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1 Theoretical Model

1.1 Mechanics

We consider the following equations for the vesicle dynamics in terms of the position x:∫
γ(t− t′)ẋ(t′)dt′ = −κ(x− x0) + ξ,

∫
γ(t− t′)ẋ0(t′)dt′ = κζαvA, (S1)

where ξ is a zero-mean Gaussian colored noise with correlations

〈ξ(t)ξ(0)〉 = kBTγ (|t|) ≡ Cξ(t), (S2)

as enforced by the fluctuation-dissipation theorem (FDT) [6], γ is the viscoelastic memory kernel, and T is
the bath temperature. We assume that the process vA has a single time scale τ that governs its decorrelation:

〈vA(t)vA(0)〉 = kBTAe−|t|/τ/(κζατ) ≡ CA(t), (S3)

where, by analogy with standard Langevin equation, we have defined an active temperature TA associated
to the amplitude of this process. The generalized Stokes-Einstein relation expresses the complex modulus
G∗ in terms of the Fourier response function χ̃ as

G∗(ω) ≡ 1/[6πRχ̃(ω)], (S4)

where R is the average radius of the vesicles regarded as spherical particles. Our model is associated with
the following complex modulus:

G∗(ω) = [κ+ iωγ̃(ω)] /(6πR), (S5)
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where i2 = −1. Following the choice of the memory kernel presented in the main text

γ(t) ≡ κ (ζα/t)
α

Θ(t)/Γ(1− α), (S6)

where Γ is the Gamma function, and Θ is the Heaviside function, we deduce

γ̃(ω) = κζα (iωζα)
α−1

. (S7)

As a result, we use equation (S5) and (S7) to express G∗ in terms of its real and imaginary parts, respectively
denoted by G′ and G′′, as

G′(ω) =
κ

6πR
[1 + (ωζα)α cos (πα/2)] , (S8a)

G′′(ω) =
κ

6πR
(ωζα)α sin (πα/2) . (S8b)

1.2 Effective energy and force spectrum

The effective energy Eeff is defined as

Eeff(ω) ≡ −ωC̃(ω)/ [2kBχ̃
′′(ω)] , (S9)

where C̃ and χ̃′′ are the position power spectral density and the imaginary part of the response function
in the Fourier domain, respectively. From the generalized Stokes-Einstein relation in Sec. 1.1, and by using
Eq. (S8), we deduce

χ̃′′(ω) = − (ωζα)α sin (πα/2) /κ

1 + 2 (ωζα)
α

cos (πα/2) + (ωζα)
2α . (S10)

The Fourier transform of Eq. (S1) gives

x̃(ω) = χ̃(ω)
[
ξ̃(ω) + κx̃0(ω)

]
, iωγ̃(ω)x̃0(ω) = κζαṽA(ω). (S11)

yielding the position power spectral density,

C̃(ω) = |χ̃(ω)|2
[
C̃ξ(ω) +

κ4ζ2
α

ω2|γ̃(ω)|2
C̃A(ω)

]
, (S12)

where ξ and vA are uncorrelated noises. From Eqs. (S2) and (S3), we deduce

C̃ξ(ω) = 2kBT γ̃
′(ω), C̃A(ω) =

2kBTA

κζα [1 + (ωτ)2]
, (S13)

where γ̃′ is the real part of the Fourier memory kernel. By using (S4) and (S7-S8), C̃ follows as

C̃(ω) =
2ζα(ωζα)α−1/κ

1 + 2 (ωζα)
α

cos (πα/2) + (ωζα)
2α

×

[
sin
(πα

2

)
kBT +

kBTA (ωζα)
1−3α

1 + (ωτ)
2

]
, (S14)

from which we deduce the analytic expression of Eeff in (5) in the body of the main text. The cell force
spectrum is defined as

Scell(ω) ≡ (6πR)2|G∗(ω)|2C̃(ω). (S15)

From (S8) and (S14), one can obtain the explicit expression of this spectrum. The active part (Sactive) and
thermal part (Sthermal) then follow by setting T = 0 and TA = 0, respectively, yielding equations (6-7) in
the body of the main text. To take a closer look at the extracted kinetics we consider the average active
force experienced by the vesicle, F = κvτ , which we can substitute directly into the definition for the active
temperature (kBTA) and rewrite the active force spectrum in a more intuitive way as,

