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ABSTRACT Multistrain microbial communities often exhibit complex spatial organization that emerges because of the inter-
play of various cooperative and competitive interaction mechanisms. One strong competitive mechanism is contact-dependent
neighbor killing enabled by the type VI secretion system. It has been previously shown that contact-dependent killing can result
in bistability of bacterial mixtures so that only one strain survives and displaces the other. However, it remains unclear whether
stable coexistence is possible in such mixtures. Using a population dynamics model for two interacting bacterial strains, we
found that coexistence can bemade possible by the interplay of contact-dependent killing and long-range growth inhibition, lead-
ing to the formation of various cellular patterns. These patterns emerge in a much broader parameter range than that required for
the linear Turing-like instability, suggesting this may be a robust mechanism for pattern formation.

INTRODUCTION
In natural habitats, microorganisms often form multispecies
communities with intricate social organization and complex
spatial structures (1). The repertoire of interactions among
microorganisms is very diverse and includes cooperation
(2,3), competition for common resources (4,5), and preda-
tion (6–8). One major question drawing significant interest
is how different microbial species may stably coexist within
a common environment in the presence of competition and
predation (4,9). In this work, we address this question theo-
retically, focusing on one ubiquitous mechanism of bacterial
predation: contact-dependent killing of neighboring cells by
direct injection of lethal toxins via the type VI secretion sys-
tem (T6SS) (10–16). The T6SS has been found in many
genera of bacteria, including Vibrio, Pseudomonas, and
Acinetobacter.

In a recent work, Borenstein et al. (17) demonstrated that
although small micro-colonies of T6SS-sensitive cells are
quickly eliminated by surrounding T6SS-active cells, suffi-
ciently large micro-colonies can survive the assault and
expand. They explained this size-dependent bifurcation with
a purely geometric mechanism. Since the killing occurs on
the perimeter of the colony and the growth is in the bulk, the
overall balance between killing and growth depends on the
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colony size. However, these theoretical results predicted no
stable coexistence; rather, T6SS inhibition was expected to
lead to bistability. Depending on initial conditions, either the
T6SS-sensitive or T6SS-active bacteria outcompete the other
strain and asymptotically approach a spatially uniform state.
The experiments with mixtures of Escherichia coli (T6SS-
sensitive strain) and Vibrio cholerae (T6SS-active strain)
indeed showed either growth or shrinkage of localized do-
mains of E. coli depending on their initial size. However, the
finite time span of the experiments did not allow the authors
to see complete elimination of one strain, and thus the question
of possible coexistence remained open. McNally et al. (18)
also recently studied phase separation in a system of two
mutually antagonistic T6SS-active strains of V. cholerae and
found persistent domain coarsening, which indicates that the
stronger strain would eventually win the competition.

In another recent work, Blanchard et al. (19) computa-
tionally studied the dynamics of a bacterial population
with contact-dependent inhibition such as that mediated
by the T6SS. In the well-mixed case, they also found bist-
ability leading to extinction of one strain or the other. On
the other hand, they reported that in spatiotemporal simula-
tions, if the diffusion of bacteria was sufficiently slow, two
strains could coexist separated by stationary interfaces in a
finite parameter domain. However, this effect in their two-
component model with bistability could have been a conse-
quence of front pinning that may sometimes occur in coarse
finite-difference numerical simulations (20) (see more on
this in the Discussion).
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Although local antagonistic interactions generally lead
to phase separation and coarsening via front propagation
and thus cannot sustain stable strain coexistence, addi-
tional long-range interactions may potentially change this
outcome and lead to stable coexistence. In this article, we
revisit the possibility of stable coexistence in a binary
mixture of T6SS-active and T6SS-sensitive bacteria, taking
into consideration the potential effects of long-range growth
inhibition. We demonstrate theoretically and numerically,
using both continuous deterministic and discrete stochastic
models, that the interplay of short-range killing and long-
range growth inhibition can indeed stabilize the system in
a bimodal state with well-separated patches of different bac-
terial strains. Furthermore, when diffusion of the inhibitor is
fast but finite, stable patterns with a characteristic spatial
scale can emerge. Such long-range growth inhibition can
plausibly arise in natural settings, since a number of factors
that limit colony growth, including resource availability,
waste accumulation, and quorum sensing, are mediated by
fast-diffusing small molecules (21–23). Long-range growth
inhibition can also be forward-engineered using the tools of
modern synthetic biology (24), for example, by placing an
antibiotic resistance gene under the control of a promoter
that is repressed by a fast-diffusing quorum-sensing signal
(e.g., N-acyl homoserine lactones (AHL)).
METHODS

Continuum deterministic model

We developed a continuum population dynamics model for a binary

mixture of two strains of bacteria that grow on a two-dimensional (2D)

surface and interact via both short-range contact-dependent killing and

long-range growth inhibition. The model is based on the partial differential

equations for the area densities of T6SS-sensitive bacteria n1ðr; tÞ and

T6SS-active bacteria n2ðr; tÞ, and on the reaction-diffusion equation for

the density of the growth inhibitor Aðr; tÞ in a 2D space, r˛R2:

vn1
vt

¼ g1

1þ A
n1ð1� n1 � n2Þ � dn1 � kn1n2 þ V2n1; (1)

vn2 2
vt
¼ n2ð1� n1 � n2Þ � dn2 þ V n2; (2)

and

vA

vt
¼ gAn1 � dAAþ DAV

2A: (3)

The first equation describes the logistic growth of the T6SS-sensitive cells,

their spontaneous death, killing by colocated T6SS-active cells, and diffu-

sion. Note that the growth rate of T6SS-sensitive strain 1 is reduced by the

local concentration of inhibitor Aðr; tÞ. We use a simple Hill-like function

for the inhibition since the specific form is not qualitatively important.

The second equation describes the logistic growth of T6SS-active cells,

their spontaneous death, and diffusion. The death rates of both strains are

small, and if they move on solid agar, their diffusion rates are also small.

Although these parameters can be different for the two strains, that differ-

ence is not essential, and we assume them to be equal for simplicity. The
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third equation describes synthesis, decay, and diffusion of the inhibitor A

that reduces the growth rate of species n1. This model has a typical structure

of a reaction-diffusion system. Strictly speaking, bacterial communities are

not reaction-diffusion systems since they do not ‘‘react’’ with each other as

chemical species, and their motility is often quite different from simple

linear diffusion. However, such simplified description of their collective dy-

namics (growth, death, interactions, and motility) is convenient and may

serve as a reasonable first approximation to more realistic models of multi-

strain bacterial communities.

Here, we assume that A is only produced by n1 and only inhibits growth

of n1. This interaction of A only with n1 can be realized in synthetic biology

as discussed later. However, in natural environments, it might also be pro-

duced by n2 and inhibit growth of n2. The analysis of a more general model

with A produced by and inhibiting growth of both strains is discussed in the

Supporting Material, in which we also allow for different death rates of the

two strains. In the analysis and simulations described below, we use Eqs. 1,

2, and 3 for simplicity, but our main conclusions are general. In these equa-

tions, all variables and parameters are scaled by the growth rate of species 2,

the diffusion constant of both strains, and the maximal total density of bac-

teria at which the logistic growth saturates. Note that in our model the cell

growth saturates in the bulk at sufficiently large density, whereas Borenstein

et al. (17) assumed that growth was continuous, with new cells pushing old

cells out of the simulation domain once the maximal density was reached.

This is an important difference since in the latter case, the faster-growing

strain always wins for sufficiently large initial domains, whereas in our sys-

tem, the outcome is more complex and parameter dependent.
Discrete stochastic model

We also developed a lattice-based, discrete-element model to study the ef-

fects of stochasticity on the population dynamics of two bacterial strains.

