkey (incidence = 8%) and increased LDH, AST, and/or CK activities in three monkeys (incidence = 25%).

Supplementary Note 2

Synthetic Methods

Synthesis of Biotin-PEO₄-FP ("FP-biotin"): Scheme 1.

A solution of FP-succinimide ⁵⁰ (41 mg, 0.1 mmol) in DMF (2.0 ml) was treated with Et₃N (20.2 mg, 0.2 mmol) and biotin-PEO₄-amine (50 mg, 0.12 mmol, purchased from ChemPep Inc. CAS No. 359860-27-8) at room temperature. The reaction mixture was stirred for 5 hrs and then concentrated *in vacuo*. The residue was partitioned into water and ethyl acetate. The organic phase was isolated and the aqueous phase was extracted with more ethyl acetate. All organic phases were combined and washed with water, then brine, dried over Na₂SO₄ and concentrated under reduced pressure. Anhydrous Et₂O (10 ml) was added to the residue and the mixture was removed using pipette. This procedure was repeated for 3 times to give Biotin-PEO₄-FP as a pale gray powder (30 mg, 42%). ¹H NMR (300 MHz, CDCl₃): δ 6.72 (br, 1H), 6.47 (br, 1H), 5.49 (br, 1H), 5.36 (br, 1H), 4.55 - 4.45 (m, 1H), 4.30 - 4.20 (m, 3H), 4.05 - 3.95 (m, 2H), 3.65 - 3.59 (m, 8H), 3.59 - 3.52 (m, 4H), 3.45 - 3.30 (m, 4H), 3.15 - 3.05 (m, 1H), 2.95 - 2.85 (m, 1H), 2.80 - 2.70 (m, 1H), 2.22 - 2.19 (m, 2H), 1.90 - 1.75 (m, 2H), 1.75 - 1.57 (m, 8H), 1.45 - 1.27 (m, 17H). LC-MS (ESI⁺) *m/z* (rel intensity), 713.3 ((M + H)⁺, 100), 357.2 (32); ¹³C NMR (75 MHz,

CDCl₃): δ 176.00, 166.71, 159.59, 73.05, 72.88, 72.75, 72.66, 67.69, 65.72 (J=7.5 Hz), 64.43, 62.88, 58.29, 43.41, 43.20, 41.80, 38.63, 33.06, 32.84, 32.11, 31.90, 31.74, 31.62, 30.89, 30.78, 28.51, 28.30, 28.06, 27.77, 26.17, 25.87, 24.58 (J=5.2 Hz), 19.05 (J=6.0 Hz); tr = 9.6 min (Column: Agilent Eclipse Plus C18 4.6 x 50 mm, 1.8 µm particle size; Flow rate: 0.5 mL/min; Eluent gradient 2% B for the first 3 min, then from 2% to 98% B over 6 min and kept 98% B for 5 min; Solvent A, 0.1 % TFA in water; Solvent B, 0.08 % TFA in acetonitrile); Purity >98.5% (a/a). HRMS calcd for C₃₁H₅₉FN₄O₉PS [M + H]⁺, 713.3719; found, 713.3716.

Synthesis of the boronic acid- and nitrile-based compounds. Syntheses were performed using the previously described synthetic methods^{34, 42, 45, 51}. All the target compounds were purified by RP-HPLC using Varian semi-preparative system with a Discovery C18 569226-U RP-HPLC column. The mobile phase was typically made by mixing water (0.1% TFA) with acetonitrile (0.08% TFA) in gradient concentration. Purities determined by HPLC analysis were greater than 95%. HRMS were performed by Technical Services of University of Michigan. Chemical characterization for numbered compounds not shown below is included in **Supplementary Table 6**.

Compound 24. Ala-boroPro thioxoamide or ARI-2243

¹H NMR (300 MHz, D₂O): δ 4.55 (q, J = 6.6 Hz, 1H), 4.00-3.92 (m, 1H), 3.69 - 3.62 (m, 1H), 3.56 - 3.50 (m, 1H), 2.25 - 2.08 (m, 3H), 1.90 - 1.83 (m, 1H), 1.51 (d, J = 6.7 Hz). ¹³C NMR (300 MHz, D₂O): δ 194.51, 60.36, 54.48, 54.38, 29.30, 28.78, 20.22. HRMS Calcd for C₇H₁₆BN₂O₂S [M + H]⁺, 203.1026; found 203.1030.

