Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2015 A structural view of synthetic cofactor integration into

[FeFe]-hydrogenases

Julian Esselborn^a, Norifumi Muraki^b, Kathrin Klein^c, Vera Engelbrecht^a, Nils Metzler-Nolte^c, Ulf-Peter Apfel^{c*}, Eckhard Hofmann^d, Genji Kurisu^{b*}, Thomas Happe^{a*}

Table S1. RMSD of C α carbons of the reported structures in Å when superposed to the equivalent chain of Cpl^{ADT} or native Cpl (3C8Y).

	Cpladt	native Cpl
apoCpI A	0.46	0.23
apoCpl B	0.4	0.32
Cpl ^{ADT} A	-	0.31
Cpl ^{ADT} B	-	0.29
Cpl ^{PDT} A	0.53	0.45
Cpl ^{PDT} B	0.42	0.36
СрІ ^{орт} А	0.44	0.39
СрІ ^{орт} В	0.39	0.3
CpI ^{SDT} A	0.4	0.38
Cpl ^{SDT} B	0.42	0.33
native Cpl	0.32	0.36

Table S2. Conserved glycine residues, their relative position and their dihedral angles in apoHydA1 and apoCpI.

			арон	lydA1	аро	СрІ
Residue	RMSD [Å]	Degree of conservation ^a	φ (°)	ψ (°)	φ (°)	ψ (°)
G245/G412	15.5	90.80%	86 ^b	-179	-63	-27
G251/G418	14.8	87%	117	-174	-65	-12
G254/G421	7.2	99%	91	2	96	-6
G255/G422	3.7	100%	99	163	-72	-50
G283/G450	16.0	83%	83	9	92	-176
G286/G453	1.4	78%	69	15	-70	-35

^a According to a recent MSA from Winkler et al., 2013.

^b Values in bold-face indicate angle-combinations only favorable for glycine according to Lovell et al., 2003.

						•	((
		native Cpl (3C8Y)	apo	Cpl	Ср	IADT	£	IPDT	Ср	рорт	ĉ	ISDT	
Atom 1	Atom 2		chain a	chain b	chain a	chain b	chain a	chain b	chain a	chain b	chain a	chain b	
230 CA	299 CA	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.2	12.2	
230 CA	2FeH Fed	6.2			6.2	6.1	6.0	6.0	6.1	6.1	6.2	6.1	
299 CA	2FeH Fed	6.1			6.2	6.2	6.3	6.3	6.2	6.2	6.2	6.3	
353 CA	497 CA	14.6	14.7	14.7	14.6	14.6	14.6	14.6	14.6	14.6	14.6	14.6	
353 CA	2FeH Fep	7.0			7.0	7.0	6.9	6.9	7.0	6.9	6.9	7.0	
497 CA	2FeH Fep	8.9			8.8	8.9	8.9	8.9	8.9	8.9	8.9	8.9	
417 CA	358 CA	14.8	14.5	14.5	14.8	14.8	14.8	14.7	14.7	14.7	14.8	14.8	
417 CA	2FeH Fed	6.1			6.1	6.1	6.2	6.1	6.0	6.0	6.1	6.1	
358 CA	2FeH Fed	9.0			9.0	9.0	8.9	8.9	8.9	8.9	9.0	9.0	
417 CA	2FeH Fep	6.5			6.5	6.5	6.5	6.5	6.4	6.4	6.5	6.5	
358 CA	2FeH Fep	8.5			8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	
230 CB	2FeH O5 (COb)	3.0			ω .ω	3.1	3.1	3.0	3.1	3.1	3.0	3.0	
353 SD	2FeH O5 (COb)	3.2			3.3	3.2	3.2	3.3	3.3	3.3	3.2	3.2	
Dihedral C(C	Ob) - Fed - Fep - O												
(COb)		ப்			4	0	4	4	4	0	0	4	
Dihedral C(C	Ob) - S1 - S2 - O (COb)	-2			-7	-2	م	6	ய்	6	ω	2	

Tabel S3. Position of 2FeH subcluster within the active site cavity in different CpI structures given as distances in Å and angles in °.

