Supplementary Information

STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion

Hsu et al.

20

15 10

5

0

ns

_

sg-Ctrl

50

37

25

PD-L1

Actin

-

sg-Ctrl sg-PD-L1 + PBMC

ns

sg-PD-L1

- PBMC

Supplementary Figure 1. Compared with non-CSC populations, CSC populations have higher PD-L1 expression, which contributes to CSC immune evasion.

(a, b, c) Flow cytometric analysis of PD-L1 protein expression and qRT-PCR analysis comparing PD-L1 (CD274) mRNA levels between the CSC (red gate) and non-CSC (blue gate) populations of TNBC cells, BT-549 (a), MDA-MB-231 (b) and 4T1 (c). The CSC populations of human TNBC cells (BT-549 and MDA-MB-231) were isolated by sorting for CD44⁺CD24^{-/low} cells. The CSC populations of mouse TNBC cells (4T1) were isolated by sorting for CD44⁺CD24⁺ALDH1⁺ cells.

(d) Bar graph showing the differential sensitivity to PBMC-mediated cancer cell killing between CSC and non-CSC populations of BT-549 cells in the presence or absence of PD-L1. BT-549 cells were incubated with activated PBMCs for 48 hours. After incubation, PBMC-mediated cancer cell killing on CSC and non-CSC populations was measured by flow cytometric analysis of cleaved caspase 3. Error bars represent s.d. (n = 3). *: P < 0.05; ns: non-significant, Student's t-test.

Supplementary Figure 2. PD-L1 is modified by N-glycosylation.

(a) Glycosylation pattern of PD-L1 protein in various cell lines. Cell lysates were treated with N-glycosidase F (PNGase F) to remove N-linked oligosaccharides and analyzed by western blotting.
(b) Top: Schematic illustrating wild-type (wt) PD-L1 and its glycosylation-site mutant (4NQ). The four glycosylation sites of PD-L1 are indicated. Bottom: Concanavalin A (ConA) lectin binding assay showing ConA lectin binding specificity to glycosylated PD-L1 (wt) and unglycosylated PD-L1 in which glycosylation was abolished by PNGase F or mutagenesis (4NQ).

(c) Schematic illustrating the three major types of N-glycan, including high-mannose, hybrid and complex glycans. ConA lectin-binding regions and PNGase F digestion sites are indicated.

а				N-glycan site	occupancy (%)
NG site	Tryptic Peptide Sequence	Theoretical m/z of NxT	Theoretical m/z of DxT	Epithelial cells	Mesenchymal cells
35	K.DLYVVEYGS <u>N³⁵M</u> TIE <u>C</u> K.F	968.9369	969.4289	10.6	93.3
192	K.LF <mark>N¹⁹²</mark> VTSTLR.I	525.8007	526.2927	28.8	99.5
200	R.I <u>N²⁰⁰</u> TTTNEIFY <u>C</u> TFR.R	890.4221	890.9141	38.1	99.7
219	R.RLDPEE <u>N²¹⁹</u> HTAELVIPELPLAHPPNER.T	708.3646	708.6106	n/a	n/a

b

Supplementary Figure 3. Quantification of N-glycan site occupancy of each PD-L1 N-glycosylation site upon EMT.

(a) Table summarizing the N-glycan occupancy (%) of N35, N192 and N200 of PD-L1 purified from epithelial and mesenchymal cells.

(b) The extracted ion chromatograms for the PNGase F treated tryptic peptides corresponding to

N35, N192 and N200 of PD-L1 purified from epithelial and mesenchymal cells.

Supplementary Figure 4. N-glycosyltransferases STT3A and STT3B are positively correlated with EMT.

(a) Pearson correlation analysis of EMT score with PD-L1 (CD274), STT3A and STT3B mRNA expressions in TCGA breast cancer dataset (n = 1100).

(b) Western blot and qRT-PCR analysis comparing STT3A, STT3B and PD-L1 protein (top) and mRNA (bottom) expression levels between high E-cadherin-expressing and low E-cadherin-expressing breast cancer cells. The signal intensity of STT3A, STT3B and PD-L1 blots were quantified and normalized relative to the lowest signal.

(c) Correlation analysis between epithelial marker E-cadherin, STT3A, STT3B, PD-L1 and nuclear nonphosphorylated (active) β -catenin at protein levels in breast cancer tissues (n = 129). Left: Representative images from immunohistochemistry staining of E-cadherin, STT3A, STT3B, PD-L1 and nuclear non-phosphorylated (active) β -catenin (indicated by arrows) in primary breast cancer tissues. Right: Pearson correlation analysis of immunohistochemistry staining results.

Supplementary Figure 5. Knockdown of both STT3 isoforms suppresses PD-L1 protein expression without significant reduction of PD-L1 mRNA levels in mesenchymal-like breast cancer cells.