Compound 33. Ala-(1-naph)-boroPro

¹H NMR (300 MHz, D₂O): δ 8.10 – 7.46 (m, 7H), 4.65 - 4.55 (m, 1H), 2.78 - 3.75 (m, 5H), 1.99 - 1.4 (m, 4H). ¹³C NMR (300 MHz, D₂O): δ 169.44, 136.28, 133.78, 132.01, 131.82, 131.65, 131.50, 129.73, 129.00, 128.52, 125.26, 54.37, 51.46, 49.98, 35.93, 29.17. HRMS Calcd for C₁₇H₂₂BN₂O₃ [M + H]⁺, 313.1718; found 313.1727.

Compound 36. Ala-(1-naph)-Pro-CN

¹H NMR (300 MHz, D₂O): δ 8.16 – 7.99 (m, 3H). 7.76 - 7.46 (m, 4H), 4.80 - 4.64 (m, 2H), 4.00 - 3.50 (m, 3H), 3.10 - 3.04 (m, 1H), 2.11 – 3.31 (m, 4H). ¹³C NMR (300 MHz, D₂O): δ 171.02, 136.11, 133.88, 131.77, 131.57, 131.44, 130.08, 129.11, 128.67, 125.22, 120.54, 54.01, 49.40, 49.23, 36.88, 31.67, 26.98. HRMS Calcd for C₁₈H₂₀N₃O [M + H]⁺, 294.1601; found 294.1611.

Compound 51. Asn-boroPhe

¹H NMR (300 MHz, D₂O): δ 7.42 - 7.27 (m, 5H), 4.27 (t, J = 6.2 Hz, 1H), 3.26 - 3.20 (m, 1H), 3.00 - 2.75 (m, 4H). ¹³C NMR (300 MHz, D₂O): δ 175.13, 171.72, 142.10, 131.57, 131.32, 129.21, 51.42, 46.32, 38.24, 37.43. HRMS Calcd for C₁₂H₁₇BN₃O₃ [M - H2O + H]⁺, 262.1357; found 262.1368.

Compound 60. Asp-boroPhe

¹H NMR (300 MHz, D₂O): δ 7.42 - 7.25 (m, 5H), 4.30 - 4.20 (m, 1H), 3.21 - 3.11 (m, 1H), 3.05 - 2.77 (m, 4H). ¹³C NMR (300 MHz, D₂O): δ 175.75, 171.66, 142.14, 131.57, 131.33, 129.21, 51.36, 46.38, 38.22, 37.77. HRMS Calcd for C₁₂H₁₆BN₂O₄ [M - H2O + H] ⁺, 263.1198; found 263.1210.

Compound 93. Glu-boroSar thioxoamide or ARI-2408

¹H NMR (300 MHz, D₂O): δ 4.65 (t, J = 6.4 Hz, 1H), 3.15 (s, 3H), 2.53 (t, J = 7.1 Hz, 2H), 2.47 (s, 2H) 2.25 -2.05 (m, 2H). ¹³C NMR (300 MHz, D₂O): δ 195.96, 178.82, 55.57, 52.00, 45.06, 31.03, 30.10. HRMS Calcd for C₇H₁₄BN₂O₄ [M - H2O + H]⁺, 201.1047; found 201.1043.

Compound 99. Gly-boroPhe

¹H NMR (300 MHz, D₂O): δ 7.57 - 7.04 (m, 5H), 3.72 (s, 2H), 3.33 - 3.27 (m, 1H), 3.00 - 2.58 (m, 2H). ¹³C NMR (300 MHz, D₂O): δ 169.89, 142.08, 131.57, 131.28, 129.21, 46.19, 42.10, 38.38. HRMS Calcd for C₁₀H₁₄BN₂O₂ [M - H2O + H]⁺, 205.1143; found 205.1142.