Sactive =
1

(ωζα)2α︸ ︷︷ ︸
mechanics

1

1 + (ωτ)2

2(Fζα)2

3(τ + τ0)︸ ︷︷ ︸
motor kinetics

(S16)
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2 Simulations

To simulate the dynamics of the vesicles, we first approximate the power law memory kernel γ(t) ∝ t−α as a
finite sum of exponential functions (Prony series): γ(t) =

∑
i cie

−t/σi/σi. Following the methods developed
in [2], it is possible, with N exponential terms, to accurately approximate a power law decay over N decades.
Parameters ci and σi are then given by,

σi =
10i

α
, ci =

κζαα
Γ(1− α)

10−i(α−1)

α
∑
j 10−jαe−α/10j (S17)

We approximate the power law kernel in the time window
[
10N− , 10N+−1

]
, where N− < 0 < N+, and

N = N+ −N− + 1. Then, the index in the Prony series goes from i = N− to i = N+.
With γ a sum of N exponential functions, it is possible to turn equations (1) and (2) from the main text

into a (2N + 2)-dimensional Markovian process for the variables
{
x, x0, yN− , . . . , yN+ , zN− , . . . , zN+

}
:

N+∑
i=N−

ci
σi

(x− yi) = −κ(x− x0),

N+∑
i=N−

ci
σi

(x0 − zi) = κζαvA, (S18)

ci
dyi
dt

= − ci
σi

(yi − x) + ξi,
dzi
dt

= −zi − x0

σi
, (S19)

where the {ξi}i are the zero mean Gaussian noises with correlations 〈ξi(t)ξj(t′)〉 = 2kBTciδijδ(t − t′). By
using Euler’s methods to simulate this set of equations, the iterative equations take the following form in
terms of the sampling time ∆t,

yi(t+ ∆t) = yi(t)−
∆t

σi
(yi(t)− x(t)) +

√
2kBT∆t

ci
η, zi(t+ ∆t) = zi(t)−

∆t

σi
(zi(t)− x0(t)) (S20)

x0(t+ ∆t) =
κζαvA(t+ ∆t) +

∑
i cizi(t+ ∆t)/σi∑

i ci/σi
, x(t+ ∆t) =

κx0(t+ ∆t) +
∑
i ciyi(t+ ∆t)/σi

κ+
∑
i ci/σi

(S21)

where η is random Gaussian variable with zero mean and variance equal to 1, and vA is the stochastic process
described earlier, which is computed according to the following rules:

vA(t+ ∆t) =


vA(t) if vA(t) 6= 0 with Pr. 1−∆t/τ

vA(t) if vA(t) = 0 with Pr. 1−∆t/τ0

0 if vA(t) 6= 0 with Pr. ∆t/τ

U[−v,v] if vA(t) = 0 with Pr. ∆t/τ0

(S22)

where U[−v,v] is a uniform random number between −v and v and τ0 = τ(1− pon)/pon is the timescale over
which the active burst is 0.

In order to mimic the experimental condition, we chose a sampling time ∆t = 10−4 s, and we aimed to
simulate our process up to 10 s. Then, we have set {N−, N+} = {4,−2}, so that the power law memory kernel
is well approximated in the time window[10−4, 10] s, with parameter values {α, κζαα , N−, N+} = {0.6, 1,−4, 2}

Other parameters in the simulation were chosen according to the numerical fits over experimental data,
and as listed in Table 1 where pon = 4% and v = 60µm · s−1 where pon = τ/(τ + τ0) where (τ + τ0) is
the total myosin-V step duration [3, 8] and v is the amplitude of the active burst velocity calculated from
v = F/(κτ). We also took kBT = 4× 10−21 J.

