
Appendix

A.1 Conditionally Uniform Distributions. Consider a pair of spike
processes, with the property that the spike trains are conditionally uniform
and independent, conditioned on (N1, N2), for each neuron. In the setting
of discrete spike trains, this means that, conditioned on (N1, N2), all spike
trains consistent with (N1, N2) are equally likely. In the setting of continu-
ous spike trains, this means that the conditional joint probability density
function of (t1, t2), conditioned on (N1, N2), depends only on (N1, N2).

Conditionally uniform processes include homogeneous Poisson pro-
cesses as a special case, but the class is broader than Poisson. For example,
in section 3, all our conclusions were reached with (non-Poisson) examples
in which N1 and/or N2, specifying spike counts in an interval, are constants.
(See Amarasingham et al., 2012, for a more thorough development of the
motivation for using conditional uniformity as a null hypothesis for spike
trains, and various generalizations.)

A.2 Validity of Interval Jitter Hypothesis Testing. If the interval jit-
ter null hypothesis (conditional uniformity) is true, the subuniformity of
p(X, R) as defined in equation 2.1 is explained in Amarasingham et al.
(2012). This conclusion is a consequence of the fact that under the null hy-
pothesis, S0, S1, . . . , SK are exchangeable (see Amarasingham et al., 2011).1
From this, it follows that p(X, R) is subuniform (proposition A.3 in Amaras-
ingham et al., 2011). Since S′

0, S′
1, . . . , S′

K are also exchangeable, it follows by
the same logic that pc(X, R) is subuniform. Moreover, pc(X, R) is absolutely
continuous. Thus, under the null hypothesis, pc(X, R) is distributed as a
uniform random variable.

To address potential confusion, it is worthwhile focusing on what the
assumption of exchangeability is not. Obviously it is not equivalent to the

1A finite collection of random variables Y1,Y2, . . . ,Yn is exchangeable if its joint dis-
tribution is invariant to permutations of its arguments. That is, Pr((Y1, . . . ,Yn) ∈ A) =
Pr((Yπ (1), . . . ,Yπ (n) ) ∈ A) for all sets A and all permutations π of the index set (1, . . . , n).
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assumption that S0, S1, . . . , SK are independent and identically distributed.
What is more relevant, it is also not equivalent to the assumption that
S0, S1, . . . , SK are identically distributed. Example 1 in section 3 is a clear
expression of this distinction. Consider this example on the circle instead
of an interval (see remark 1). Here S0, S1, . . . , SK are not exchangeable,
although they are identically distributed. This alone shows that it is not
sufficent to establish that S0, S1, . . . , SK are identically distributed (Pipa,
Grün, & van Vreeswijk, 2013). Indeed, continuing to focus on continuous
time and preserving the circle construction, S0, S1, . . . , SK are identically
distributed for any uniform spike process and any test statistic for both
spike-centered and interval jitter.2 (Interval and spike-centered jitter are
“measure preserving.”) Conceptually, this is likely the source of the intuitive
conflation of the two methods. At root, the distinction is one of conditional
versus unconditional inference (see the discussion of this distinction in
Amarasingham et al., 2011).

A.3 Sensitivity. Returning to the example of section 2, a consequence
of conservatism is that the spike-centered jitter procedure is less sensi-
tive than the interval jitter procedure in detecting nonaccidentally syn-
chronous events, when they are present. As a demonstration, consider the
following numerical experiment. Generate a third independent homoge-
neous Poisson spike train with rate λs and superpose (“inject”) spikes
from the third train onto the spike trains from neurons 1 and 2. This is
a model of injected synchrony. (The injected spikes are perturbed slightly
prior to injection so that the synchronous spikes are not perfectly instanta-
neous.) Then compare the sensitivity of tests specified by the critical region
{pc(X, R) ≤ α} generated by the spike-centered and interval jitter proce-
dures, respectively. Consistent with intuition, the interval jitter test is more
sensitive. For one example, we repeated the experiment of Figure 2, using
α = 0.05 and λs = 2 Hz. The rejection event {pc(X, R) ≤ α} occurred in 2%
of the trials using the spike-centered jitter procedure and 8% of the tri-
als using the interval jitter procedure across 50,000 trials. Other parameter
settings generated similar numerical conclusions (results not shown; see
https://github.com/aamarasingham/bjitter for code).

A.4 Exact Tests and Subuniform p-Values. The motivation for sub-
uniform (as opposed to uniform) p-values in hypothesis testing can be
understood through several routes.

