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Divide-and-conquer GMM fit of cryo-EM maps. To efficiently and accurately fit a high-

resolution density map 𝛹"  using a GMM with a large number of Gaussians, we used the divide-

and-conquer approach developed in Ref. (1). We started from a low-resolution fit of  𝛹"  using a 

GMM with a small number of Gaussians, obtained by an Expectation Maximization algorithm 

(2). For each component 𝜙",%&  of this initial GMM, we defined a submap of the original map 

 

Ψ",%& (𝑥) = Ψ"(𝑥) ⋅
𝜙",%& (𝑥)

∑ 𝜙",.& (𝑥)/0
1

.2&

 

 

Each submap is localized in a subregion where the component 𝜙",%&  is localized and the sum all 

submaps regenerates the original map 𝛹" . The process is repeated and each submap Ψ",%&  fit 

using another GMM with small number of Gaussians. At each iteration, the portion of the 

original map fit by a given GMM becomes smaller and smaller, so that eventually few Gaussians 

will be sufficient to accurately reproduce high-resolution, local details. By construction, the 

GMM defined by the union of all the GMMs obtained at a given iteration fits the original map. 

This approach can be efficiently run in parallel on a cluster until the global GMM reaches the 

desired accuracy, measured here in terms of cross-correlation with the original map. 

For GroEL, we progressively fit the synthetic map using 20, 400, and 4000 Gaussians (Figure 

S1), until reaching a final cross-correlation of over 0.99. In the case of the STRA6 receptors, we 

fit the experimental map with 20, 4000, and 11585 Gaussians (Figure S2), with a final cross-

correlation of over 0.97. 
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Derivation of the forward model. To quantify the agreement of an ensemble of models with the 

experimental map, we need a forward model, i.e. a predictor of the cryo-EM density map from a 

single structural model. Our forward model is a GMM 𝜙3 with 𝑁3 Gaussian components. Since 

here we employed high-resolution synthetic and real cryo-EM maps, we used one component for 

each heavy atom of the system: 

𝜙3(𝒙) = 6𝜙3,%(𝒙) =6𝜔3,% ⋅ 𝐺9𝒙|	𝒙3,%, 𝛴3,%=
/>

%2&

/>

%2&

	 

 

To derive the parameters of the Gaussian for a given atomic specie (weight and covariance 

matrix), we fit the tabulated electron scattering form factors (3) for the neutral atom 𝑖 using a 

single Gaussian: 𝑓(𝑠) = 𝐴% exp(−𝐵%	𝑠H). 

 

The fitting procedure followed the protocol described in Ref. (4) to fit electron atomic scattering 

factors with multiple Gaussians. Naturally, the one-Gaussian approximation of the form factor is 

accurate up to a certain value of 𝑠.  For density maps of resolution up to ~3 Å, we estimated a 

maximum relative deviation between tabulated and fitted form factors equal to 1%. In Tab. S1, 

we report, for neutral C, N, O, and S atoms, the results of the fitting procedure, the range of 

validity of the one-Gaussian approximation, and the relative maximum error.  

From the Gaussian fit of the form factors, we can derive the parameters of the Gaussian in real 

space (our forward model) by Fourier Transform 

 

𝑓(𝑟) = 𝐴% J
𝜋
𝐵%
L
M/H

exp O−	
𝜋H

𝐵%
	𝑟HP 
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which leads to the following identities 

𝜔3,% = 𝐴%,						𝜎% =
1
𝜋
S𝐵%
2 ,				𝛴3,% = 		

U
𝜎%H 0 0
0 𝜎%H 0
0 0 𝜎%H

W							 

 

Enhanced sampling of the metainference ensemble. To accelerate sampling of the 

metainference ensemble, we used the well-tempered metadynamics algorithm (5). We added an 

auxiliary variable 𝛽 to the metainference energy function: 