We started the simulation with all variables set to 0 and waited for thermalization by running the
simulation for 103 time steps. We then start collecting position data x in order to build the histogram for
the probability distribution function of the position. A total of approximately 105 samples were collected to
arrive at the histogram in Figure 4 of the main text.
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3 Laser tracking interferometry of endogenous vesicles

Laser tracking interferometry allows the displacement fluctuations of a rigid particle to be measured with
high spatiotemporal resolution [4]. This technique assumes that the particle of interest is rigid. However,
small endogenous particles in living cells may undergo shape fluctuations due to deformation or rotation that
could affect the laser tracking signal. Therefore, we investigated the validity of using endogenous vesicles as
probes for laser tracking interferometry and conclude that measured fluctuations are dominated by active
displacements of the vesicle (details follow below).

We estimated the expected amplitude of vesicle deformation [1],

R · 〈|u|〉 = R

[
kBT

(κ(l + 2)(l − 1)l(l + 1) + σR2(l + 2)(l − 1))

]1/2

(S23)

where u is the deformation amplitude, kBT is thermal energy, κ = 50kBT is the membrane bending stiffness,
σ = 5 × 10−5 N/m is the membrane tension, R = 500 nm is the vesicle radius, and l = 2 is the dominant
mode of deformation. The calculated vesicle deformation (∼ 4 nm) is an order of magnitude smaller than
the measured fluctuations (∼ 100 nm) and thus we expect that our laser-tracking of vesicles is dominated
by displacements.

To test this experimentally we used several approaches. First, we confirm that the signal:noise ratio
for laser interferometry (as indicated by the slope of the QPD measurement) is similar for endogenous
vesicles, a colloidal bead in a cultured cell, and a colloidal bead in an index matched solution (Figure
S4). Second, we perform active microrheology on a vesicle in a living oocyte at different laser powers. If
vesicle deformation were significant, then the measured complex shear modulus would exhibit a systematic
difference depending on laser power. Our measurements show that the moduli do not depend on laser power
(Figure S5). Third, we deplete ATP in oocytes by treatment with 2mM sodium azide + 10 mM deoxyglucose
to remove motion generated by active biological processes. If the signal contribution from passive vesicle
deformations is comparable to displacements then we expect the amplitude of the measured fluctuations
in ATP depleted cells to be comparable to the WT condition. Our measurements show that measured
fluctuations in the ATP depleted case are an order of magnitude (or more) lower than in WT oocytes for
all frequencies measured (Figure S6). Third, we isolated vesicles from oocytes by crushing them between
two glass coverslips resulting in ruptured cells and expulsion of cytoplasmic contents into the surrounding
medium. Isolated vesicles were immobilized due to adhesion to the poly-l-lysine coated coverslip. If vesicle
deformation significantly influenced our laser interferometry measurement, then we expect the measured
fluctuations of an immobilized isolated vesicle to be larger than an immobilized (rigid) colloidal bead. Our
measurements show that measured fluctuations of an immobilized vesicle are comparable to an immobilized
bead (Figure S7) (high-frequency deviation results from shot noise due to a lower refractive index of the
vesicle relative to the bead). Fourth, we measured the response of immobilized vesicles by applying force
with high laser power (120 mW). This quantifies the response due to only vesicle deformation (since it is
immobilized). Our measurements show that deformation of an immobilized isolated vesicle (red data points)
is more than an order of magnitude smaller than the response measured with vesicles in WT oocytes (blue
data points) (Figure S8). Therefore, in living cells, our measurements are dominated by vesicle displacements
and not deformations. Lastly, we created synthetic vesicles via electroformation as done previously [1] to
allow direct measurement in a well-controlled environment. Vesicles were placed in a hypertonic environment
(175 mOsm/kg sucrose inner buffer and 185 mOsm/kg NaCl outer buffer) to promote membrane fluctuations.
The power spectral density of synthetic vesicles (∼1 µm) is fit well by the theory for rigid beads (Figure S9
(left)) but is not fit well by the theory for deformable vesicles as seen at intermediate frequencies (Figure S9
(right)). Note that the extracted fitting parameters for the rigid bead theory agree with expected values,
but to obtain a fit for the vesicle theory the fitting parameters must take on unrealistic values for our
experimental conditions. Together, these experiments suggest that small vesicles behave indistinguishably
from rigid particles in our experiments and serve as suitable probes for laser tracking interferometry.
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Figure S1: Viscoelastic shear moduli of Fmn -/- oocytes are not significantly different from WT +
Cytochalasin-D oocytes. To confirm that actin filaments do not provide significant mechanical resistance,
we treated WT oocytes with cytochalasin-D (1 µg/ml) for 2 hours. Subsequent AMR measurements showed
their mechanical properties were not different than Fmn -/- oocytes. (nFmn−/− = 23 and ncytoD = 16;
shaded region indicates standard error of the mean)
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WT