		Cpl native (3C8Y)	Cpl	ADT	Ср	IPDT	Cpl	IODT	Cpl	SDT
			chain a	chain b						
adt	C299 SG	3.5	3.5	3.5	3.5	3.6	3.4	3.4	3.5	3.5
	C299 CA	5.0	4.8	4.9	4.7	4.8	4.8	4.8	4.7	4.8
	M497 SD	3.6	3.7	3.7	3.9	3.9	3.9	3.9	4.0	3.9
CNd	S323 OG	3.8	3.9	3.8	3.9	3.8	3.9	3.8	3.9	3.9
	P324 N	3.5	3.5	3.5	3.6	3.4	3.6	3.5	3.5	3.4
	Q325 N	2.9	2.9	2.9	3.0	2.9	2.9	2.9	2.9	2.9
	K358 NZ	2.9	2.8	2.8	2.8	2.8	2.8	2.9	2.9	3.0
CNp	P231 N	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
	S232 N	3.1	3.1	3.1	3.0	3.1	3.1	3.1	3.1	3.1
	OG	2.8	2.8	2.8	2.9	2.9	2.9	2.9	2.8	2.8
COb	M353 SD	3.2	သ .သ	3.2	3.2	ယ ယ	သ သ	ယ ယ	3.2	3.2
СОр	M353 SD	ა. 5	3.5	3.5	3.6	3.5	3.6	3.5	3.8	3.7
S1	F417 O	3.4	3.5	3.5	3.5	3.6	3.5	3.5	3.5	3.6

Table S4. Distances between parts of the 2FeH cluster and potential interaction partners in the protein in Å.