𝐸3Z = 𝐸3" −
𝑘\𝑇
𝛽 6log a

1
29𝑜𝑣"",% − 𝑜𝑣ddd3",%=

	erf O
𝑜𝑣"",% − 𝑜𝑣ddd3",%

√2	𝜎h,%ij3
Pk

h,%

			 

with 𝛽 ≥ 1. The effect of this variable is to weaken the strength of the restraint on the 

experimental data and avoid the system to get trapped in local free-energy minima. This 

parameter was sampled using a Monte Carlo (MC) algorithm at every MD simulation step. We 

defined 𝛽 on a discrete grid of 𝑁m = 20 bins in the range from 𝛽n%o = 1 to 𝛽npq = 1000 and 

distributed it according to 

𝛽. = 𝛽n%o ⋅ exp r
𝑗

𝑁m − 1
⋅ log J

𝛽npq
𝛽n%o

Lt 

 

with 0 ≤ 𝑗 ≤ 𝑁m − 1. For 𝑗 = 0, we recovered the standard metainference score. To accelerate 

sampling in the 𝛽 variable, we used a well-tempered metadynamics bias potential 𝑉. constructed 

by adding at every MC step a “Gaussian” with height equal to (5) 

 

Wx ⋅ exp y−
𝑉.

𝑘\𝑇	(𝛾 − 1)
{ 
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where 𝑊x is the initial height and 𝛾 the bias factor. The values of 𝑊x and 𝛾 were optimized 

separately for GroEL and STRA6 simulations. The effect of the bias potential is to ensure 

efficient diffusion in the space of the 𝛽 index, which otherwise would be hampered by high free-

energy barriers (Figure S9). We considered for post-processing all the conformations sampled at 

𝛽 = 1, as these correspond to the members of the actual metainference ensemble. No further 

reweighting of these conformations was needed, as the well-tempered metadynamics bias 

potential tends to become quasi-stationary in the long-time limit and thus all conformations at 

𝛽 = 1 are sampled under the effect of the same bias potential. 

 

Noise marginalization. We used a Gaussian model of noise with one uncertainty parameter per 

data point, i.e. per component of the data GMM: 

𝑝9𝑜𝑣"",%|𝑿, 𝜎h,%= =
1

√2𝜋	𝜎h,%
∙ exp a−

9𝑜𝑣"",% − 𝑜𝑣ddd3",%	=
H

2	𝜎h,%H
		k	 

 

where 𝑜𝑣"",% is the overlap of the 𝑖-th component of the data GMM with the entire data GMM. 

The noise parameter 𝜎h,% = �9𝜎h,%\ =
H
+ 9𝜎h,%ij3=

H
  includes all sources of errors (6): errors in the 

data and forward model 9𝜎h,%\ = and the statistical error due to the finite size of the metainference 

ensemble 9𝜎h,%ij3=.  This distribution accounts for a variable level of errors across the map, for 

example due to higher radiation damages to the periphery of the complex. However, sampling all 

the uncertainty parameters 𝜎h,% becomes a daunting task, as high-resolution maps require GMMs 

with thousands of components. Therefore, we marginalized all the 𝜎h,% parameters by integrating 

the likelihood in combination with a Jeffreys prior 𝑝9𝜎h,%= = 1/𝜎h,%, in a range corresponding to 
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absence of noise in the data (𝜎h,%\ = 0) to infinite noise (𝜎h,%\ = ∞). The resulting marginal 

likelihood is 

 

𝑝9𝑜𝑣"",%|	𝑿= = � 𝑝9𝑜𝑣"",%|𝑿, 𝜎h,%=
�

��,�
��>

𝑝9𝜎h,%=	𝑑𝜎h,%

=
1

29𝑜𝑣"",% − 𝑜𝑣ddd3",%=
erf O

𝑜𝑣"",% − 𝑜𝑣ddd3",%
√2	𝜎h,%ij3

P 

 

where the error function erf(𝑥) is defined as 

 

erf(𝑥) =
2
√𝜋

� exp(−𝑡H)	𝑑𝑡
q

x
 

 

The metainference structural ensemble resulting from sampling this marginal posterior is 

identical to the one that we would obtain by sampling the non-marginal version. However, upon 

marginalization we lose direct information about the noise level of each region of the map. In the 

following section, we introduce two approaches to recover  a posteriori the local level of noise. 