Fmn2-/- MyoV(-)

Figure S2: The actin meshwork was visualized with GFP-UtrCH to show the actin meshwork. WT
oocytes exhibit a network of actin positive vesicles connected by actin filaments to create a meshwork.
Fmn2 -/- exhibited punctate actin but no visible meshwork. MyoV(-) exhibit an increased density actin
meshwork relative to WT. Images were captured at 37 degrees Celsius using a 40x objective (1.25NA) on
a Leica DMI6000B microscope enclosed in a thermostatic chamber (Life Imaging Service) equipped with a
CoolSnap HQ2/CCD-camera (Princeton Instruments) coupled to a Sutter filter wheel (Roper Scientific) and
a Yokogawa CSU-X1-M1 spinning disc. (oocyte diameter is 80 µm)
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Figure S3: The active force spectrum shows two distinct power-law (PL) behaviors at low (f−2α) and high
frequency (f−2α−2) compatible with the experimentally measured α ∼ 2/3.
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Figure S4: QPD voltage vs. laser position for various conditions. The slope of the central linear region is
indistinguishable between a vesicle (diameter of approximately 1 micron) in an oocyte (green), a 1 micron
colloidal bead in a Hela cell (magenta), and a 1 micron colloidal bead in an index matched solution of 50:50
water:glycerol. For comparison, the slope of a 1 micron colloidal bead in pure water is significantly steeper
due to the higher difference in index of refraction. This measurement shows that the signal:noise ratio for
the QPD measurements is similar for endogenous vesicles and colloidal beads in cells and index matched
media.

Figure S5: Viscoelastic shear moduli of oocytes is not affected by the laser power used for active microrhe-
ology. Measurements were performed on the same vesicle at different laser powers and a representative
example is shown. (n = 23; shaded region indicates standard deviation of all measurements)
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Figure S6: Power spectral density of measured fluctuations in ATP depleted oocytes are significantly lower
than in WT oocytes. (local peaks from resonant frequencies of piezo stage feedback have been removed from
data)

Figure S7: Power spectral density of measured fluctuations in an isolated oocyte vesicle are not significantly
different than a colloidal bead (both of ∼1 micron diameter).
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Figure S8: The force response of an isolated and immobilized vesicle is at least an order of magnitude smaller
than for freely moving vesicles in WT oocytes. The forced response was measured on a ∼ 1 micron diameter
vesicle at 120 mW laser power. This measurement suggests that deformations of the vesicle itself are a small
contribution to our measured signal. (nimmobilized = 8, nWT = 8)
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Figure S9: The power spectral density (PSD) of a trapped synthetic vesicle (∼ 1 micron at 5 mW laser
power) made by electroformation [1] is compared with the theory for a rigid bead (left) and a deformable
vesicle (right). (Left) The measured data for a vesicle is fit well by the theory for a rigid bead trapped in a
harmonic potential [5] and the extracted fit parameters (η = 0.001 Pa-s, κtrap = 0.8 pN/µm) agree with the
viscosity of water and the optical trap stiffness. (Right) The measured data is not fit well by the theory for
a deformable vesicle [7], showing deviation at intermediate frequencies and unrealistic fit parameters. Note
that for the vesicle theory the extracted viscosity (η = 0.006 Pa-s) is six times higher than expected for
water and the membrane tension (σ = 1.5× 10−7 N/m) and membrane bending stiffness (κ = 1kBT ) are an
order of magnitude lower than expected for these vesicles [1]. The PSD expected for a vesicle with realistic
physical parameters (η = 0.001 Pa-s, σ = 1× 10−6 N/m, and κ = 10kBT ) is shown as a dotted-gray line [1].
This measurement suggests that small vesicles are best approximated by the rigid bead theory (left) and are
suitable for laser-tracking interferometry. (n = 16)
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