^a Lambertz	Fe_d	Fe_d	Fe_d	Fe_p	Fe_p	Fe_p	Fe_p	Dihedrals	ļ	Fe d	Fe_p	S1	S1	S1	S1	S1	Fe_d	Fe_d	Fe_p	Fe_p	S 1	S1	Angles	51	C_adt1	Fe_d	c_cod	C_CNd	C_COP	C_CNp	C_COp	Fe_p	Fe_d	Fe_d	Fe_d	Fe_p	Fe_p	C adt2	C_adt1	S2	S1	Fe_p	Fe_d	Fe_d	Fe_p	Fe_p	Distances			
et al., 2014.	S1	S 1	S 1	S 1	S 1	Fe_d	Fe_d			с соь	с_сов	Fe_d	Fe_d	Fe_d	Fe_p	Fe_p	c_cod	C_CNd	C_CNp	C_COP	C_adt1	Fe_p		S2	C_adt2	N_adt	o_cod	N_CNd	O_COP	N_CNp	O_COp	C_COP	c_cod	C_CNd	с_сор	C_CNp	C_COp	N adt	N adt	C_adt2	C_adt1	Fe_d	S2	S 1	S2	S1	[Å]			
	S2	S2	S2	S2	S2	S2	S1			O COP	о_сов	c_cod	C_CNd	c_cop	C_CNp	C_COp	o_cod	N_CNd	N_CNp	O_COp	N_adt	S2																												
^b Pandey	c_cod	C_CNd	с_сов	C_CNP	C_COP	C_adt2	C_adt1																																											
et al. 2008.	-2	-2	51	ΰ	-5	103	-103		1	114	155	93	173	87	86	172	170	172	177	169	110	86		3.2	2.5	3.4	1.2	1.1	1.2	1.2	1.2	1.8	1.8	1.9	1.9	1.8	1.7	1.5	1.5	1.9	1.9	2.6	2.4	2.3	2.3	2.3	chain a			
	ώ	μ	48	-6	-4	105	-104			132	144	68	172	91	88	174	176	173	175	171	111	85		3.1	2.6	3.4	1.2	1.1	1.2	1.2	1.3	1.9	1.7	1.9	1.9	1.8	1.7	1.5	1.5	1.9	1.9	2.6	2.3	2.3	2.3	2.3	chain b	-pi	ADT	
^c Li and aucl	μ.	-2	50	ώ	-5	107	-108			119	159	68	173	88	86	171	174	171	169	170	124	88		3.2	2.5	3.4	1.2	1.1	1.2	1.2	1.2	1.9	1.8	1.9	1.9	1.8	1.7	1.5	1.5	1.9	1.9	2.5	2.2	2.4	2.3	2.3	chain a			
nfuss 2002.	ώ	-1	50	μ	-3	101	-105			121	155	86	170	88	87	173	171	170	170	171	119	86		3.2	2.5	3.4	1.1	1.1	1.2	1.2	1.2	1.9	1.8	1.9	1.9	1.8	1.7	1.5	1.5	1.9	1.9	2.5	2.3	2.3	2.4	2.3	chain b	ġ	PDT	
	ώ	-2	47	-6	-5	66	-107			128	147	68	172	90	86	171	173	172	179	170	106	85		3.1	2.5	ο ω - ω	1.2	1.1	1.2	1.2	1.2	1.9	1.8	1.9	1.9	1.8	1.7	1.5	1.5	1.9	1.9	2.6	2.3	2.3	2.3	2.3	chain a	ç		
^d Song et al. 2	ώ	ώ	50	-6	-6	106	-111			121	155	92	172	68	68	169	175	173	178	171	107	84		3.1	2.6	3.3	1.2	1.1	1.2	1.2	1.2	1.8	1.8	1.9	2.0	1.9	1.7	1.5	1.5	1.9	1.9	2.5	2.3	2.3	2.3	2.3	chain b		.ODT	
004	4	0	45	μ	-6	103	-110			151	129	91	172	94	84	171	174	171	178	168	127	88		3.2	2.3	3.4	1.2	1.1	1.2	1.2	1.2	2.1	1.8	1.9	1.9	1.8	1.7	1.5	1.5	1.9	1.9	2.6	2.3	2.4	2.3	2.4	chain a	þ		
	4	1	47	-7	-4	104	-110			145	132	91	171	91	87	170	174	166	174	169	125	87		3.2	2.4	3.4	1.2	1.1	1.2	1.2	1.2	2.1	1.8	1.9	1.9	1.8	1.7	1.6	1.5	1.9	1.9	2.6	2.3	2.3	2.3	2.4	chain b		SDT	
^e Song et al. 20	1	2	51	-4	-4	105	-107			132	145	91	174	88	87	174	175	172	179	170	117	87		3.1	2.5	3.4	1.2	1.1	1.2	1.2	1.2	1.9	1.8	1.9	2.0	1.8	1.7	1.5	1.5	1.9	1.9	2.6	2.3	2.3	2.3	2.3	(3C8Y)	native Cpl		
007	ώ	ω		-6	-2	105	-103					92	173		81	176	180	177	179	177	66	82					1.1	1.1		1.1	1.1		1.8	1.9		1.8	1.7	1.5	1.5	1.8	1.8	2.6	2.3	2.3	2.3	2.3	(1HFE)	DdH		
^f Schmidt et al																																1.84	1.84	1.84	1.84	1.84	1.84					2.56	2.22	2.22	2.22	2.22	HydA1 ^a	2Fe _H of	EXAFS of	
. 1999	-2.6	-0.1	48.1	-5.1	-5.3	94.0	-94.8			140.9	140.0	88.5	179.8	92.5	83.3	170.6	167.3	169.0	169.8	166.3	112.5	86.4		3.31	2.60	3.52	1.17	1.13	1.19	1.20	1.21	2.00	1.82	1.99	2.00	1.76	1.67	1.51	1.51	1.88	1.88	2.53	2.31	2.34	2.41	2.42	Cpl ^{ADT}	Calculated ^b		
	-1.5	-0.4	48.7	-5.6	-5.1	97.0	-97.9			140.9	140.0	89.2	178.9	93.0	84.1	171.0	167.3	169.0	169.8	166.3	112.1	87.5		3.32	2.58	3.44	1.17	1.13	1.19	1.20	1.21	2.00	1.82	1.99	2.00	1.76	1.67	1.52	1.51	1.91	1.90	2.53	2.33	2.33	2.38	2.41	Cpl ^{PDT}	Calculated ^b		
	-1.4	-0.8	47.7	-4.9	-4.5	97.1	-100.2			140.9	140.0	89.9	178.0	93.7	84.6	172.0	167.3	169.0	169.8	166.3	112.8	87.9		3.35	2.48	3.42	1.17	1.13	1.19	1.20	1.21	2.00	1.82	1.99	2.00	1.76	1.67	1.47	1.48	1.91	1.91	2.53	2.38	2.37	2.39	2.43	Cpl ^{opt}	Calculated ^b		
	13.1	-40.2	12.4	41.3	-12.7	102.8	-106.1					88.0	100.7	158.6	100.8	158.3	177.9	179.5	179.4	177.5	117.2	85.5		3.10	2.44	3.54	1.15	1.15	1.15	1.15	1.16	3.36	1.75	1.94	1.74	1.94	1.76	1.39	1.43	1.86	1.87	2.51	2.29	2.28	2.29	2.28	alone ^c	complex	[2Fe2S]-adt	
																								3.04	2.34	3.27	1.14			1.15	1.15		1.77			1.92	1.76	1.40	1.42	1.84	1.83	2.51	2.26	2.27	2.25	2.24	alone ^d	complex	monocyano ł	¹ 2Fe2S]-odt-
																								3.09	2.70	3.62	1.14						1.80					1.75	1.73	1.83	1.83		2.26	2.26			alone ^e	complex	hexacarbonyl	[2Fe2S]-sdt-
																								3.09	2.52	3.46	1.17	1.15		1.16	1.18		1.74	1.93		1.93	1.73	1.51	1.54	1.82	1.83	2.52	2.27	2.27	2.28	2.28	alone	complex	dicyano	[2Fe2S]-pdt-