We assume that each site of a square lattice may contain an integer number

of T6SS-sensitive and T6SS-active cells (n1 and n2, respectively). At every
time step, each cell can divide with a probability that is proportional to its

growth rate (g1 or g2, respectively), thereby increasing the occupancy num-

ber of the corresponding cell type in that lattice site by one. We assume that

each lattice site can only accommodate no more than n0 cells, so once the

total number of cells n1 þ n2 at a certain lattice site reaches n0, cell division

at that site is suspended. To model the short-range cell motility, we allow

cells to hop to any of four neighboring lattice sites with rates Pn if that

neighboring site has a vacancy. A cell can also spontaneously die with prob-

ability proportional to d, thus reducing the number of cells of its type in its

lattice site by one. Finally, type-2 cells can kill type-1 cells with probability

proportional to k if they occupy the same site, thus reducing the occupancy

number n1 by one. All these processes are simulated as independent

Markovian events. We also introduce a real-valued inhibitor field A that

is defined on the same lattice. It is produced at each lattice site in proportion

to the corresponding n1 value, degrades with rate dA, and diffuses with the

diffusion constant DA. The spatiotemporal evolution of A was simulated

deterministically using the first-order split-step pseudospectral method.

We employed 256 � 256 or 512 � 512 lattices with periodic boundary

conditions.
RESULTS

Continuum deterministic theory

Population dynamics without long-range inhibition

Let us first consider the two-species population dynamics
without long-range inhibition by assuming gA ¼ 0 and
imposing the initial condition Aðr; 0Þ ¼ 0. Clearly, Aðr; tÞ
will then remain zero at all times and can be omitted from
consideration. The set of two Eqs. 1 and 2 possesses at
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most four fixed points, including the trivial fixed point
n1;2 ¼ 0, two ‘‘pure’’ states in which either n1 ¼ 0; n2s0

or n1s0; n2 ¼ 0, and a mixed state where both n1;2s0.
The linear stability analysis (see Supporting Material)
shows that if d< 1; g1, the trivial state is always unstable,
and pure n1 and n2 states are stable for sufficiently
large and small g1, respectively. For intermediate g1, at
1<g1 < 1þ kð1� dÞ=d, the system is bistable (see
Fig. 1 A, blue wedge). In the following, we will always as-
sume g1 > 1, since the most interesting dynamics occur
within this regime. For nonzero gA, the bifurcation analysis
can be carried out as well (Supporting Material).

In the bistable regime, two subcolonies dominated by
species 1 and 2 can coexist by occupying different spatial
domains. If these domains contact each other and the diffu-
sion coefficients of the two species are nonzero, smooth
fronts will form, separating the domains of different species.
These fronts will generally move in either direction depend-
ing on the system parameters g1;d;k. Generally, since g1 > 1

for small killing rate k, the front propagates in the direction
A

B C D

FIGURE 1 (A) The blue-shaded wedge in the parameter plane ðg1; kÞ for
d ¼ 0:01 shows the region of bistability in which both pure states are stable

and may transiently coexist in space; however, the fronts separating them

would generally move in either direction when diffusion is not zero.

(B–D) demonstrate how one-dimensional fronts reverse direction when

k is increased from 0.06 (B) to 0.087 (C) to 0.12 (D) for g1 ¼ 6 (direct nu-

merical integration of Eqs. 1 and 2). Only the dynamics of n1 are shown

here. In the region where n1 is high, n2 is low and vice versa. The red solid

line in (A), which is plotted according to formula (4), corresponds to the sta-

tionary front solution. It separates the parameter regions in which either n1
or n2 win the competition. The symbols show the parameter values for

which the fronts were indeed found to be stationary in direct simulations.

To see this figure in color, go online.
of species 2 and species 1 wins, whereas for sufficiently
large k the front reverses and T6SS-active species 2 wins.
For given g1 and d, there is a unique value of ks at which
the front is stationary. For d; k � 1 it can be found analyt-
ically using the so-called Maxwell rule (25) (see Supporting
Material for details),

ks ¼ 3dðg1 � 1Þ2�g2
1 � 1� 2g1lng1

�

2g3
1 þ 3g2

1 � 6g1 þ 1� 6g2
1lng1

: (4)

For small g1 � 1, this expression simplifies to ks ¼
2dðg1 � 1Þ. Direct numerical simulations of Eqs. 1 and 2
agree well with this formula (Fig. 1).

Infinitely fast inhibitor diffusion

In the limit of infinitely fast inhibitor diffusion ðDA/NÞ,
A is spatially uniform, with a magnitude that is dependent
on the average concentration of type-1 bacteria over
the entire domain: N1ðtÞ ¼ R

Cn1ðr; tÞdr=AreaðCÞ. For
dA [ d, after the initial transient, themagnitude of the inhib-
itor A becomes slaved to the current value of N1: AðtÞ ¼
gAN1ðtÞ=dA. In the bistable regime, after the phase separation
has occurred, N1zn�1s1, where s1 is the surface area fraction
occupied by the type-1 strain and n�1 ¼ 1� dð1þ AÞ=g1 is at
the local fixed point. This yields the self-consistency condi-
tion resulting in the relation between s1 and A:

A ¼ g1 � d

dAg1

gAs1
þ d

: (5)

Now we can use the results of the analysis of the two-vari-
able model with renormalized

g�
1 ¼ g1=ð1þ AÞ ¼ ðdAg1 þ dgAs1Þ=ðdA þ gAs1Þ (6)

instead of g1 and determine how the region of bistability
will depend on s (see Fig. 2 A). The bistability region for
1

arbitrary 0< s1 < 1 is the wedge 1<g�
1 < 1þ kð1� dÞ=d

(Fig. 2 A). Since for each s1 there is a unique line corre-
sponding to a stationary front, we can also plot a union of
all lines kðg1Þ by using Eq. 4 with g1 replaced by g�

1 for
arbitrary 0< s1 < 1; this union forms a wedge shown in
Fig. 2 B. Thus, any combination of k and g1 within this
wedge can yield a stationary, phase-separated structure
with a particular area fraction s�1, for which k and g�

1ðs�1Þ
satisfy Eq. 4. Similar results can be obtained in the dual-in-
hibition model in which both species produce and are in-
hibited by the same inhibitor (see Supporting Material).

Dynamically, if the parameters k and g1 fall within the
domain allowing a stationary front for a certain area fraction
s�1 given by Eqs. 4 and 6, but the initial area fraction of species
1 is smaller than s�1, then n1-domains will expand, and s1 will
increase until it becomes equal to s�1, at which time the expan-
sion terminates. Conversely, if s1ðt ¼ 0Þ> s�1, domains of n1
Biophysical Journal 114, 1741–1750, April 10, 2018 1743
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will shrink until s1/s�1. This phase separation with subse-
quent stabilization of the total area fractions occupied by
n1 and n2 is easily seen even when dA=d ¼ Oð1Þ in numerical
simulations of a 2D version of this model starting from
random initial conditions (Fig. S5). Fig. S6 shows a compar-
ison of the stationary state of a one-dimensional (1D) system
as predicted either analytically using Eqs. 4 and 6 or with
direct 1D numerical simulations of the continuum model.
Finite inhibitor diffusion

For large but finite diffusion rate DA, the approximation of
spatially uniform A is only applicable for a sufficiently small
system size L � qh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DA=dA

p
. In larger systems, the

spatial variability of A becomes essential. Furthermore, a
finite diffusion rateDA imposes a characteristic scale for iso-
lated domains of n1 and n2. Indeed, consider an isolated is-
land of n1 in an infinite ‘‘sea’’ of n2 in 1D (Fig. 3 A). This
island is a source of inhibitor A that gradually dissipates
in the surrounding area. Thus, an island of n1 generates a
localized bump of A, of which the amplitude A0 depends
on the size of the island. If the halfwidth of the island x0
is much smaller than the inhibitor diffusion scale q, we
can neglect the variation of A across the island and obtain
the following approximate expression for A0 valid for small
qx0 (see Supporting Material),