 

Noise inference. In principle, one can use a reweighting procedure to calculate the average value 

of 𝜎h,% for each component of the data GMM. 𝑝9𝜎h,%|𝜙"= can be estimated from a sample of the 

metainference posterior 𝑝(𝑿|𝜙") in the following way. We start by noting that 

 

𝑝9𝜎h,%|𝜙"= = �𝑑𝑿�𝑑𝝈 	𝑝(𝑿, 𝝈|𝜙") 

 

where the integral in 𝝈 is over all the 𝜎�,. with 𝑠 ≠ 𝑟 or  𝑗 ≠ 𝑖. We can multiply and divide the 

integrand by 𝑝(𝑿|𝜙") 
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𝑝9𝜎h,%|𝜙"= = �𝑑𝑿�𝑑𝝈	
𝑝(𝑿, 𝝈|𝜙")
	𝑝(𝑿|𝜙")

⋅ 	𝑝(𝑿|𝜙") = 〈�𝑑𝝈	
𝑝(𝑿, 𝝈|𝜙")
	𝑝(𝑿|𝜙")

〉3Z	 

 

where the average 〈⋅〉 is taken over the metainference simulations. If carry out the integration in 

𝝈 at the numerator, we obtain 

𝑝9𝜎h,%|𝜙"= = 〈
𝑝9𝜙",%|𝑿, 𝜎h,%= ⋅ 𝑝9𝜎h,%=

𝑝9𝜙",%|𝑿=
〉3Z 

which allows to numerically estimate 𝑝9𝜎h,%|𝜙"= from the average of known quantities 

calculated a posteriori over the metainference simulations. The average error is then calculated 

as 〈𝜎h,%〉 = ∫ 𝜎h,% 	𝑝9𝜎h,%|𝜙"=	𝑑𝜎h,%. 

 

Alternatively, one can infer the most probable local level of noise from the entire ensemble 𝑿 

generated by the metainference simulations. 𝑿 contains all conformations generated by all 

replicas during the metainference run. For each component of the data GMM, the probability of 

having a noise level equal to 𝜎%, given the ensemble and the data is: 

 

𝑝9𝜎%|𝑿,𝜙",%= =
𝑝9𝑿, 𝜎%|𝜙",%=
𝑝9𝑿|𝜙",%=

∝ 𝑝9𝜙",%|𝑿, 𝜎%= ⋅ 𝑝(𝜎%) 

where we omitted all terms independent from the level of noise, as these are constant in this post-

processing stage. If we use the same Gaussian noise model and Jeffreys prior for 𝜎% employed in 

the generation of models, we obtain: 

𝑝9𝜎%|𝑿,𝜙",%= ∝
1
𝜎%H
⋅ exp a−

9𝑜𝑣"",% − 𝑜𝑣ddd3",%	=
H

2	𝜎%H
		k	 

where 𝑜𝑣ddd3",% is the average overlap calculated over the entire metainference ensemble 𝑿. 

From this relation, we obtain the probability of the relative noise level 𝜎%h�� = 𝜎%/𝑜𝑣"",% from a 

simple change of variable: 
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𝑝9𝜎%h��|𝑿,𝜙",%= ∝
1

9𝜎%h��=
H ⋅ exp a−

9𝑜𝑣"",% − 𝑜𝑣ddd3",%	=
H

2	𝑜𝑣"",%H 9𝜎%h��=
H 		k =

1

9𝜎%h��=
H ⋅ exp a−

𝛥%H

2	9𝜎%h��=
H		k 

 

𝛥% is the relative deviation of the experiment from the prediction and can be back-calculated, for 

each compoenent of the data GMM, a posteriori from the ensemble 𝑿. At this point, the most 

likely level of relative noise is defined as the value 𝜎�h��ddddd that maximizes 𝑝9𝜎%h��|𝑿,𝜙",%=: 

𝜎�h��ddddd =
𝛥%
√2

 

In this work, we adopted this simpler approach to calculate the error map for GroEL and STRA6 

(Figures 1E, 2E, and S4E), following the procedure described in the next section. 

 
Noise map. To visualize the relative error 𝜎�h��ddddd associated to each component of the data GMM 

𝜙" along with the experimental map, we first created a voxel-representation of 𝜙" using the 

gmconvert utility (2). We then defined an error map 𝜎" on the same grid as 𝜙" 

 

𝜎"(𝒙) =
∑ 𝜎�h��ddddd ⋅ 𝜙",%(𝒙)
/0
%2&

∑ 𝜙",%(𝒙)
/0
%2&

 

 

and used UCSF Chimera (7) to color the voxel-representation of 𝜙" using 𝜎" (Figures 1E, 2E, 

and S4E).  
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Supplementary Tables 

Table S1. Summary of the building blocks of the metainference approach to model structure and 

dynamics from cryo-EM data.    