Table S5: Distances, angles and dihedral angles of [2Fe2S]-clusters in comparison.

Figure S1: Presumed maturation channel in apoHydA1 and Cpl^{MIM}. (A) View along the presumed maturation channel of a cartoon representation of apoHydA1 (PDB ID 3LX4). Regions with high RMSD in comparison to CpI are marked in red tones and labeled as mentioned in the text (region 1: 238-256; region 2:270-288; region 3: 402-413; numbering of 3LX4). Conserved cationic amino acids R282/449 and K288/455 are shown in stick representation (numbering as in 3LX4/3C8Y). (B) Cartoon representation of CpI^{MIM} in the same orientation as apoHydA1 in A with regions of difference marked with blue hues (region 1: 405-423; region 2:437-453 ; region 3: 529-540; numbering as in 3C8Y). Potential glycine hinges G255/422 and G286/453 and FeS clusters are shown as spheres in A and B.

Figure S2: Stereo view of Figure 1: Structures of unmaturated and semisynthetic [FeFe]-hydrogenases.

(A) Cartoon model of [FeFe]-hydrogenase CpI^{ADT} with domains in different hues of blue. (B) Overlay of ribbon models of [FeFe]-hydrogenases apoCpI (cyan), CpI^{ADT} (marine), CpI^{PDT} (magenta), CpI^{ODT} (green) and CpI^{SDT} (yellow). H-domain regions significantly different to apoHydA1 indicated as thicker ribbon and in red in B. FeS cluster atoms depicted as spheres and colored according to element (Fe=brown, S=beige, O=red, N=blue, C in color of respective protein) in A and B.

Figure S3: Stereo view of Figure 3: Comparison of the active site of CpI^{ADT} **and native CpI.** Stick model of the environment of the 2Fe_H-subcluster of CpI^{ADT} (carbon atoms in marine) superposed to a stick model of native CpI (PDB ID 3C8Y) (carbon atoms in magenta). Dashed lines indicate potential interactions between 2Fe_H and the protein listed in table S4. Numbering of amino acids as in the structure of native CpI.

Figure S4: Stereo view of Figure 4: Structure of semisynthetic H-cluster and structural changes in ligand coordination upon integration of 2Fe_H. (A) Stick model of the H-cluster of Cpl^{ADT} colored according to element with F_0 - F_c simulated annealing omit map contoured at 3.5 σ . (B) Stick model of the crystal structure of Fe₂[μ -(SCH₂)₂NH](CN)₂(CO)₄²⁻. The planes in A and B are drawn through the sulfur atoms of the [2Fe] complexes and one of the two Fe atoms each to clarify the coordination geometry of the Fe ligands.

