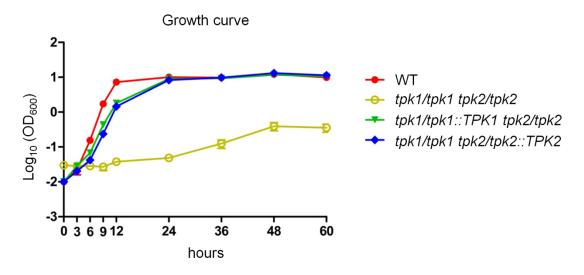
Supporting information

Table S1. Primers used in this study.								
Primer	Use	Sequence (5' to 3')						
JC17	SAT1 flipper	GGCCCCCCCCGAGGAAGTT						
JC18	SAT1 flipper	GCTCTAGAACTAGTGGATCT						
JC513	5'NCR of <i>TPK1</i>	CAGAACATTGTAATTGATGGC						
JC514	5'NCR of <i>TPK1</i>	AACTTCCTCGAGGGGGGGGGCCCTTGTTCCCTGTTGTTGTTG						
JC515	3'NCR of <i>TPK1</i>	AGATCCACTAGTTCTAGAGCTCCATCAACCAACCAA						
JC516	3'NCR of <i>TPK1</i>	AGGATGTGGATTTATATGGGG						
		TCCGTAGCGTATCGCTAAAT						
JC517	TPK1 overlap							
JC518	TPK1 overlap	GGTTGATTAAAAAACAAGG						
JC521	5'NCR of <i>TPK2</i>	AATTGACCGTCCGCACACTA						
JC522	5'NCR of <i>TPK2</i>	AACTTCCTCGAGGGGGGGGCCTGGGCAAAAAAGGGAAGTT						
JC523	3'NCR of <i>TPK2</i>	<u>AGATCCACTAGTTCTAGAGC</u> CGAAAACGAAACAAAGAGAG						
JC524	3'NCR of <i>TPK2</i>	AACCATCATCACCACTACCA						
JC525	TPK2 overlap	CAGCACAACGACAAACAGTGA						
JC526	TPK2 overlap	GAGGATAAAGAAGGTCAAAGG						
JC545	3'NCR of 2 nd TPK2 allele	AACTTCCTCGAGGGGGGGGCCGCTTTTTTAAAAGATTTGGCA						
JC546	5'NCR of 2 nd TPK2 allele	AGATCCACTAGTTCTAGAGCAATACTTCCTCGACTTTTAGA						
JC555	3'NCR of 2 nd TPK1 allele	AACTTCCTCGAGGGGGGGGCCCTCCTTTTTCCATAGATGTCA						
JC556	5'NCR of 2 nd TPK1 allele	AGATCCACTAGTTCTAGAGCCAATTTGAAGATTTTTAATCT						
JC758	5'NCR of TPK2	AAAGGTACCTTAGGCATCACGTGTTTGCT						
JC759	5'NCR of <i>TPK2</i>	AAAGGGCCCGAAAATGGGCAAAAAAGGGA						
JC760	3'NCR of <i>TPK2</i>	AAACCGCGGCGAAAACGAAACAAAGAGAGA						
JC761	3'NCR of <i>TPK2</i>	AAAGAGCTCTCCAGGCACAACTTTCCTTA						
JC782	5'NCR of TPK2	AAAGGTACCAATTGACCGTCCGCACACTA						
JC782 JC783	5'NCR of TPK2	AAAGGGCCCTGGGCAAAAAAGGGAAGTT						
JC784	TPK2 ORF	AAACCGCGGATGCCAAATCTTTTAAAAAAG						
JC785	TPK2 ORF	AAAGAGCTCCTAAAAGTCGAGGAAGTATTG						
JC998	5'NCR and ORF of <i>TPK2</i>	AAAGGTACCGTGGTGGTAGTATTAGGCATC						
JC999	5'NCR and ORF of <i>TPK2</i>	AAAGGGCCCCTAAAAGTCGAGGAAGTATTG						
JC1004	3'NCR of <i>TPK1</i>	AAACCGCGGTCCATCAACCAACCAACCAA						
JC1006	5'NCR and ORF of <i>TPK1</i>	AAAGGGCCCTCATCATCGGTAGTAAAA						
JC1007	5'NCR and ORF of <i>TPK1</i>	AAACTCGAGTTAAAAATCTTCAAATTGATC						
JC1023	3'NCR of TPK1	AAAGAGCTC TCGTCGACTTTATTATTCTGGTTCA						
JC1150	<i>TPK2</i> -F for qPCR	AATCCCGTGGCCAAATTTTATG						
JC1151	<i>TPK2</i> -R for qPCR	TCCATGTGACAGTGCTGACCTC						
JC1154	ALS3-F for qPCR	TGGCATTTAACGTTGGTGGTTC						
JC1155	ALS3-R for qPCR	TGCAGCAAAATAGGCTTGGGTA						
JC1156	HWP1-F for qPCR	AGTGACTGAAGGGCACATTCCA						
JC1157	HWP1-R for qPCR	TGCAAGACCAACAATAGCAGCA						
JC1158	EFG1-F for qPCR	AGGAATTGCAAACCCAAGTGCT						
JC1159	<i>EFG1</i> -R for qPCR	CTTGCTGGTTTGGTTGTCCTTG						
JC1160	<i>NDT80-F</i> for qPCR	TTGCATCAACAAATGCCACATC						
JC1161	<i>NDT80</i> -R for qPCR	TCTTGGGTCAAATGAGGGGATT						
JC1162	<i>TEC1-F</i> for qPCR	CACCTCCTCCAACTCAAGCTCA						
JC1162 JC1163	<i>TEC1-R</i> for qPCR	ATTGGTATTCGGAACCGTTGCT						
JC1164	<i>BCR1</i> -F for qPCR	ACATCCACCACAACAGCCATCT						
JC1165	BCR1-R for qPCR	TGGTAATGGAGGCAATGGTTTG						
JC1193	ACT1-F for qPCR	CCAGCCGATTTAGGTTTGGAAG						
JC1194	ACT1-R for qPCR	CGTTCAGCAATACCTGGGAACA						
JC1199	<i>TPK1</i> -F for qPCR	GCCAACAGACAACATCAACAGAAT						
JC1120	<i>TPK1</i> -R for qPCR	TGGACGTGCTATTTTCATTGTCC						
JC1203	<i>RIM101</i> -F for qPCR	CAACGGTCTTCAAACTGCTGCT						
JC1204	<i>RIM101</i> -R for qPCR	TCTTCTTCCTCGTCGTCACTGC						
JC1205	BRG1-F for qPCR	TCCAATCATGCATCCTCAACAA						
JC1206	BRG1-R for qPCR	CTGGTGTTGGGTTTTGTGGGTA						
JC1207	ROB1-F for qPCR	ACCTTTGGCTGCACCATTACCT						
JC1208	<i>ROB1-</i> R for qPCR	TTGCAGCAGTGGTGGTAGTTGA						
JC1209	FLO8-F for qPCR	CCAATAAACCATCCCCAGCAAT						