A0 ¼ gA

dA

�
1� d

�
g�
1

�
qx0: (7)
A
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The value of A0 depends on the size 2x0 of the island of n1.
For a very small island, the value of A0 is also small, g�

1 is
large, and the island will be expanding. For a sufficiently
large island, the value of A0 is also large, the effective
growth rate of n1, g

�
1 will be small, and the island will

shrink. The island will neither expand nor shrink if the value
of g�

1 ¼ g1=ð1þ A0Þ satisfies Eq. 4, which in turn yields a
solution for x0. Comparisons between the width of an iso-
lated spot of n1 given by this calculation and the direct simu-
lation are illustrated in Fig. 3, B and C (for these plots, we
used a more accurate expression for A0 than Eq. 7; see Sup-
porting Material). The simulation results are generally
consistent with the theory; the slight deviation is because
we neglected the variation of A and n1 across the island.
Also, in the simulations, there is a minimal size for stable
stationary islands—very small islands shrink and disappear.
Reference (17) also pointed out the existence of a critical
minimal size of a T6SS-sensitive domain surrounded by
T6SS-active cells, but in that work, the mechanism behind
it was related to the balance between the bulk growth and
perimeter killing, so the bigger the domain, the greater the
ratio between the area and the surrounding perimeter. In
our model, the bulk growth is saturated at the maximal local
density, so the balance between killing and growth is weakly
dependent on the area. The existence of the critical minimal
domain size is not seen in the analytical results because we
neglected the width of the front between n1 and n2 in the the-
ory (Fig. 3 A). However, in our simulations, for a finite diffu-
sion of n1 and n2, the interfaces have a finite width. When
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the size of an island becomes so small that the two finite-
width fronts of the island between n1 and n2 overlap and
annihilate each other, the island collapses.

We also performed simulations of the full three-compo-
nent deterministic model in 2D, starting from random initial
conditions, and observed the formation of quasi-regular pat-
terns of a characteristic size (see Fig. 4). Depending on the
parameters, such as the strain-1 growth advantage g1 in the
case of Fig. 4 B, the patterns can manifest as strain-1 islands
surrounded by strain 2 or vice versa. For intermediate values
of g1, labyrinthine patterns are observed.

Turing-like instability

It is well known that an interplay of short-range activation
and long-range inhibition is responsible for the onset of
the Turing instability (26). We wondered if pattern forma-
tion in our system was also the result of a Turing-like insta-
bility. Here, indeed, slowly diffusing bacteria n1 effectively
play the role of self-activator by shielding interior cells from
the killer strain n2 and thus promoting their own growth. At
the same time, the fast-diffusing field A produced by n1 acts
as an inhibitor for the growth of n1. When the diffusion con-
stants of activator and inhibitor are sufficiently different, the
Turing mechanism manifests itself in the linear instability of
a uniform state with respect to small spatially periodic per-
turbations with finite wavenumbers. To test whether our
system indeed exhibits Turing-like instability, we linearized
the full model Eqs. 1, 2, and 3 near the mixed state and
computed the eigenvalues of spatially periodic perturba-
tions. We indeed found that for certain parameter values,
the mixed state is linearly unstable with respect to finite-
wavenumber perturbations (Supporting Material).

Fig. 5 A shows the region corresponding to the Turing-like
instability in the ðk;g1Þ plane for fixed d;gA; dA and finiteDA,
t=100 t=1000 t=20

20001000

2000

1000

0
0

= 4.3 = 5.0 =B

A

alongwith the theoretical lines limiting the region for station-
ary fronts in the case of infiniteDA, as shown as the red sector
in Fig. 2 B. As explained above, the existence of such fronts
leads to stable pattern formation. The heatmap indicates the
values of the wavenumber corresponding to the maximal
positive eigenvalue. The Turing-like instability region lies
inside the domain allowing stationary fronts, but it is
much narrower. Similarly, the region for stable pattern for-
mation obtained numerically from the full nonlinear model
Eqs. 1, 2, and 3 for finite inhibitor diffusion is significantly
wider than the corresponding Turing-like instability domain
(Fig. 5 B). These results suggest that pattern formation in this
system is a more robust and easily observable phenomenon
than linear Turing-like instability of a well-mixed state.
Although the Turing-like instability can indeed initiate
morphogenesis in this system, the patterns can emerge and
stabilize in a much broader range of system parameters
because of the nonlinearity of the system. In fact, our numer-
ical simulations show that patterns emerge spontaneously if
the two strains are initially well-separated (i.e., there are suf-
ficiently large regions where n1 [ n2 or n2 [ n1).
Discrete stochastic model

As described in the previous section, the three-component
continuum model for the two slowly diffusing bacterial den-
sities and one fast-diffusing growth inhibitor exhibits a
pattern-forming Turing-like instability. However, numerical
simulations show that stable patterns can exist in a much
wider parameter range. We identified a nonlinear mecha-
nism of pattern formation that is based on interface stabili-
zation because of the self-consistent changes in the growth
caused by the fast-diffusing inhibitor. This raises the
000

 5.5

0

1

n1

FIGURE 4 Pattern formation in a deterministic

model with finite DA ¼ 80 and random initial con-

ditions. (A) shows three snapshots of n1. (B) shows

snapshots at time t ¼ 40000 for different g1.

g1 ¼ 4:5 in (A), and the other parameters are as

follows: d ¼ 0:01, k ¼ 0:03, gA ¼ 0:04, and

dA ¼ 0:02. To see this figure in color, go online.
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question of how such well-separated states can emerge from
an unpatterned initial condition if it is linearly stable. We
note, however, that in an actual experiment, dilute inocu-
lated mixtures would initially grow in conditions that are
actually very different from the spatially uniform, well-
mixed state that is typically assumed in deterministic
reaction-diffusion models. If a mixture was inoculated as a
smattering of isolated bacteria that initially have no direct
contact, then bacteria of both types would grow for some
time, unimpeded by interaction with bacteria of the other
type so by the time they begin contacting each other, they
would form sufficiently large micro-colonies. This scenario
can lead to pattern formation even when the uniformly
mixed state is linearly stable.

We used a lattice-based discrete-element model intro-
duced in Methods to simulate this scenario. The simulation
results from this model are illustrated by three snapshots of
n1 and n2 in Fig. S7 A. The initial condition for this simula-
tion was a ‘‘dilute mixture’’ of both strains, so on average
only 10% of lattice sites were occupied and typically by
no more than a single cell of either type. As seen from the
figure, this initial condition eventually gives rise to a
patterned state in which spots of n1 are surrounded by a
1746 Biophysical Journal 114, 1741–1750, April 10, 2018
‘‘sea’’ of n2. A characteristic size of the pattern emerges,
as evidenced by the narrow-peaked area distribution of n1
spots (Fig. S7 B). If either inhibitor production is disabled
ðgA ¼ 0Þ or neighbor-killing is turned off ðk ¼ 0Þ, patterns
do not form, and either n1 or n2 takes over the whole system
as the other species is driven to extinction, unless the system
parameters are tuned precisely to satisfy the balance condi-
tion similar to Eq. 4 (data not shown).