(a, d) Effect of STT3 isoforms knockdown on the expression and molecular weight of endogenous PD-L1 protein in MDA-MB-231 (a) and BT-549 (d) cells.

(b, e) Flow cytometric analysis of the effect of STT3 isoforms knockdown on the cell surface PD-L1 expression and PD-1 binding ability of MDA-MB-231 (b) and BT-549 (e) cells.

(c, f) Influence of STT3 isoforms knockdown on PD-L1 (CD274) mRNA levels in MDA-MB-231 (c) and BT-549 (f) cells.

(g) Top: Schematic illustrating co-expression constructs of PD-L1 (wt or 4NQ) and green fluorescent protein (GFP) used to assay the protein expression status of PD-L1. GFP was used as an internal control for transfection efficiency and gene expression. IRES: internal ribosome entry site. Bottom: Effect of STT3 isoforms knockdown on the protein expression amounts of PD-L1 (wt) or (4NQ) protein in BT-549 cells.

Error bars represent s.d. (n = 3). *: P < 0.05; ns: non-significant, Student's t-test.

Supplementary Figure 6. Etoposide induces MET and downregulation of STT3 and PD-L1 in MDA-

MB-231 cells.

- (a) Effect of etoposide (5 µg/ml, 4 days) on the expression of EMT markers, STT3 isoforms and PD-
- L1 in the general cell population of MDA-MB-231 cells.
- (b) Western blot analysis of EMT markers, STT3 isoforms and PD-L1 of tumorspheres derived from

etoposide-treated MDA-MB-231 cells.

(c) Effect of etoposide on TOP2B expression in the general cell population of MDA-MB-231 cells.

Supplementary Figure 7. Etoposide synergizes with Tim-3 blockade therapy in CT26 colorectal tumor model.

(a) Tumor growth of CT26 cells in BALB/c mice treated with Tim-3 antibody (Tim-3 Ab) and/or etoposide (ETO). Tumor size was measured at the indicated time points and tumor weight was measured at the endpoint (n = 6 mice per group).

(b) Efficacy of indicated treatments on the CSC (CD44⁺CD133⁺ALDH1⁺ populations) frequency of CT26 tumors.

(c) Flow cytometric analysis comparing the effect of indicated treatments on the expression of E-cadherin (E-Cad, epithelial marker) and N-cadherin (N-Cad, mesenchymal marker) in the entire cancer cell population of CT26 tumors.

(d) qRT-PCR analysis of the influence of indicated treatments on STT3 isoforms expression in the entire cancer cell population of CT26 tumors.

(e) Effect of indicated treatments on PD-L1 expression in the CSC and non-CSC populations of CT26 tumors.

(f) Intracellular cytokine staining of CD8⁺ IFN γ^+ cells in the CD3⁺ T cell populations from isolated tumor-infiltrating lymphocytes to analyze the impacts of indicated treatments on tumor-

infiltrating cytotoxic T cell activity.

Error bars represent s.d. (n = 6). *P < 0.05; ns: non-significant, Student's t-test.

Supplementary Figure 8. Proteasome inhibitor MG132 blocks TOP2 inhibitor-induced MET and downregulation of TOP2B, STT3 isoforms and PD-L1.

(a) Effect of TOP2 inhibitors ICRF-187 and -193 (5 $\mu\text{M},$ 24 hr) on the expression of EMT markers,

STT3 isoforms and PD-L1 in 4T1 cells.

(b, c) Effect of proteasome inhibitor (MG132) and caspase inhibitor (Z-VAD-FMK) on TOP2 inhibitor-

induced TOP2B degradation, MET and downregulation of STT3 and PD-L1.

Supplementary Figure 9. Schematic illustrating the regulation of PD-L1 in CSCs and non-CSCs by the EMT/ β -catenin/STT3/PD-L1 axis and etoposide. EMT induces N-glycosyltransferase STT3 through β -catenin. STT3 positively regulates PD-L1 glycosylation and stabilization, leading to PD-L1 induction in CSCs and non-CSCs. High PD-L1 expression contributes to cancer immune evasion. Etoposide reduces nuclear β -catenin through TOP2B degradation and inhibits the EMT- β -catenin-STT3-PD-L1 signaling axis, resulting in sensitization of both CSCs and non-CSCs to immune elimination.

Fig. 8c

Supplementary Figure 10. Uncropped scans of the Western blots shown in the indicated figures.

Supplementary Table 1, related to Figure 5. List of the chemical compound concentrations used in Figure 5.

