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Web Appendix: Proofs

Let Xi,..., X, be iid random variables and denote the kth central moment g, = E(X; —
B)*, where 8 = E(X;). Also, denote the sample kth central moment my, = n=!>"" (X, —
X)* where X = n! >, X;. We have the following lemma regarding the asymptotic
distribution of the sample kth central moment.

Lemma 1. If Xy,..., X, are ©id with mean 8 and P, < 0o for k > 1, then

n

my — P = %Z [(Xi — B)" = Br — kBr—1(Xi — B)] + 0p(n 7).

=1

as n — oo.
Proof of Lemma 1. See page 72 in Serfling (1980). O

Now, let us back to the notation in the main text. Specifically, let x; = (s? + 72)~1/2
and z; = yi(s? + 72)71/2. The regression test is z; = o + ux; + €;, where ¢’s are iid
following a distribution with mean zero; & and i are the least squares estimates of o and
p respectively, and the residuals & = y; — fiz; — &. Also, B, = E(e; — B)* is the kth
central moment of €;’s, where 3 = E(e;) = 0, and my = n* > (6 — €)*. The true
skewness of €;’s is v = B3/, Let iy, = n~! S (6 — €)* be the sample kth central
moment by plugging in the residuals ¢;, where é = n~! >, & = 0. The sample skewness
of € = (€1,...,€,)7 is Skew(€) = my/s®, where s = \/nmy/(n — 1), and Ty = Skew(€) is
obtained by plugging € = (éy,...,¢,)T in Skew(e).

Proof of Proposition 1. First, we show that \/n(Skew(e) — ) 2 N(0,v) as n — oo,
where

35 9
v=9+ 1653/33 — 683581+ B3 Be + 152_553?54 — 303" B3s.

Because Skew(€) = [(n—1)/n]*/?ms/ mg/ ? Skew(€) have the same asymptotic distribution
as mg/mgﬂ. By Lemma 1, we have

n

my Bol 1 e — B ~1/
{ms} a {531 n ; Lf — B3 — 352@'] * op(n 1 2)'



Therefore,

ma| o D 0 Pa— 53 Bs — 4523 } )
v ([m?,] {53]) — N <[O} ’ {55 —4P2fs P — 3 — 68264 +953] )
3/2

Denote the asymptotic covariance matrix above as 3. Let g(r, s) = s/r*/?, then ¢'(r, s) =

(—3sr5/2, 7”3/2)T. By the delta method,

Vilg(ma,ms) — g(Ba, B3)) = N(0, [ (B, B5)]"Eg' (B, B))):
that is,
Vn(Skew(e) — v) -2 N (0,v) .
Second, we show that /n(Ts — Skew(e)) Ly 0asn — co. We write Skew(e) =
[(n — 1)/n]32f(8), where f(8) = ms/m>? is a continuous and differentiable function

of & = (01,02,05,04,05)" = (2,&,€- €2, €2, e3)T; here, & = n 137 €. Specifically,

7,11

F(8) = (05—305420,) (04— 61 ) 32, it is free of n. Also, Ty = Skew (&) = [(n—1)/n]¥2f(8),

T
X N2 /A3 T o T =2 ~
where 6 = <(e) , (e) € €262 e3> ,and éF = n! > " €% Because the average of the

=1 "~1°

A . _ _\T
residuals is € = 0, we have § = (O, 0,0, €2, €3> . By multivariate Taylor expansion,

f(8) = f(8) + [R(8)]" (8 — &) + O,(116 — 8]1%),
where h(6) = 7 f(9) is the gradient of f(§) and ||| is the Euclidean norm. Specifically,

hl((S) %(55 — 353 -+ 2(52)(54 — 51)75/2
ho (8) 2(8) — 6,2

h(6) = | hs(8)| = —3(8, — 6,)32
ha(8)| | 205 — 30 +28,)(84 — 6,)
hs(8) (64 — 6,)%?

Since 0y, 83,63 — 0, 84 — By > 0, and &5 — fB3, we have h;(8) = O,(1) for j =1,...,5.
Now, we focus on

. T

0—0= (—62, —& —E- 2,2 2.8 — 63> )
Due to € = ( “1/2) we have 0 — 6 = —&2 = Op(n1), 8y — 6y = —& = O,(n~3/?), and

03 — 03 = —é - €2 = O,(n~'/?). Note that

~

&= (a—a)+ (p—p +e,

and & —a = O,(n"Y2), i — = O,(n~Y/?). Also, by the assumption that x;’s have finite
third moment and the weak law of large numbers, £ >°7"  zF = O,(1) for k = 1,2,3.
Consequently, we have

54—(54:€2—€2

n
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- n p [(a Oé) + (M :U’)xz + Ez] n p 62
A - i1 T A o\ 2aiet T
= (@ = @)+ (n—p) ==+ 20— a)(p - p) ===



and
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= (a—a)* + (u )32Z L% 4 3(a— &) (u — )Z?nlxz
+3(Oé—@)(# )22?711 7 3(& ) 6"'3(# FL)QZ:Z 1 L5 €
+6(0— 6)(n — ) ZELEE | 30— )7 43— ) el
~ 30— )2+ 31— =L 40,

n

= 0,(n""?).

Therefore, O,(||6 — 8|?) = O,(n~"), implying

:Z: 5+ 0p(n7)
— 1(8)(Bs — 83) + h(8) (85 — 55) + Oyl
=301 6%k (6150 30— )T+ 30— ) ZETL] 0,07

2
i=1 Li€

= 3060- 50 {[fa - @) + 4+ (- =2 4 0,0

Note that > & =0,s0 (a — &)+ €= (1 — ,u)L Consequently,
N " X " l’jﬁ? -
1) = 1(0) =301 = 0% {1 = ) 2= — = == 0,0

A " e
M@—@”m—m{zﬂﬂé—zif@}+QMﬂ

b(n2) {[E(z1) + Op(n™72)][B2 + Op(n™/2)] = [E(z16]) + Op(n™ )]} + Op(n”!
= 0p(n™?) {[E(21)B2 + Op(n™'?)] = [E(21) B2 + Op(n™?)]} + Op(n)
= Op<n_1)'

I
S

This leads to v/n(f(8)— f(8)) = 0; hence, \/n(Ts—Skew(e)) == 0, and /n(Ts—7) —
N(0,v).

Finally, we show that © L. By continuous mapping theorem, it is sufficient to
show that my BN Bi for k = 2,...,6. Recall that 8; = E(e}) and 7y, = n=t > 1" | ér.
Since ¢; = (o — &) + (u — 1), + & = € + O0,(n™Y2), we have y = n 1Y (& +
O,(n~Y2))k = -1 ZZ L7 40,(1) = B+ 0,(1); that is, ry L Bi. By Slutsky’s theorem,
Vi(Ts — ) /v -2 N(0,1); this completes the proof. O



Proof of Corollary 1. Under HJJ, we have ¢; ~ N(0,0?), so Bor = (2k—1)!lo?* and By, 1 =

0 for k > 1. Here, c!! =c-(c—2)-(c—4)--- is the double factorial. Specifically, 85 = o2,

B4 = 30, and S5 = 150°. In the proof of Proposition 1, we showed that /n(Ts — ) EN

N(0,v). Under HJ, v is simplified as v = 9 — 6(6?)7% - 30* + (¢%)7% - 150% = 6. This
completes the proof. O
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