To evaluate the range of parameters in which patterns
spontaneously emerge from a dilute initial state, we ran a se-
ries of discrete stochastic simulations with a range of values
of g1 and k. Again, the initial condition was randomly
distributed n1 and n2 cells at low concentration. In agree-
ment with the continuum theory, in the bulk of the region
where the existence of stable patterns was expected, the pat-
terns indeed spontaneously emerged (see Fig. 6). As seen
from this figure, depending on the relative growth advantage
of the type-1 strain and the killing efficiency of the type-2
strain, the patterns change their structure: for smaller
g1=g2 or larger k, they appear as isolated islands of n1 sur-
rounded by n2. For large growth advantage of the type-1
strain or small k, the patterns are reversed: the islands of
n2 are surrounded by the sea of n1. In the intermediate range,
we found more symmetric labyrinthine patterns. We also
characterized the observed patterns by the average fraction
of n1 vs. n2 and the power spectrum of the spatial distribu-
tion of n1 (Fig. S8).
DISCUSSION

Ecological diversity is ubiquitous in nature, ranging in scale
from the ecosystems that cover our planet to the microbiome
that inhabits our gut. Diversity plays an important role in
maintaining the functions of an ecosystem; e.g., the gut mi-
crobiome provides many health benefits to its host (27–30).
However, the conditions and mechanisms that robustly sta-
bilize this biodiversity are still unclear. To study and explain
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the coexistence of different species within a community,
several models have been proposed, such as the rock-pa-
per-scissors game models (31–34). On the other hand, in
synthetic biology, stabilization of multistrain microbial
communities has proven to be a challenge (35). One recent
example of ongoing efforts in this direction is a stable cocul-
ture of two different strains with different growth rates in
microfluidic chips using a synthetic population control
gene circuit (36).

Previous modeling studies of multistrain coexistence used
population dynamics equations similar to our work. Frank
(37) studied the co-dynamics of bacteriocin-producing
strain with bacteriocin-susceptible strain and found that
the two species could coexist only when the habitat was
spatially heterogeneous. His results can also be readily
applied to other mechanisms of contact-dependent killing.
In another work, Durrett and Levin (31) studied two-species
interactions via colicins and showed that despite the bist-
ability of well-mixed populations, in a spatially structured
population only one ‘‘stronger’’ strain will eventually win,
depending on system parameters; i.e. neither bistability
nor coexistence occurs. This was consistent with previous
experimental results (38). On the other hand, Iwasa et al.
(39) showed that in relatively small stochastic lattice-type
models, a narrow parameter region of bistability may exist,
but still without coexistence. Blanchard et al. (19) studied
the interaction of two bacterial strains in the presence of
contact-dependent killing using a reaction-diffusion-type
model and correctly predicted the emergence of bistability
that may in principle lead to coexistence of the strains.
They also showed through numerical simulations that fronts
separating two strains can remain static in a finite parameter
range if the diffusion of bacteria is slow enough. However,
this latter result has to be taken with the grain of salt because
front stabilization in finite-difference simulations may come
from pinning. The phenomenon of front pinning in systems
with periodic or random inhomogeneities has been studied
previously (40–44). Discretization of a continuous reac-
tion-diffusion model in finite-difference numerical integra-
tion provides such a periodic structure, which can stop
slowly moving fronts (45,46). In our simulations, to mini-
mize pinning artifacts, we used high spatial resolution
(512–1024 nodes) and relatively large diffusion constant
for bacteria Dn ¼ 1. We also verified our simulations by
increasing spatial resolution and comparing the results to
analytical predictions. The results shown in Fig. 1 demon-
strate that our simulations are indeed consistent with contin-
uum theory. However, if we artificially decrease spatial
resolution and reduce the diffusion constant in our simula-
tions, we immediately begin to see prominent pinning
effects. We performed numerical simulations of the two-var-
iable model without long-range inhibition for small bacterial
diffusionDn ¼ 0:01 and different numbers of grid points Ng.
Some results of these simulations are shown in Fig. S9. For
example, for Ng ¼ 128 nodes and a certain value of g1, there
is a large finite range of k at which the fronts are stationary,
but this range becomes progressively smaller as the number
of nodes increases toward the values used in our work.

The coexistence of different species creates the possibil-
ity of the emergence of regular patterns. One example is a
spiral pattern in the rock-paper-scissors model (34). The bal-
ance of local activation and global inhibition has been used
to explain many forms of pattern formation, such as self-
organized patchiness in ecosystems (47). In another study,
nutrient competition and mechanical pushing can drive the
occurrence of spatial patterns that can also cycle through
hole, labyrinth, and spot patterns (48). The mechanical
pushing plays the role of local activation, and nutrient
competition assumes the task of global inhibition.

In this article, we demonstrated that a combination of
short-range killing with long-range growth inhibition may
lead to stable coexistence and pattern formation in mixtures
of T6SS-sensitive and T6SS-active bacteria. In the absence
of either one of these two mechanisms, one of the two
strains eventually takes over, and no stable spatial patterns
form. Although the mechanism of pattern formation is
similar to the Turing instability, the parameter region for sta-
ble coexistence and pattern formation is much broader than
the range of the linear Turing-like instability of the uniform
mixed state. Thus, in a broad parameter range, the stable
patterns may coexist with stable uniform states, and the final
outcome depends on the initial conditions. If cells of both
types are initially well separated, the system evolves toward
stable patterns. In experiments, this would correspond to an
initially dilute bacterial inoculum where individual cells are
not in direct contact, allowing them to develop into patches
(micro-colonies) before making contact with each other. We
performed simulations of a lattice-based discrete stochastic
model that incorporates cell growth, death, diffusion,
neighbor killing, and growth inhibition, and indeed found
that patterns emerge spontaneously from an initially dilute
state for a broad range of parameters, as predicted by the
theory.

In our continuous model, the motion of bacterial cells is
described by diffusion terms. In reality, bacterial cells do
not simply diffuse like Brownian particles. For example,
T6SS-sensitive motile E. coli cells perform a run-and-tum-
ble random walk, and T6SS-active bacteria Acinetobacter
baylyi move on agar surface through twitching using their
pili (49). Furthermore, when bacteria form dense commu-
nities such as biofilms, cells push each other, and so me-
chanical stress plays an important role in cell motility and
overall colony organization (50–52). In addition, cell mo-
tion and growth of real biofilms are affected by cell-cell
adhesion and secretion of extracellular matrix (53). None
of these factors are included explicitly in our model. Instead,
we use diffusion as a simple but reasonable approximation
of the cell motility as many researchers have done previ-
ously (54–57). In our stochastic lattice model, the cells
can jump to neighboring sites only if there is room there.
Biophysical Journal 114, 1741–1750, April 10, 2018 1747
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Still, the results of our stochastic simulations are consistent
with the theory and simulations of the deterministic contin-
uum model.

Although we only presented theoretical results here, we
anticipate that the mechanism of pattern formation
described in this article operates in nature and can be
observed in the laboratory. Compared to the Turing insta-
bility, this mechanism can produce stable patterns in a
much wider parameter range, likely making it easier for
experimental verification. In our system, it requires that
the T6SS-sensitive bacteria grow faster than T6SS-active
ones (g1 > 1) and that the killing rate k is small. These con-
ditions are not difficult to fulfill. Different bacteria exhibit
vastly different growth rates and abilities to metabolize
different carbon sources (58–60). For example, in our pre-
liminary experiments, the growth rate of T6SS-sensitive
E. coli was found to be significantly faster than T6SS-active
A. baylyi. In the laboratory, we can also vary growth rates by
changing carbon sources and/or adding sublethal amounts of
antibiotics that selectively slow down growth of different
species. The ability of T6SS-active bacteria to kill their
neighbors also varies greatly by both the predator and the
prey. For example, of three T6SS-active species, A. baylyi
can kill V. cholerae, whereas A. baylyi itself succumbs to
Pseudomonas aeruginosa (61). According to the same
study, the T6SS killing rates of these strains are comparable
to their division rates if predator and prey cells maintain pro-
longed contact. However, motile cells are unlikely to have
prolonged contacts, so the effective killing rate may be
significantly smaller. Furthermore, in laboratory environ-
ments, one could tune killing rates in a broad range by
knocking out certain T6SS toxic effectors (62), placing
key components of the T6SS under an inducible promoter
in the predator, or by placing an immunity gene under an
inducible promoter in the prey. The death rate used in our
model is of the order of 0.01 compared with the growth
rate, which is typical in reality (63).