# Name Equation  Notes PLUMED 
keywords 

 1 
normalized 
Gaussian 
function  

𝐺(𝒙|	𝒙�, Σ) =
1

(2𝜋)
M
H|Σ|

&
H
exp y−

1
2
	(𝒙

− 𝒙�)�(	Σ)�&(𝒙 − 𝒙�){			 
  

 

 2 
j-th 

component of 
model-GMM  

𝜙3,.(𝒙) = 𝜔3,. ⋅ 𝐺9𝒙	|	𝒙3,., Σ3,.=  

differentiable 
function of the 

model 
coordinates  

 
 

3 
i-th 

component of 
data-GMM 

𝜙",%(𝒙) = 𝜔",% ⋅ 𝐺9𝒙	|	𝒙",% , Σ",%=   

4 model-GMM  𝜙3(𝒙) = ∑ 𝜙3,.(𝒙)
/>
.2&  

forward model to 
predict a density 

map from the 
model 

 

5 data-GMM  𝜙"(𝒙) = ∑ 𝜙",%(𝒙)
/0
%2&  GMM fit of the 

experimental map  GMM_FILE 

6 
overlap of two 

GMM 
components 

𝑜𝑣3,.	",% = ∫𝑑𝒙	𝜙3,.(𝒙)	𝜙",%(𝒙) =
�>,�	�0,�

(H�)�/� ¡>,�¢¡0,� 
1/� exp £−

&
H
	9𝒙3,. −

𝒙",%=
�9	𝛴3,. + 𝛴",%=

�&9𝒙3,. − 𝒙",%=¤ 
 

overlap of the j-th 
component of 
model-GMM 
with the i-th 

component of 
data-GMM 

 

7 total overlap  

𝑜𝑣3",% = �𝑑𝒙	𝜙3(𝒙)	𝜙",%(𝒙)

=6𝑜𝑣3,.	",%

/>

.2&

 

 

total overlap 
between model-
GMM and i-th 
component of 

data-GMM 

NL_CUTOFF 
NL_STRIDE 
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8 average total 
overlap  

�𝑑𝒙	¥
1
𝑁
6𝜙3h (𝒙)
/

h2&

¦	𝜙",%(𝒙)

=
1
𝑁
6𝑜𝑣3",%h
/

h2&

= 𝑜𝑣ddd3",% 

total overlap of 
model-GMM 

averaged across 
the metainference 

replicas 

 

9 experimental 
overlap 𝑜𝑣"",% = �𝑑𝒙	𝜙"(𝒙)	𝜙",%(𝒙) 

total overlap 
between data-
GMM and i-th 
component of 

data-GMM 

 

10 

data-restraint 
for the i-th 

component of 
data-GMM 

𝐸",%

= −𝑘\𝑇6log r
1

29𝑜𝑣"",% − 𝑜𝑣ddd3",%=
t

h

− 𝑘\𝑇6log aerf ¥
𝑜𝑣"",% − 𝑜𝑣ddd3",%

√2	𝜎h,%ij3
¦k

h

 

Obtained from 
marginalization 

of Gaussian noise 

SIGMA_MEAN 
TEMP 

11 total data-
restraint 𝐸"26𝐸",%

/0

%2&

 
sum over all the 
components of 
the data-GMM 

EMMI 

12 
metainference 

energy 
function 

𝐸3Z = 𝐸3" + 𝐸"   
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Table S2. Parameters of the forward model. The electron atomic scattering factors for C, N, O, 

and S neutral atoms were fit using a single Gaussian function 𝑓(𝑠) = 𝐴% exp(−𝐵%	𝑠H). For each 

atom, we report the best fit of the A and B coefficients, the maximum value of 𝑠 used in the 

fitting procedure (𝑠npq), the lower bound in resolution for the validity of the single-Gaussian 

approximation (𝑑n%o), and the maximum error (errmax), defined as maximum relative deviation 

of the fit from the tabulated atomic scattering factor in the range 0 ≤ 𝑠 ≤ 𝑠npq.   