Compound 217. Phe-Pro-CN

¹H NMR (300 MHz, D₂O): δ 7.48 - 7.33 (m, 5H) 4.52 (dd, J = 5.5 Hz, 1H), 3.43 - 3.33 (m, 2H), 3.24 - 3.16 (m, 1H), 2.71 - 2.68 (m, 1H), 2.24 - 1.53 (m, 4H). ¹³C NMR (300 MHz, D₂O): δ 170.87, 135.83, 132.92, 132.41, 130.92, 120.89, 55.58, 49.69, 49.50, 39.61, 27.33, 24.64. HRMS Calcd for C₁₄H₁₈N₃O [M + H]⁺, 244.1444; found 244.1452.

Compound 226. Py(D)Ala-boroPro

Previously characterized in ref. 42.

Compound 244. Ser-boroPhe

¹H NMR (300 MHz, D₂O): δ 7.40 - 7.25 (m, 5H), 4.15 - 4.05 (m, 1H), 3.95 - 3.80 (m, 2H), 3.30 - 3.20 (m, 1H), 3.00 - 2.75 (m, 2H). ¹³C NMR (300 MHz, D₂O): δ 170.69, 142.09, 131.60, 131.29, 129.22, 62.78, 56.24, 46.37, 38.36. HRMS Calcd for C₁₁H₁₆BN₂O₃ [M - H2O + H]⁺, 235.1248; found 235.1256.

Supplementary References

- 1. Bachovchin, D.A. et al. Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. *Proc. Natl. Acad. Sci. USA* **108**, 6811-6816 (2011).
- 2. Flentke, G.R. et al. Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. *Proc. Natl. Acad. Sci. USA* **88**, 1556-1559 (1991).
- 3. Wu, W. et al. 4-Substituted boro-proline dipeptides: synthesis, characterization, and dipeptidyl peptidase IV, 8, and 9 activities. *Bioorg. Med. Chem. Lett.* **22**, 5536-5540 (2012).
- 4. Suda, H., Aoyagi, T., Hamada, M., Takeuchi, T. & Umezawa, H. Antipain, a new protease inhibitor isolated from actinomycetes. *J. Antibiot.* **25**, 263-266 (1972).
- 5. Zimmerman, M. et al. Direct fluorescent assay of urokinase and plasminogen activators of normal and malignant cells: kinetics and inhibitor profiles. *Proc. Natl. Acad. Sci. USA* **75**, 750-753 (1978).
- 6. Ghafouri, N. et al. Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. *Br. J. Pharmacol.* **143**, 774-784 (2004).
- 7. Liverton, N.J. et al. MK-7009, a potent and selective inhibitor of hepatitis C virus NS3/4A protease. *Antimicrob. Agents Chemother.* **54**, 305-311 (2010).
- 8. Lunven, C. et al. Inhibition by Argatroban, a specific thrombin inhibitor, of platelet activation by fibrin clot-associated thrombin. *Thromb. Haemost.* **75**, 154-160 (1996).
- 9. Arastu-Kapur, S. et al. Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. *Clin. Cancer. Res.* **17**, 2734-2743 (2011).
- 10. He, S., Gaca, M.D., McEuen, A.R. & Walls, A.F. Inhibitors of chymase as mast cellstabilizing agents: contribution of chymase in the activation of human mast cells. *J. Pharmacol. Exp. Ther.* **291**, 517-523 (1999).
- 11. Eisert, W.G. et al. Dabigatran: an oral novel potent reversible nonpeptide inhibitor of thrombin. *Atertio. Thromb. Vasc. Biol.* **30**, 1885-1889 (2010).
- 12. Sugimoto, H., Iimura, Y., Yamanishi, Y. & Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. *J. Med. Chem.* **38**, 4821-4829 (1995).
- 13. Bachovchin, D.A., Brown, S.J., Rosen, H. & Cravatt, B.F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. *Nat. Biotechnol.* **27**, 387-394 (2009).
- 14. Muramatu, M. & Fujii, S. Inhibitory effects of -guanidino acid esters on trypsin, plasmin, plasma kallikrein and thrombin. *Biochim. Biophys. Acta* **268**, 221-224 (1972).
- 15. Ohno, H., Kosaki, G., Kambayashi, J., Imaoka, S. & Hirata, F. FOY: [ethyl P-(6-guanidinohexanoyloxy) benzoate] methanesulfonate as a serine proteinase inhibitor. I. Inhibition of thrombin and factor Xa in vitro. *Thromb. Res.* **19**, 579-588 (1980).
- 16. Alexander, J.P. & Cravatt, B.F. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. *Chem. Biol.* **12**, 1179-1187 (2005).