Our model also requires bacteria to produce a long-range
inhibitor. As mentioned above, production of fast-diffusing
waste or consumption of fast-diffusing nutrients could pro-
vide a native mechanism of long-range inhibition. Since
bacteria vary in their ability to utilize different carbon sour-
ces, it is likely that the degree of growth inhibition within a
pair of strains would also differ. However, long-range inhi-
bition could be also forward-engineered using synthetic
biology (24). For example, E. coli could be endowed with
an antibiotic resistance gene controlled by a promoter
repressed by a quorum-sensing signal, such as AHL pro-
duced by a constitutively expressed AHL-synthase LuxI
(64,65). If we add that antibiotic to the media, then as
E. coli grow and produce more and more AHL, which re-
presses the antibiotic resistance gene, the growth of E. coli
colonies would gradually slow down. The T6SS-active
strain (A. baylyi) could be made immune to this antibiotic
by constitutively expressing the same resistance gene.
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Another possible candidate for such long-range inhibitor is
colicin, a type of bacteriocin. Some wild-type E. coli can
produce colicins against closely related bacteria (66–68),
but they themselves are usually not affected by their own
colicin so long as they express an immunity gene (67).
If that immunity gene was knocked out, fast-diffusing
colicins would inhibit the growth of E. coli. We plan to
explore these different possibilities in our future work.
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I. ANALYSIS OF THE TWO-STRAIN MODEL

We consider the interaction of two strains of bacteria, fast-growing strain 1 with local density n1(r, t)andslow −
growingstrain2withlocaldensityn2(r, t). The growth of both strains is limited by the total local density of bacteria,
so when n1 + n2 approaches n0, the growth of both strains saturates. Both strains are characterized by the same
death rate δ. Additionally, strain 2 kills strain 1 on direct contact with the rate κ. Both strains are assumed to diffuse
horizontally with the same small diffusion constant Dn. The model reads as follows

∂n1
∂t

= γ1n1(1− n1 + n2
n0

)− δn1 − κn1n2 +Dn∇2n1 (S1)

∂n2
∂t

= γ2n2(1− n1 + n2
n0

)− δn2 +Dn∇2n2 (S2)

In the following, we assume that all parameters γ1, γ2, δ, κ,Dn, n0 are positive. Without loss of generality, we can
rescale time t̃ = γ2t, space x̃ = (γ2/Dn)1/2x, and densities, ñ = n/n0, so in rescaled variables γ̃2 = 1, γ̃1 = γ1/γ2, δ̃ =

δ/γ2, κ̃ = κn0/γ2, D̃n = 1. For simplicity, in the following we will drop tildas and keep the same notation for the
rescaled variables and parameters:

∂n1
∂t

= γ1n1(1− n1 − n2)− δn1 − κn1n2 +∇2n1 (S3)

∂n2
∂t

= n2(1− n1 − n2)− δn2 +∇2n2 (S4)

Spatially uniform steady states and their stability. This system has four steady states:

1. n1 = 1− δ
γ1
, n2 = 0.

2. n1 = 0, n2 = 1− δ.

3. n1 = 1− δ − δ
κ (γ1 − 1), n2 = δ

κ (γ1 − 1).

4. n1 = n2 = 0.

The Jacobian matrix is

J =

(
a11 a12
a21 a22

)
with

a11 = γ1(1− 2n1 − n2)− δ − κn2 (S5)

a12 = −γ1n1 − κn1 (S6)

a21 = −n2 (S7)

a22 = 1− n1 − 2n2 − δ (S8)

Steady state 1 has eigenvalues λ1 = δ−γ1, λ2 = ( 1
γ1
−1)δ. When γ1 > δ, 1, it is stable and n1 > 0. Steady state 2 has

eigenvalues λ1 = (γ1 − 1)δ − κ(1− δ), λ2 = δ − 1. When δ < 1 and κ > κb = δ(γ1−1)
1−δ , it is stable and n2 > 0. Steady

state 3 is positive when γ1 > 1, δ < 1 and κ > κb but is unstable. Trivial steady state 4 is unstable if γ1 > δ or δ < 1.
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The system is bistable in the range

1 < γ1 < 1 +
κ(1− δ)

δ
(S9)

Stationary front in two-variable model. In the bistable regime, there may exist fronts separating colonies of
strains 1 and 2. These fronts generally move in either direction depending on the system parameters. Generally, if
γ1 > 1, for very small killing rate κ, strain 1 always wins, and the front propagates in the direction of strain 2, while
for sufficiently large κ the front reverses. There is a unique value of κs = κ(γ1, δ) at which the front is stationary.
This value of κs can be found approximately for small δ and κ, when n1 + n2 is close to 1 using the Maxwell rule
known in thermodynamics.

In the following we assume that κ = εK, δ = ε∆ with ε� 1, and introduce new variables

N = ε−1(n1 + n2 − 1), ξ = n1 − n2. (S10)

Conversely, n1 = (1 + εN + ξ)/2, n2 = (1 + εN − ξ)/2. In the new variables and in the first order in ε, Eqs. (S3),(S4)
can be rewritten as

∂tN = −N
2

(γ1 + 1)− N

2
(γ1 − 1)ξ −∆− K

4
(1− ξ2) +∇2N, (S11)

ε−1∂tξ = −N
2

(γ1 − 1)− N

2
(γ1 + 1)ξ −∆ξ − K

4
(1− ξ2) + ε−1∇2ξ. (S12)

The first equation describes fast relaxation toward the solution

N = −
2
(
∆ + K

4 (1− ξ2)
)

γ1 + 1 + ξ(γ1 − 1)
. (S13)

Assuming that the fast initial relaxation has occurred, and N is slaved to slow variably ξ, we can substitute N
from Eq. (S13) in Eq. (S12). Returning to the original parameters κ and δ, after simple algebra we get a single
reaction-diffusion equation for the slow dynamics of ξ,

∂tξ = f(ξ) +∇2ξ, (S14)

where

f(ξ) = δ
1− ξ2

1 + Γξ

[
Γ + (Γ− 1)(1− ξ) κ

4δ

]
(S15)

with Γ = (γ1 − 1)/(γ1 + 1). For small δ and κ, this equation describes slow front propagation. Function f(ξ) has two
roots ξ1,2 = ±1 corresponding to stable fixed points of Eq. (S14), and an intermediate root at Γ+(Γ−1)(1− ξ) κ4δ = 0
corresponding to an unstable fixed point. Maxwell rule states that a front solution of the 1-D reaction-diffusion

equation (S14) connecting stable fixed points ξ1 and ξ2 is stationary if
∫ ξ2
ξ1
f(ξ)dξ = 0.

