

Supplementary Figure 1: Strategy for generation of IE- α 4^{-/-} mice and expression of α 4 in other organs. (a) Schematic of the complete exon-intron orientation of the α 4 locus and magnification of the NEO-containing exon. (b) Levels of α 4 mRNA in the small intestinal mucosa obtained from littermate and IE- α 4^{-/-} mice as measured by RT-PCR analysis. (c) Levels of α 4 mRNA in stomach mucosa, small intestinal mucosa, heart, liver, spleen, and kidney in IE- α 4^{-/-} mice.

Supplementary Figure 2: Global abnormalities caused by intestinal epitheliumspecific α 4 deletion in mice. (a) Male littermate and IE- α 4^{-/-} mice at 1 month of age. (b) Body weights of age- and sex-matched littermates and IE- α 4^{-/-} mice. Values are the means ± SEM (n = 4). * P < 0.05 compared with littermates. (c) Comparison of gastrointestinal gross morphology in littermates and IE- α 4^{-/-} mice.

Supplementary Figure 3: Immunochemical staining of brush border membrane proteins and goblet cells in the small intestinal mucosa. Alkaline phosphatase (AP) and sucrose-isomaltase are shown as red and brown, respectively (arrow). Goblet cells were examined by alcian blue (blue, arrow). Sections were counterstained with nuclear fast red.

Supplementary Figure 4: α 4 deletion inhibits cell migration and induces epithelial cell death in the small intestine. **(a)** Changes in the rate of epithelial cell migration in the small intestinal mucosa of littermate (*a*) and IE- α 4^{-/-} (*b*) mice. Mice were injected with BrdU, and the mucosal tissues were harvested at the times indicated. **(b)** Epithelial cell death as examined by TUNEL staining (shown as green) in the small intestine of littermate (*a*) and IE- α 4^{-/-} (*b*) mice. **(c)** Summary of TUNEL-positive cells in mucosa prepared as described in (b) (n = 6). * P < 0.05 compared with littermates.

Supplementary Figure 5: α 4 silencing fails to alter levels and stability of the *HuR* mRNA. (a) Steady-state levels of *HuR* mRNA 48 h after transfection with si α 4 or C-siRNA. (b) Half-life of the *HuR* mRNA in cells described in (a). The levels of *HuR* mRNA were examined at different times after administration of actinomycin D. Values are the means ± SEM of data from triplicate experiments.

Supplementary Figure 6. The relative stability of each of HuR-TAP mutants after α 4 silencing in cultured IECs. Cells were co-transfected with si α 4 and pTAP-HuR WT (wild-type HuR-TAP), pTAP-HuR3A (carrying three non-phosphorylatable mutations, S88A, S100A, T118A), pTAP-HuR3D (carrying three non-phosphorylatable mutations, S88D, S100D, T118D), or pTAP-HuR K182R. The levels of HuR-TAP were examined 48 h after the transfection by Western blotting analysis.