- 17. Chang, J.W., Nomura, D.K. & Cravatt, B.F. A potent and selective inhibitor of KIAA1363/AADACL1 that impairs prostate cancer pathogenesis. *Chem. Biol.* **18**, 476-484 (2011).
- 18. Long, J.Z., Jin, X., Adibekian, A., Li, W. & Cravatt, B.F. Characterization of tunable piperidine and piperazine carbamates as inhibitors of endocannabinoid hydrolases. *J. Med. Chem.* **53**, 1830-1842 (2010).
- 19. Takasaki, K. et al. K579, a slow-binding inhibitor of dipeptidyl peptidase IV, is a longacting hypoglycemic agent. *Eur. J. Pharmacol.* **486**, 335-342 (2004).
- 20. Deutsch, D.G. et al. Methyl arachidonyl fluorophosphonate: a potent irreversible inhibitor of anandamide amidase. *Biochem. Pharmacol.* **53**, 255-260 (1997).
- 21. Gustafsson, D. et al. Effects of melagatran, a new low-molecular-weight thrombin inhibitor, on thrombin and fibrinolytic enzymes. *Thromb. Haemost.* **79**, 110-118 (1998).
- 22. Riester, D. et al. Thrombin inhibitors identified by computer-assisted multiparameter design. *Proc. Natl. Acad. Sci. USA* **102**, 8597-8602 (2005).
- Saario, S.M. et al. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. *Chem. Biol.* 12, 649-656 (2005).
- 24. Hoover, H.S., Blankman, J.L., Niessen, S. & Cravatt, B.F. Selectivity of inhibitors of endocannabinoid biosynthesis evaluated by activity-based protein profiling. *Bioorg. Med. Chem. Lett.* **18**, 5838-5841 (2008).
- 25. Lange, U.E. & Zechel, C. Solid-phase synthesis of thrombin inhibitors. *Bioorg. Med. Chem. Lett.* **12**, 1571-1573 (2002).
- 26. Ahn, K. et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. *Chem. Biol.* **16**, 411-420 (2009).
- 27. Atack, J.R., Yu, Q.S., Soncrant, T.T., Brossi, A. & Rapoport, S.I. Comparative inhibitory effects of various physostigmine analogs against acetyl- and butyrylcholinesterases. *J. Pharmacol. Exp. Ther.* **249**, 194-202 (1989).
- 28. Perzborn, E. et al. In vitro and in vivo studies of the novel antithrombotic agent BAY 59-7939--an oral, direct Factor Xa inhibitor. *Journal of thrombosis and haemostasis : JTH* **3**, 514-521 (2005).
- 29. Portevin, B. et al. New prolyl endopeptidase inhibitors: in vitro and in vivo activities of azabicyclo[2.2.2]octane, azabicyclo[2.2.1]heptane, and perhydroindole derivatives. *J. Med. Chem.* **39**, 2379-2391 (1996).
- 30. Wang, A. et al. Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor. *BMC Pharmacol.* **12**, 2 (2012).
- 31. Connolly, B.A. et al. Dipeptide boronic acid inhibitors of dipeptidyl peptidase IV: determinants of potency and in vivo efficacy and safety. *J. Med. Chem.* **51**, 6005-6013 (2008).
- 32. Li, W., Blankman, J.L. & Cravatt, B.F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. *J. Am. Chem. Soc.* **129**, 9594-9595 (2007).
- 33. Friedman, T.C., Orlowski, M. & Wilk, S. Prolyl endopeptidase: inhibition in vivo by Nbenzyloxycarbonyl-prolyl-prolinal. *J. Neurochem.* **42**, 237-241 (1984).
- 34. Coutts, S.J. et al. Structure-activity relationships of boronic acid inhibitors of dipeptidyl peptidase IV. 1. Variation of the P2 position of Xaa-boroPro dipeptides. *J. Med. Chem.* 39, 2087-2094 (1996).