For Γ � 1, we can drop Γξ in the denominator of (S15). Then it becomes a cubic polynomial, and it is evident
that the integral will be zero if f(ξ) is anti-symmetric with respect to zero, i.e. when intermediate root is ξ = 0, or
Γ + (Γ− 1) κ4δ = 0, which gives

κ

δ
= 2(γ1 − 1). (S16)

For finite Γ, integration of the full function (S15) yields the following expression for the ratio κ/δ at which the front
is stationary,

κ

δ
=

3(γ1 − 1)2(γ21 − 1− 2γ1 ln γ1)

2γ31 + 3γ21 − 6γ1 + 1− 6γ21 ln γ1
. (S17)

It is easy to check that expression (S17) reduces to (S16) for small γ1 − 1.
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II. ANALYSIS OF THE THREE-VARIABLE MODEL

The full model with long-range inhibition reads as follows

∂n1
∂t

=
γ1

1 +A/A0
n1

(
1− n1 + n2

n0

)
− δn1 − κn1n2 +Dn∇2n1, (S18)

∂n2
∂t

= γ2n2

(
1− n1 + n2

n0

)
− δn2 +Dn∇2n2, (S19)

∂A

∂t
= γAn1 − δAA+DA∇2A. (S20)

Use the same scaling as above and Ã = A/A0, γ̃A = γAn0/(γ2A0), δ̃A = δA/γ2, D̃A = DA/Dn, we have

∂n1
∂t

=
γ1

1 +A
n1(1− n1 − n2)− δn1 − κn1n2 +∇2n1 (S21)

∂n2
∂t

= n2(1− n1 − n2)− δn2 +∇2n2 (S22)

∂A

∂t
= γAn1 − δAA+DA∇2A (S23)

where we again drop tildes for simplicity of notation.
Bifurcation analysis of the spatially uniform steady states. Full three-variable system possesses at most 5

real spatially uniform steady states:

1. n1 = γ1−δ
δγA
δA

+γ1
, n2 = 0, A = γ1−δ

δ+
γ1δA
γA

.

2. n1 = 0, n2 = 1− δ, A = 0.

3. n1 = −b+
√
b2−4ac
2a , n2 = 1− n1 − δ, A = γA

δA
n1 where a = κγA

δA
, b = κ− γA

δA
[δ + κ(1− δ)], c = (γ1 − 1)δ − κ(1− δ).

4. n1 = −b−
√
b2−4ac
2a , n2 = 1− n1 − δ, A = γA

δA
n1 where a, b, c are the same as those in steady state 3.

5. n1 = 0, n2 = 0, A = 0.

The Jacobian matrix for the system is

J =

a11 a12 a13
a21 a22 a23
a31 a32 a33


with

a11 =
γ1

1 +A
(1− 2n1 − n2)− δ − κn2

a12 = − γ1
1 +A

n1 − κn1

a13 = − γ1
(1 +A)2

n1(1− n1 − n2)

a21 = −n2
a22 = 1− n1 − 2n2 − δ
a23 = 0

a31 = γA

a32 = 0

a33 = −δA.

The trivial fixed point 5 is always unstable, and we will not consider it below. The steady states of n1, n2 vs. κ
with their stability are illustrated in Fig. S1(A),(B). When γ1 is smaller than a threshold γ1c, steady states 3 and
4 always exist although steady state 3 is non-physical in this case (it corresponds to negative n2) [Fig. S1(C) left].
At the critical value γ1 = γ1c, a codimension-2 bifurcation occurs when steady state 2 overlaps with steady states
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FIG. S1: (A),(B) Steady states of n1 and n2 for different γ1 and κ. Solid lines correspond to stable solutions, long-dashed to
unstable solutions, and short-dashed to non-physical steady states for which either n1 or n2 are negative. (C) Codimension-2
bifurcation at γ1c = 2.98. when two saddle-node bifurcation points are born at certain γ1 and κ and pure solution n1 6=
0, n2 = 0 changes stability. (D) Domains of different stable steady states in the (γ1, κ) parameter plane. Other parameters:
δ = 0.01, γA = 0.04, δA = 0.02.

3 and 4 and two saddle-node bifurcation points emerge [Fig. S1(C) middle]. When γ1 > γ1c, there are two isolated
saddle-node bifurcation points in which steady states 3 and 4 merge and disappear [Fig. S1(C) right].

The condition for the saddle-node bifurcation is b2 − 4ac = 0, which leads to the equation for bifurcation values of
κ = κs,

[1 +
γA
δA

(1− δ)]2κ2s − 2
γAδ

δA
[2γ1 − 1− γA

δA
(1− δ)]κs +

(
γAδ

δA

)2

= 0, (S24)

and thus

κs± =
γAδ

δA

2γ1 − 1− γA
δA

(1− δ)± 2
√
γ21 − γ1[1 + γA

δA
(1− δ)]

[1 + γA
δA

(1− δ)]2

 . (S25)

From Eq. (S25), it can be shown that κs± are real only when

γ1 > γ1c = 1 +
γA
δA

(1− δ). (S26)

We also notice that there is a transcritical bifurcation between steady states 2 and 4 [Fig. S1(A)(B)]. At the
transcritical bifurcation point, n1 = 0 which leads to c = 0, and thus

κ = κt =
δ(γ1 − 1)

1− δ
. (S27)

It is worth mentioning that if b > 0 at κ = κs+ , the saddle-node bifurcation between steady states 3 and 4 happens
at n1 < 0, and then the transcritical bifurcation occurs between steady states 2 and 3 instead of 2 and 4 (an example
is shown in Fig. S2). In this case, region 2 in Fig. S1(B) disappears, and only regions 1 and 3 remain.

Domains in the parameter plane (γ1, κ) corresponding to different spatially-uniform stable steady states are shown
in Fig. S1(D).

Localized spot of n1. Here we find an approximate solution for the width of a stationary spot of n1 surrounded
by the sea of n2, when the diffusion coefficient of A is large but finite. For that we need to compute the distribution
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FIG. S2: For sufficiently large γ1 and small γA, the saddle-node bifurcation between steady states 3 and 4 moves to (non-
physical) negative n1, and the transcritical bifurcation occurs between steady states 2 and 3. Parameters: γ1 = 7, γA = 0.01,
other parameters are the same as in Fig. S1.

of A produced by such a spot, and find at which spot size the level of A within the spot is such that the interfaces
between n1 and n2 are stationary. To compute the stationary distribution of A we use Eq. (S23) with ∂tA = 0,

γAn1 − δAA+DA∇2A = 0. (S28)

We consider only the 1D case here, but the generalization to 2D is straightforward. We assume that the spot size is
much larger than the width of the interfaces separating n1 and n2 (which is of the order of (Dn/γ1)1/2), but much
smaller than the diffusive scale of the inhibitor q = (δA/DA)1/2, and so the spot can be approximated by a rectangular
“pulse” with constant n1 ≈ n1∗ = 1 − δ(1 + A(0))/γ1 for −x0 < x < x0 and zero outside (see Fig. 3A of the Main
text). Solving the Poisson equation (S28) in these two domains and matching A and dA/dx at x = ±x0, we obtain
the following solution for A(x):

A(x) =

{
γA
δA
n1∗(1− e−qx0 cosh(qx)), −x0 < x < x0

γA
δA
n1∗

eqx0−e−qx0
2 e−q|x|, |x| > x0

(S29)

Substituting n1∗ = 1− δ(1 +A(0))/γ1 in Eq. (S29) and take x = 0, we can obtain A(0) explicitly,

A(0) =

γA
δA

(
1− δ

γ1

)
(1− e−qx0)

1 + γAδ
γ1δA

(1− e−qx0)
(S30)

The value of A at the front is

A(x0) =

γA
δA

(
1− δ

γ1

)
(1− e−qx0 cosh(qx0))

1 + γAδ
γ1δA

(1− e−qx0)
(S31)

For large inhibitor diffusion, qx0 � 1, the difference between A(0) and A(x0) is small, these expressions can be further
simplified to

A(0) ≈ A(x0) ≈ γA
δA

(
1− δ

γ1

)
qx0, (S32)
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which shows that for small x0 the magnitude of A bump is proportional to x0, as expected. The spot will be neither
expanding nor shrinking if the value of γ∗1 = γ1/(1 + A(x0)) with A(x0) from (S31) satisfies Eq. (S17), which yields
the equation for x0.