Table S1. Primers used in this study.

JC1210	FLO8-R for qPCR	TGCCAGCACTTGTAGGTTGTGA
JC1211	GAL4-F for qPCR	AAACTTGCATCCTGCGAGAGTG
JC1212	GAL4-R for qPCR	AGGGGTTTGATTTGGATTGACG

Sequences complementary to the SAT1 flipper are underlined.


Table S2. I	Plasmids	used in	this	study
-------------	----------	---------	------	-------

Tuble 52. Tublinds used in this study							
Plasmid	Relevant insert	Enzymes used	Reference				
pSFS2A			1				
pYSJ6	3' NCR of 1 st <i>TPK2</i> allele	SacII, SacI	pSFS2A				
pYSJ10	5' NCR of 1 st <i>TPK2</i> allele	KpnI, ApaI	pYSJ6				
pYEN2	5' NCR of 1 st <i>TPK2</i> allele and ORF	KpnI, ApaI	pYSJ6				
pYSJ25	3' NCR of 2 nd <i>TPK2</i> allele	SacII, SacI	pSFS2A				
pYSJ29	5' NCR of 2 nd <i>TPK2</i> allele	KpnI, HindIII	pYSJ25				
pYEN37	3' NCR of <i>TPK1</i> allele	SacII, SacI	pSFS2A				
pYSJ122	5' NCR and ORF of <i>TPK1</i> allele	ApaI, XhoI	pYEN37				

Reference

1. Reuß O, Vik A, Kolter R, Morschhäuser J. The *SAT1* flipper, an optimized tool for gene disruption in *Candida albicans*. Gene 2004; 341:119-27.