Figure S5: Stereo view of Figure 5: Comparison of the catalytically important amino acids in Cpl derivatives. Stick models of the potential proton transfer pathway (A) and the environment of the $2Fe_H$ -subcluster (B) of Cpl^{ADT} (carbon atoms in marine) superposed to stick models of Cpl^{PDT} (magenta), Cpl^{ODT} (green) and Cpl^{SDT} (yellow). Dashed lines indicate potential proton transfer interactions or potential interactions of $2Fe_H$ with the protein as listed in table S4. Numbering of amino acids as in the structure of native Cpl.

Figure S6: Stereo view of Figure 6: Models of the H-cluster of non-native Cpl derivatives. Stick models of (A) Cpl^{PDT} (carbon atoms in magenta), (B) Cpl^{ODT} (carbon atoms in green) and (C) Cpl^{SDT} (carbon atoms in yellow) with F_o - F_c simulated annealing omit maps contoured at 3.5 σ .

References

- Lambertz, C.; Chernev, P.; Klingan, K.; Leidel, N.; Sigfridsson, K. G. V.; Happe, T.; Haumann, M. Electronic and Molecular Structures of the Active-Site H-Cluster in [FeFe]-Hydrogenase Determined by Site-Selective X-Ray Spectroscopy and Quantum Chemical Calculations. *Chem. Sci.* 2014, 5 (3), 1187–1203.
- Li, H.; Rauchfuss, T. B. Iron Carbonyl Sulfides, Formaldehyde, and Amines Condense To Give the Proposed Azadithiolate Cofactor of the Fe-Only Hydrogenases. J. Am. Chem. Soc. 2002, 124 (5), 726–727.
- Lovell, S. C.; Davis, I. W.; Arendall, W. B.; de Bakker, P. I. W.; Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C. Structure Validation by Cα Geometry: Φ,ψ and Cβ Deviation. *Proteins Struct. Funct. Bioinforma*. **2003**, *50* (3), 437–450.
- Mulder, D. W.; Boyd, E. S.; Sarma, R.; Lange, R. K.; Endrizzi, J. A.; Broderick, J. B.; Peters, J. W. Stepwise [FeFe]-Hydrogenase H-Cluster Assembly Revealed in the Structure of HydA ΔEFG. *Nature* 2010, *465* (7295), 248–251.
- Pandey, A. S.; Harris, T. V.; Giles, L. J.; Peters, J. W.; Szilagyi, R. K. Dithiomethylether as a Ligand in the Hydrogenase H-Cluster. J. Am. Chem. Soc. 2008, 130 (13), 4533-4540.
- Schmidt, M.; Contakes, S. M.; Rauchfuss, T. B. First Generation Analogues of the Binuclear Site in the Fe-Only Hydrogenases: Fe2(μ-SR)2(CO)4(CN)22-. *J. Am. Chem. Soc.* **1999**, *121* (41), 9736–9737.
- Song, L.-C.; Yang, Z.-Y.; Bian, H.-Z.; Hu, Q.-M. Novel Single and Double Diiron Oxadithiolates as Models for the Active Site of [Fe]-Only Hydrogenases. *Organometallics* **2004**, *23* (13), 3082–3084.
- Song, L.-C.; Yang, Z.-Y.; Hua, Y.-J.; Wang, H.-T.; Liu, Y.; Hu, Q.-M. Diiron Thiadithiolates as Active Site Models for the Iron-Only Hydrogenases: Synthesis, Structures, and Catalytic H2 Production. *Organometallics* 2007, 26 (8), 2106–2110.
- Winkler, M.; Esselborn, J.; Happe, T. Molecular Basis of [FeFe]-Hydrogenase Function: An Insight into the Complex Interplay between Protein and Catalytic Cofactor. *Biochim. Biophys. Acta BBA Bioenerg.* 2013, *1827* (8–9), 974–985.