Turing-like instability. To explore the possibility of a linear Turing-like instability in our three-component system,
we linearized Eqs. (S21)-(S23) near relevant fixed points and studied the eigenvalues corresponding to spatially-periodic
perturbations ∼ exp(ikx + λt). Each fixed point has three eigenvalues. Fig. S3 shows three examples of maximal
eigenvalues of relevant steady states in different parameter regions [regions 1, 2 and 3 in Fig. S1(B)] vs. wave number
k. The middle panel (κ = 0.053) indeed demonstrates the occurrence of the Turing-like instability when steady state
4 is unstable with respect to small perturbations within a finite range of wavenumbers. The right panel (κ = 0.07)
shows the situation when the fixed point is unstable with respect to spatially uniform as well as spatially-periodic
perturbations, but the maximal growth rate occurs at a finite wavenumber. Our numerical simulations show that
stable patterns are also possible in this parameter range.

=0.04 =0.053 =0.07

ma
x R

e(
)

ss 1
ss 2
ss 3
ss 4

k0 0.02 0.04 0.06 0.08 0.1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

k0 0.02 0.04 0.06 0.08 0.1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

k0 0.02 0.04 0.06 0.08 0.1

0

kmax

0.01

-0.01

-0.02

-0.03

FIG. S3: Maximal real parts of eigenvalues of different steady states in different regions (regions 1, 2 and 3) in Fig. S1(B) vs.
wave number k. Parameters are γ1 = 7, δ = 0.01, γA = 0.04, δA = 0.02, DA = 100.

III. DUAL-INHIBITION MODEL

To formulate the model considered in the Main text, we assumed that the long-range inhibitor A was only produced
by the T6SS-sensitive strain, and only affected its own growth. To generalize this model, here we assume that A is
produced by both n1 and n2 and it also can inhibit the growth rates of both strains, although not necessarily equally.
Furthermore, here we allow strains to have different death rates δ1 and δ2. We still assume that both strains have the
same diffusion constant for simplicity. Now the model equations read as

∂n1
∂t

=
γ1

1 +A
n1(1− n1 − n2)− δ1n1 − κn1n2 +∇2n1, (S33)

∂n2
∂t

=
1

1 + αA
n2(1− n1 − n2)− δ2n2 +∇2n2, (S34)

∂A

∂t
= γA1n1 + γA2n2 − δAA+DA∇2A. (S35)

Similar to the results in the Main text, for infinitely fast inhibitor diffusion, A is spatially-uniform with a magnitude
that is now dependent on the mean concentrations of both types of bacteria over the entire domain. If s1 is the surface
area fraction occupied by the type-1 strain, then n∗1 = 0, n∗2 = 1− δ2(1 + αA) and n∗1 = 1− δ1

γ1
(1 +A), n∗2 = 0 are the

two local fixed points. This yields the self-consistency condition resulting in the relation between s1 and A:

s1γA1(1− δ1
γ1

(1 +A)) + (1− s1)γA2(1− δ2(1 + αA)) = δAA, (S36)
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then

A =
s1γA1(1− δ1

γ1
) + (1− s1)γA2(1− δ2)

s1γA1
δ1
γ1

+ (1− s1)γA2δ2α+ δA
. (S37)

Stationary fronts for infinitely fast inhibitor diffusion. First, we derive the condition for stationary fronts
for the generalized two-variable model with δ1 6= δ2 . Since A affects the growth rate of n2 in the subsequent analysis,
we also do not scale out the growth rate of n2 and write it explicitly as γ2. Consider the equations

∂n1
∂t

= γ1n1(1− n1 − n2)− δ1n1 − κn1n2 +∇2n1, (S38)

∂n2
∂t

= γ2n2(1− n1 − n2)− δ2n2 +∇2n2. (S39)

We assume that κ = εK, δ1 = ε∆1, δ2 = ε∆2 with ε� 1, and again introduce new variables

N = ε−1(n1 + n2 − 1), ξ = n1 − n2. (S40)

Conversely, n1 = (1 + εN + ξ)/2, n2 = (1 + εN − ξ)/2. In new variables and in the first order in ε,

∂tN = −N
2

(γ1 + γ2)− N

2
(γ1 − γ2)ξ − 1

2
(∆1 + ∆2)− ξ

2
(∆1 −∆2)− K

4
(1− ξ2) +∇2N, (S41)

ε−1∂tξ = −N
2

(γ1 − γ2)− N

2
(γ1 + γ2)ξ − 1

2
(∆1 + ∆2)ξ − 1

2
(∆1 −∆2)− K

4
(1− ξ2) + ε−1∇2ξ. (S42)

The first equation describes fast relaxation toward the solution

N = −
(∆1 + ∆2) + ξ(∆1 −∆2) + K

2 (1− ξ2)

γ1 + γ2 + ξ(γ1 − γ2)
. (S43)

Assuming that the fast initial relaxation has occurred, and N is slaved to ξ, we can substitute N from Eq. (S43) in
Eq. (S42). Returning to the original parameters κ and δ1,2, after simple algebra we get a single reaction-diffusion
equation for the slow dynamics of ξ,

∂tξ = f(ξ) +∇2ξ, (S44)

where

f(ξ) =
1− ξ2

1 + Γξ

[
δ1 + δ2

2
Γ− δ1 − δ2

2
+ (Γ− 1)(1− ξ)κ

4

]
(S45)

with Γ = (γ1− γ2)/(γ1 + γ2). For small δ1,2 and κ, this equation describes slow front propagation. Function f(ξ) has

two roots ξ1,2 = ±1 corresponding to stable fixed points of Eq. (S44), and an intermediate root at δ1+δ2
2 Γ− δ1−δ2

2 +
(Γ − 1)(1 − ξ)κ4 = 0 corresponding to an unstable fixed point. Maxwell rule states that a front solution of the 1-D

reaction-diffusion equation (S44) connecting stable fixed points ξ1 and ξ2 is stationary if
∫ ξ2
ξ1
f(ξ)dξ = 0.

For finite Γ, integration of the full function (S45) yields the following expression for κ at which the front is stationary,

κ =
3(γ − 1)2(γ2 − 1− 2γ ln γ)

2γ3 + 3γ2 − 6γ + 1− 6γ2 ln γ

(
δ1 + δ2

2
− δ1 − δ2

2

γ + 1

γ − 1

)
, (S46)

where γ = γ1/γ2.
Returning to the three-variable model (Eqs. (S33)-(S35)), we notice that for spatially uniform A, the rescaled

growth rates are γ∗1 = γ1
1+A and γ∗2 = 1

1+αA , and

γ =
γ∗1
γ∗2

= γ1
1 + αA

1 +A
. (S47)

Thus, the fronts become stationary when A is equal to uniform A∗ at which γ and κ satisfy Eq. (S46). This value
of A∗ corresponds to a particular area fraction s∗1 according to Eq. (S37). Thus, the union of the curves defined by
Eq. (S46) together with Eqs. (S37) and (S47) when s1 changes from 0 to 1, will yield the region for stationary fronts
where we can expect emergence of patterns.
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Stability of stationary fronts. Next we derive the condition for stability of stationary fronts with respect to
their uniform displacement. If there is a small front displacement that changes s1 with respect to s∗1 by a perturbation

∆s1, then the ratio of γ1/γ2 changes as well, by ∆γ = ∂γ
∂A

∂A
∂s1

∆s1. It is easy to see that the stationary front is stable if
∆s1∆γ < 0, so for s1 > s∗1, γ < γ∗, the front moves in the direction that decreases s1 back to s∗1. In the opposite case,
the front will move in the direction to further increase s1, and n1 will win. Thus, the condition for stable stationary
fronts is

∂γ

∂A

∂A

∂s1
= γ1

α− 1

(1 +A)2

γA1γA2[αδ2(1− δ1
γ1

)− δ1
γ1

(1− δ2)] + [γA1(1− δ1
γ1

)− γA2(1− δ2))]δA

[s1γA1
δ1
γ1

+ (1− s1)γA2δ2α+ δA]2
< 0. (S48)

If δ1, δ2, γA1, γA2 � 1, the condition can be simplified to

(α− 1)(γA1 − γA2) < 0. (S49)

This means if n2 produces A faster than n1 (γA2 > γA1), for the stationary fronts to be stable, the growth inhibition
of n2 should be stronger (α > 1) and vice versa. If α = 1, then γ = γ1 is a constant, and the front is only stationary
on a single curve, as in the two-variable model without long-range inhibition.