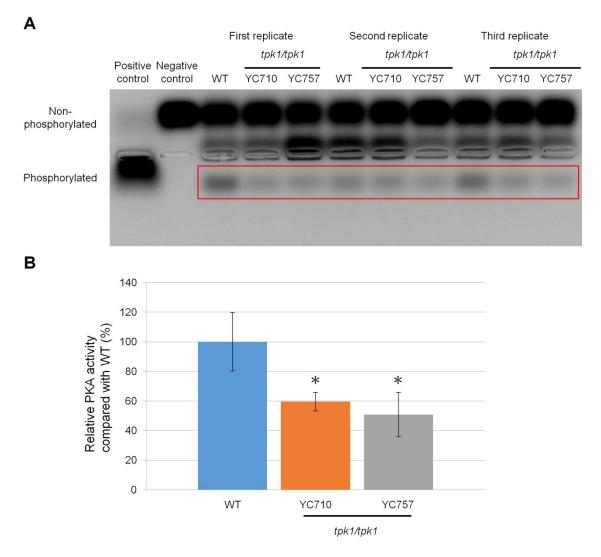
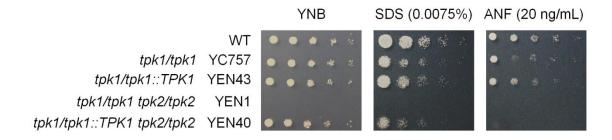


Figure S1. Reintroducing *TPK1* or *TPK2* gene complements the growth defects of the *tpk1/tpk1 tpk2/tpk2* mutant.

Growth curves of the indicated *C. tropicalis* strains. Cells were grown overnight in YPD at 30°C, washed twice with dH₂O, diluted to 0.01 OD₆₀₀ (except for the *tpk1/tpk1 tpk2/tpk2* mutant (YEN1), which was diluted to 0.03 OD₆₀₀ with fresh YPD medium), and incubated at 30°C for 60 h with shaking at 200 rpm. The OD₆₀₀ of strains was measured via microplate spectrophotometer at the indicated time points. The experiments were performed in triplicate and the values represent the mean \pm standard error of the mean (SEM).


Figure S2

(A) Protein kinase A activity of the indicated strains (red rectangles). Cells were grown overnight in YPD at 30°C and washed twice with dH₂O. Crude protein extracts of the samples were isolated. PKA activity assays were carried out using the PepTag assay for non-radioactive detection of cAMP-dependent protein kinase kit. (B) Quantification of PKA activity in panel A (red rectangles) using Image J software. The experiments were performed in triplicate and the values indicate the mean \pm standard deviation (SD). Asterisks indicate statistically significant differences compared with wild type using the T test (P < 0.05).

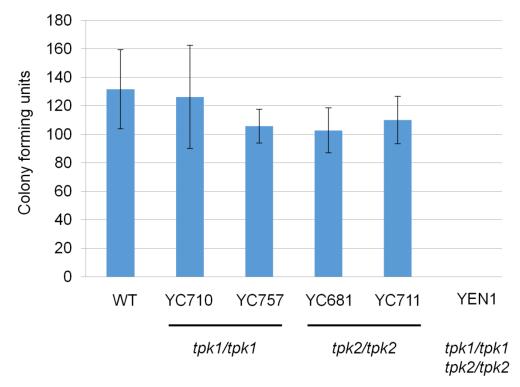

Figure S3

Figure S3. Introducing *TPK1* in the *tpk1/tpk1* or *tpk1/tpk1 tpk2/tpk2* mutant restores stress responses.