- 35. Milo, L.J., Jr. et al. Chemical and biological evaluation of dipeptidyl boronic acid proteasome inhibitors for use in prodrugs and pro-soft drugs targeting solid tumors. *J. Med. Chem.* **54**, 4365-4377 (2011).
- 36. Senten, K. et al. Design, synthesis, and SAR of potent and selective dipeptide-derived inhibitors for dipeptidyl peptidases. *J. Med. Chem.* **46**, 5005-5014 (2003).
- 37. Lankas, G.R. et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. *Diabetes* **54**, 2988-2994 (2005).
- 38. Li, J., Wilk, E. & Wilk, S. Aminoacylpyrrolidine-2-nitriles: potent and stable inhibitors of dipeptidyl-peptidase IV (CD 26). *Arch. Biochem. Biophys.* **323**, 148-154 (1995).
- 39. Sudmeier, J.L. et al. Autochelation in dipeptide boronic acids: pH-dependent structures and equilibria of Asp-boroPro and His-boroPro by NMR spectroscopy. *J. Am. Chem. Soc.* **127**, 8112-8119 (2005).
- 40. Adams, J. et al. Potent and selective inhibitors of the proteasome: dipeptidyl boronic acids. *Bioorg. Med. Chem. Lett.* **8**, 333-338 (1998).
- 41. Villhauer, E.B. et al. 1-[2-[(5-Cyanopyridin-2-yl)amino]ethylamino]acetyl-2-(S)pyrrolidinecarbonitrile: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. J. Med. Chem. **45**, 2362-2365 (2002).
- 42. Poplawski, S.E. et al. Identification of selective and potent inhibitors of fibroblast activation protein and prolyl oligopeptidase. *J. Med. Chem.* **56**, 3467-3477 (2013).
- 43. Jansen, K. et al. Selective inhibitors of fibroblast activation protein (FAP) with a (4quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. *ACS Med. Chem. Lett.* **4**, 491-496 (2013).
- 44. Van der Veken, P. et al. Inhibitors of dipeptidyl peptidase 8 and dipeptidyl peptidase 9. Part 1: identification of dipeptide derived leads. *Bioorg. Med. Chem. Lett.* **18**, 4154-4158 (2008).
- 45. Ashworth, D.M. et al. 2-cyanopyrrolidides as potent, stable inhibitors of dipeptidyl peptidase IV. *Bioorg. Med. Chem. Lett.* **6**, 1163-1166 (1996).
- 46. Rosenblum, J.S., Minimo, L.C., Liu, Y.S., Wu, J.Y. & Kozarich, J.W. The case against GI toxicity from acute DPP8/9 inhibition. *Diabetes* **56**, A138-A138 (2007).
- 47. Sudre, B. et al. Chronic inhibition of circulating dipeptidyl peptidase IV by FE 999011 delays the occurrence of diabetes in male zucker diabetic fatty rats. *Diabetes* **51**, 1461-1469 (2002).
- 48. Shreder, K.R. et al. Boro-norleucine as a P1 residue for the design of selective and potent DPP7 inhibitors. *Bioorg. Med. Chem. Lett.* **15**, 4256-4260 (2005).
- 49. Villhauer, E.B. et al. 1-[[(3-hydroxy-1-adamantyl)amino]acetyl]-2-cyano-(S)-pyrrolidine: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. *J. Med. Chem.* **46**, 2774-2789 (2003).
- 50. Tully, S.E. & Cravatt, B.F. Activity-based probes that target functional subclasses of phospholipases in proteomes. *J. Am. Chem. Soc.* **132**, 3264-3265 (2010).
- 51. Zhu, Y. et al. Design, synthesis, biological evaluation, and structure-activity relationship (SAR) discussion of dipeptidyl boronate proteasome inhibitors, part I: comprehensive understanding of the SAR of alpha-amino acid boronates. *J. Med. Chem.* **52**, 4192-4199 (2009).