One example of the region for stationary fronts and pattern formation is shown in Fig. S4.

0 5 10 15

x10-3

0

1

2

3

0

10
n1

Stationary front boundary from theory

FIG. S4: Typical patterns emerging from random initial conditions in stochastic simulations of the dual-inhibition model for
different values of parameters κ and γ1. Other parameters are n0 = 10, α = 0.1, δ1 = 0.01, δ2 = 0.005, γA1 = 0.004, γA2 =
0.001, δA = 0.02, DA = 12.5, Pn = 0.1. The system size is 256×256.

IV. FRONT PINNING

To address the issue of possible front pinning due to spatial discretization of continuous reaction-diffusion-type
models and compare the results with Blanchard et al.[1], we performed 1D simulations of front dynamics in the two-
variable model (Eqs. (S3)(S4)), but changed the diffusion constant to a much smaller value Dn = 0.01 using different
spatial discretizations of the computational domain of fixed length L = 1024. The results are shown in Fig. S9. The
width of the wedge in the (γ1, κ) plane in which fronts are stationary decreases exponentially with the number of grid
points. When the number of spatial points is 1024, the width of the wedge is so small that it appears as a single
line that is consistent with the continuum theory prediction (red curve). However, when the number of spatial points
is reduced to 512, the wedge where fronts are stationary appears, which means front pinning. When the number
of points is reduced even further, the region for front pinning becomes larger. The fewer number of grid points is
equivalent to smaller diffusion constants for the same spatial resolution, thus these results also imply that, as the
diffusion constant becomes smaller, the parameter region for pinned fronts increases, which is consistent with Ref. [1].
In our simulations, we used relatively high diffusion constant Dn = 1 and a sufficiently large number of grid points to
make pinning effects negligible.

V. DETAILS OF THE DISCRETE LATTICE MODEL

In our stochastic simulations, we used a discrete lattice model to simulate strain competition and pattern formation.
Specifically, the rules of the model are as follows: the number of cells in each strain is an integer number, so we used
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unscaled parameters to carry out the simulations. We use a lattice model to do stochastic simulations, the rules for
the simulations are:

1. We consider a square lattice model 0 ≤ {i, j} ≤ N .

2. The number of individuals of each of the two species n1, n2 at each lattice site {i, j} is integer, and the sum of
n1(i, j) andn2(i, j) cannot exceed the maximum carrying capacity n0.

3. The inhibitor A is defined as a real-valued field on the same lattice.

4. At each time step ∆t, n1(i, j) can increase by one, [n1(i, j) → n1(i, j) + 1], with the probability γ1n1(i, j)[1 −
(n1(i, j) + n2(i, j))/n0]∆t or die [n1(i, j) → n1(i, j) − 1] with the probability (δn1(i, j) + κn1(i, j)n2(i, j))∆t.
Similar probabilities apply to n2 with swapping of subscripts 1↔ 2 without the killing term.

5. Each cell can jump to one of four neighboring squares with the probability Pn∆t. The destination site is chosen
at random, unless the neighboring site already has n0 cells, then jumping there is forbidden.

6. We impose periodic boundary conditions in both dimensions for n1(i, j), n2(i, j), and A(i, j).

7. Reaction-diffusion dynamics of A is implemented via a split-step pseudo-spectral method.

VI. SUPPLEMENTARY MOVIES

Movie 1 Two-dimensional simulations of the deterministic continuum model with spatially uniform inhibitor A
(infinite DA) and random initial conditions. Parameters: γ1 = 4.5, δ = 0.01, κ = 0.03, γA = 0.04, δA = 0.02.

Movie 2 Two-dimensional simulations of the deterministic continuum model with finite DA = 80 and random initial
conditions. Parameters: γ1 = 4.5, δ = 0.01, κ = 0.03, γA = 0.04, δA = 0.02.

Movie 3 Two-dimensional stochastic simulations with random initial conditions. Parameters: γ1 = 3.5, γ2 = 1, n0 =
10, δ = 0.01, κ = 0.003, γA = 0.004, δA = 0.02, Pn = 0.1, DA = 12.5.

Movie 4 Two-dimensional stochastic simulations of dual-inhibition model with random initial conditions. Parame-
ters: γ1 = 6, γ2 = 1, n0 = 10, δ1 = 0.01, δ2 = 0.005, α = 0.1, κ = 0.001, γA1 = 0.004, γA2 = 0.001, δA = 0.02, Pn1 =
0.1, Pn2 = 0.5, DA = 12.5.

[1] Andrew E Blanchard, Venhar Celik, and Ting Lu. Extinction, coexistence, and localized patterns of a bacterial population
with contact-dependent inhibition. BMC Systems Biology, 8(1):1, 2014.
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FIG. S5: Phase separation in the deterministic model with spatially uniform inhibitor A (infinite DA) and random initial
conditions. Three snapshots of n1 and the time course of s1, s2 and A for 2D model. At large times, the area fractions s1 and s2
approach constant values, and the patterned state stabilizes. Parameters: γ1 = 4.5, δ = 0.01, κ = 0.03, γA = 0.04, δA = 0.02.
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FIG. S6: Final area fractions of the two strains and the inhibitor level A as functions of the killing rate κ in the deterministic
1D model with spatially uniform inhibitor A (infinite DA) and random initial conditions. The solid curves show the theoretical
predictions using Eqs. (4)(6) in the Main text, and the circles show the simulation results. Parameters: γ1 = 4.5, δ = 0.01, γA =
0.04, δA = 0.02, system size is 4096.
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FIG. S7: Discrete stochastic simulations of pattern formation in a mixture of T6SS-sensitive (n1) and T6SS-active (n2) bacteria.
(A) Three snapshots of a typical simulation. (B) Area distribution of spots of n1 at t = 20000. The distribution result is from
10 stochastic simulations. Parameters: γ1 = 3, γ2 = 1, n0 = 100, δ = 0.01, γA = 0.0001, δA = 0.005, Pn = 0.04, DA = 5 and
κ = 0.00025.
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FIG. S8: Analysis of the patterns in stochastic simulations in Fig. 6. (A) n1 area ratio s1 vs. γ1 in stochastic simulations for
different κ. The fraction of n1 changes continuously from 0 to 1 as the control parameter γ1 moves across the pattern-forming
range. (B) Peak wavelength of the asymptotic pattern vs. γ1 for the same three values of κ as in panel (A). The circles
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scale is diverging near the boundaries of the pattern-forming region in the parameter space. Inset: the power spectrum for
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FIG. S9: Coarse spatial discretization leads to front pinning in finite-difference numerical simulations. Different lines show
the simulation results for different numbers of grid points. Parameters: δ = 0.01, Dn = 0.01.
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