Growth of the indicated strains exposed to various stresses. Cells were grown overnight in YPD at 30°C (except the *tpk1/tpk1 tpk2/tpk2* mutant, which was grown for two days), washed twice with dH₂O, and diluted to 0.2 OD_{600} . Samples were five-fold serially diluted, spotted onto YNB medium containing the indicated chemicals, and incubated at 30°C for 24 h. ANF, anidulafungin; SDS, sodium dodecyl sulfate.

Figure S4

Figure S4. Neither TPK1 nor TPK2 has effects on adherence to polystyrene.

Adherence of the indicated strains on a 96-well plate. Cells were grown overnight in YPD at 30°C (except the *tpk1/tpk1 tpk2/tpk2* mutant, which was grown for two days), washed twice with PBS, and adjusted to 0.5 OD_{600} in SC medium. Then, 200 µL of each strain was inoculated into 96-well polystyrene plates and incubated for 90 min at 37°C and 200 rpm. The wells were then washed twice with PBS to remove non-adhered cells. The adhered cells were vigorously resuspended in water and plated on YPD medium to determine the colony-forming units.

Figure S5

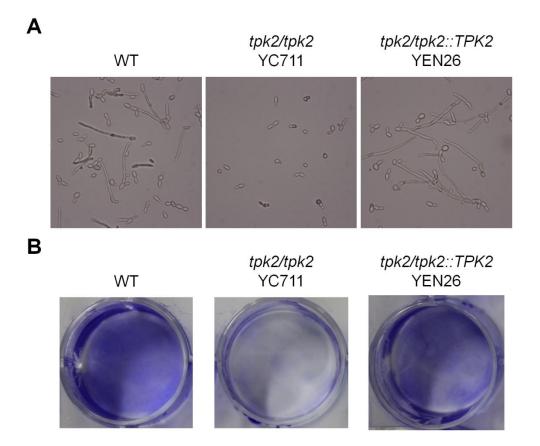


Figure S5. TPK2 complemented strain rescues hyphal growl and biofilm formation.

(A) Hyphal growth of the indicated strains in SC medium with 10 mM GlcNAc. Cells were grown overnight in YPD at 30°C, washed twice with dH₂O, diluted to 0.2 OD₆₀₀ with fresh SC medium with 10 mM of GlcNAC, and incubated at 37°C and 200 rpm for 4 h. (B) Cells were grown in YPD medium overnight at 30°C, washed twice with dH₂O, and diluted to 0.5 OD₆₀₀ in SC medium. Afterwards, 2 mL of each sample were inoculated into a 12-well polystyrene plate for 90 min at 37°C and 200 rpm. The wells were then washed twice with PBS buffer, inoculated with 2 mL of fresh SC medium, and incubated for 24 h at 37°C and 200 rpm. The wells were washed twice with PBS, stained with 0.05% crystal violet, and photographed.

Figure S6

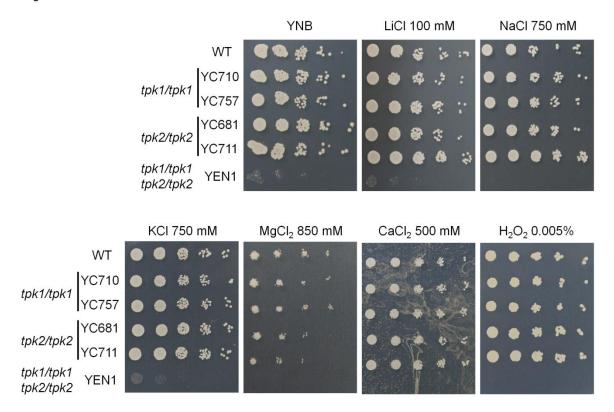


Figure S6. C. tropicalis Tpk2 has a specific role in magnesium stress response.

Growth of the indicated *C. tropicalis* strains exposed to various stresses (LiCl, NaCl, KCl, MgCl₂, CaCl₂, or H₂O₂). Cells were grown overnight in YPD at 30°C (except the *tpk1/tpk1 tpk2/tpk2* mutant, which was grown for two days) and washed twice with dH₂O. Samples were five-fold serially diluted using 0.2 OD₆₀₀ as the initial concentration, spotted onto YNB medium containing the indicated chemicals, and incubated at 30°C for 48 h.