  

Atom type A B  
[Å2] 

𝒔𝒎𝒂𝒙 
[1/Å] 

𝒅𝒎𝒊𝒏 
[Å] errmax 

C 2.50 15.15 0.15 3.3 0.0101 

N 2.20 11.11 0.17 2.9 0.0095 

O 1.98 8.60 0.19 2.6 0.0093 

S 5.14 15.90 0.15 3.3 0.0109 
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Supplementary Figures 

 

 

 

 

Figure S1. Cross-correlation of the GMM fit with the synthetic GroEL map as a function of the 

number of GMM components. The cross correlation was 0.90 for 20 Gaussian components (red 

star), 0.985 for 400 Gaussian components (yellow star), and 0.995 for 4000 Gaussian 

components (green star). 
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Figure S2. Cross-correlation of the GMM fit with the STRA6 experimental map (EMD code 

8315) as a function of the number of GMM components. The cross correlation was 0.44 for 20 

Gaussian components (red star), 0.68 for 400 Gaussian components (yellow star), and 0.97 for 

11585 Gaussian components (green star). 
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Figure S3. Stereochemistry assessment of the STRA6 single-structure deposited model and 

metainference ensemble. PROCHECK (8) was used to calculate the distributions of backbone 

dihedral angles across all residues and models. Dihedrals were then classified in 4 regions of the 

Ramachandran plot (A): residues in most favoured regions (red), in additional allowed regions 

(yellow), in generously allowed regions (light yellow), and in disallowed regions (white). The 

percentages of residues in each of the four regions is reported for the single-structure model (B) 

and the metainference ensemble (C). 
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Figure S4. Application of the metainference method to the STRA6 membrane complex. We 

report the same analysis of Figure 2 for the second independent metainference run.  
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Figure S5. (A) Comparison of the crystal structure of apo GroEL (PDB code 1XCK, blue) with 

the center of cluster 1 of the metainference simulations (cyan). (B) Comparison of GroEL-ADP* 

(red), a model built from the extended allosteric state adopted by GroEL in complex with ADP 

(PDB code 4KI8) with the center of cluster 2 of the metainference simulations (orange). (C) 

Summary of the backbone RMSD values between input structures and metainference models. 
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Figure S6. Distribution, in terms of a probability density function (Pdf), of the inferred level of 

relative noise across all components of the GroEL data GMM.  
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Figure S7. Root-mean-square fluctuation (rmsf) calculated on the Cα atoms of the STRA6 

receptor (A), independently for the two identical chains of the dimer and in the two production 

runs (red, magenta, blue, and green lines). On the x-axis, specific regions of the STRA6 structure 

are highlighted along the sequence using different colors: the N-terminal domain (red), the TM 

domain (grey), the JM helix (green), the RBP-binding motif and LP (orange), the cytosolic loop 

(magenta), and the C-terminal domain (blue). Rmsf calculated on the Cα atoms of the 

calmodulin domain (B), independently for the two identical chains of the dimer and in the two 

production runs (red, magenta, blue, and green lines). Distribution of backbone RMSD from the 

single-deposited model calculated on the TM region (red and blue bars) and on the entire STRA6 

receptor (magenta and green bars) for the two metainference production runs (C). In all cases, 
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prior to RMSD calculations, all conformations were aligned on the atoms belonging to the TM, 

defined by the region 12.5 nm < z < 15.0 nm in the single-structure deposited model. 

Distribution of backbone RMSD from the single-deposited model calculated on the calmodulin 

domain for the two indentical chains of the receptor and in the two production runs (D). 
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Figure S8. Distributions of the inferred level of relative noise across all components of the 

STRA6 data GMM in the two independent runs (red and blue bars for RUN I and RUN II, 

respectively). 
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Figure S9. Efficient diffusion in 𝛽 space during a representative segment of the GroEL (A) and 

STRA6 (B) metainference simulations. Distributions of the 𝛽 index calculated over the first (red) 

and second (green) half of the GroEL (C) and STRA6 (D) simulations. 
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Fig. S10. Convergence assessment of the STRA6 metainference simulations. All conformations 

generated in the two production runs were clustered together using the GROMOS algorithm, 

using as metrics the backbone RMSD and a cutoff of 0.35 nm. The average and standard 

deviation of the populations calculated in the first and second half of each production run are 

reported (red and blue bars for RUN I and RUN II, respectively). 
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