Chemical	Concentration for 21-h	Concentration for 96-b
chemical	treatment (uNA)	treatment (uNA)
	treatment (µivi)	treatment (µivi)
Chlorambucil	25	
Cyclophosphamide	50	
Carmustine	15	
Busulfan	5	
Dacarbazine	15	
Thiotepa	5	
Cisplatin	5	
Carboplatin	20	
5-Fluorouracil	1	
6-Mercaptopurine	5	
Gemcitabine	0.01	
Methotrexate	0.5	
Pentostatin	2	
Daunorubicin	1	0.02
Doxorubicin	2	0.05
Epirubicin	1	0.02
Actinomycin-D	0.1	
Mitomycin-C	2	
Topotecan	1	
Irinotecan	5	
Etoposide	10	0.2
Teniposide	15	
Mitoxantrone	2	0.05
Paclitaxel	1	0.02
Docetaxel	2	
Vincristine	1	

Supplementary Table 2. Oligonucleotide sequences used throughout this study.

sgRNA or siRNA (vendor, catalogue	Target sequence (listed 5' to 3')
number)	
Human STT3A sgRNA (Santa Cruz, sc-	ACAGACATTCCGAATGTCGA
405155)	AAGGTGGTACGTGACGATGG
,	CTCGGTCATCAAACCAGTTA
Human STT3B sgRNA (Santa Cruz, sc-	GATGTAAGGCCGCTAAAAGT
404481)	CCAGCGGTTATCATCAACCC
	TACAGCAAAAGAGTCTACAT
Human β -catenin siRNA (Sigma,	GCCGGCTATTGTAGAAGCTGGTGGA
EHU139421)	ATGCAAGCTTTAGGACTTCACCTGA
	CAGATCCAAGTCAACGTCTTGTTCA
	GAACTGTCTTTGGACTCTCAGGAAT
	CTTTCAGATGCTGCAACTAAACAGG
	AAGGGATGGAAGGTCTCCTTGGGAC
	TCTTGTTCAGCTTCTGGGTTCAGAT
	GATATAAATGTGGTCACCTGTGCAG
	CTGGAATTCTTTCTAACCTCACTTG
	CAATAATTATAAGAACAAGATGATG
	GTCTGCCAAGTGGGTGGTATAGAGG
	CTCTTGTGCGTACTGTCCTTCGGGC
	TGGTGACAGGGAAGACATCACTGAG
	CCTGCCATCTGTGCTCTTCGTCATC
	TGACCAGCCGACACCAAGAAGCAGA
	GATGGCCCAGAATGCAGTTCGCCTT
	CACTATGGACTACCAGTTGTGGTTA
	AGCTCTTACACCCACCATCCCACT
Mouse β -catenin siRNA (Sigma,	AGGGTGGGAATGGTTTTAGGCCTGT
EMU047621)	TTGTAAATCTGCCACCAAACAGATA
	CATACCTTGGAAGGAGATGTTCATG
	TGTGGAAGTTTCTCACGTTGATGTT
	TTTGCCACAGCTTTTGCAGCGTTAT
	ACTCAGATGAGTAACATTTGCTGTT
	TTCAACATTAATAGCAGCCTTTCTC
	TCTATACAGCTGTAGTGTCTGAACG
	TGCATTGTGATTGGCCTGTAGAGTT
	GCTGAGAGGGCTCGAGGGGTGGGCT
	GGTATCTCAGAAAGTGCCTGACACA
	CTAACCAAGCTGAGTTTCCTATGGG
	AACAGTCGAAGTACGCTTTTTGTTC
	TGGTCCTTTTTGGTCGAGGAGTAAC
	AATACAAATGGATTTGGGGAGTGAC
	TCACGCAGTGAAGAATGCACACGAA
	TGGATCACAAG

Mouse TOP2A sgRNA (Santa Cruz, sc- 423469)	CTCATCGTCGTCATAGTTAC CTCCGCCCAGATACCTACAT	
	IBIABAABIABOAIIIIBBBI	
Mouse TOP2B sgRNA (Santa Cruz, sc-	CTTCGTCCTGATACATACAT	
423470)	ACTGATCCAATGTATGTATC	
	TCTACTTTGTGTTCTACTAC	

qRT-PCR

Target gene	Primer sequence (listed 5' to 3')	
Human CD274	TGCCGACTACAAGCGAATTACTG	
	CTGCTTGTCCAGATGACTTCGG	
Mouse CD274	TGCGGACTACAAGCGAATCACG	
	CTCAGCTTCTGGATAACCCTCG	
Human STT3A	GAAGCAACAGGATTCCACCTACC	
	CAATGGACGGAGAAGAGTAGGC	
Mouse STT3A	GCAACCTGTCTGATGCTCGGAT	
	ATGTGGACAGCACCTGGGAAAC	
Human STT3B	GCAGGTGCTGTGTTCCTTAGTG	
	GTCGTAGGTTGATGCTCAGACAC	
Mouse STT3B	CCTACTCCAGTCCAAGTGTGGT	
	GCCAGCAATCTGATAGCCGTAG	
Mouse CDH1	GGTCATCAGTGTGCTCACCTCT	
	GCTGTTGTGCTCAAGCCTTCAC	
Mouse VIM	CGGAAAGTGGAATCCTTGCAGG	
	AGCAGTGAGGTCAGGCTTGGAA	