A.4.1 An Elementary Example. As a general nontechnical example of
nonuniformity, keep in mind the most familiar elementary examples in

2A more general observation is that under these conditions, (S0, S j ) are pairwise
exchangeable for any j in {1, 2, . . . , K}, for both interval and spike-centered jitter.
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which p-values are strictly subuniform as a consequence of discreteness.
For example, consider H0 : X ∼ Binomial(N, .5). A textbook p-value is
Pr(Y ≥ X|X), where Y and X are independent and identically distributed
(i.i.d.), which computes the area to the right of the curve under the proba-
bility mass function. This p-value is subuniform but not uniform.

A.4.2 Nonrandomized Testing. More technically, in the standard general
approach for defining p-values for nonrandomized (deterministic) tests
(Lehmann & Romano, 2005), one begins with a nested family of hypothesis
tests, associated with a continuum of significance values: for each signifi-
cance level α, 0 ≤ α ≤ 1, one associates a critical region Tα, a subset of the
sample space that satisfies Pr(X ∈ Tα ) ≤ α. This is the standard definition of
an exact hypothesis test. It is called nonrandomized if Tα is deterministic. A
nested family of hypothesis tests is one in which the corresponding critical
regions are nested:

Tα ⊂ Tα′ if α < α′. (A.1)

In such a setting, the p-value is formally defined as

p̂{T
α
} = p̂{T

α
}(X) = inf{α : X ∈ Tα}, (A.2)

where we have used the subscript {Tα} to emphasize the dependence of
the p-value on the choice of nested hypothesis testing family. In this case,
p̂{T

α
} is guaranteed to be subuniform (lemma 3.3.1 in Lehmann & Romano,

2005). Thus, a nested family of hypothesis tests determines the p-value
distribution (and it is subuniform).

What is more, any subuniform random variable can be used to construct
a nested family of hypothesis tests. Given a subuniform random variable
q(X) (see equation 3.1), define T ′

α = {x : q(x) ≤ α}. One can verify directly
that the resulting hypothesis tests are exact and nested and, further, in this
case

p̂{T ′
α
}(X) = inf{α : X ∈ T ′

α} = q(X). (A.3)

Thus, subuniform random variables and nested families of hypothesis tests
are in exact correspondence (in nonrandomized testing). It follows, for ex-
ample, that if a given random variable is not subuniform for some distribu-
tion, it cannot be a p-value for any hypothesis testing system that includes
that distribution in the null hypothesis.

A.4.3 Randomized Testing. In our case, the function of interest is p(X, R),

where R (encoding the Monte Carlo surrogates) is a random variable
that depends on X, so the construction of T ′

α must be generalized.
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The analogous generalization (Lehmann & Romano, 2005) {X : p(X, R) ≤
α with probability one} might be degenerate in our setting. A workaround,
implicit here, is to incorporate the randomization mechanism into the sam-
ple space and then apply the nonrandomized testing framework. In our
setting, consider the sample outcome to be (X, R). As established earlier,
p(X, R) is subuniform. Then define the critical region T ′

α :

T ′
α = {(x, r)|p(x, r) ≤ α}. (A.4)

The consequence is the same: the resulting tests are exact (Pr((X, R) ∈ T ′
α ) ≤

α) and the p-value is p(X, R) (and subuniform), even though p(X, R) will
inherit the randomness of R (see the appendix to Amarasingham et al., 2012;
Habiger & Pena, 2011, also develop this interpretation in greater generality).
Thus, the p-value p(X, R) is stochastic, but the associated tests are still exact.

A.4.4 Monte Carlo Approximation. For completeness, it is worth pointing
out that in the discrete setting, a third interpretation of equation 2.1 is that
p(X, R) is a Monte Carlo approximation of the p-value p∗(X), associated
with the deterministic permutation test, a nonrandomized test (Harrison
et al., 2015; Ernst, 2004):

p∗(X) =
∑

{X ′ :C
#

(X ′ )=C
#

(X)} 1{ f (t ′
1, t ′

2) ≥ S0}
#{X ′ : C#(X ′) = C#(X)}

, (A.5)

which borrows from the fact that p(X, R) → p∗(X) as K → ∞ (# represents
cardinality in equation A.5). But this interpretation does not make clear, as
it is above, that p(X, R) is subuniform for all K, not simply in that aymptotic
limit.

In summary, p-values for exact tests are subuniform, and a random variable
that is subuniform (for H0) can be used to construct exact tests for H0, such
that that subuniform random variable is the p-value. In that sense, subuni-
formity of a random variable (in H0) is a necessary and sufficient condition
for exact hypothesis tests of H0. Note, finally, that if a random variable is
subuniform and (absolutely) continuous, then it must be uniform. This mo-
tivates the trick for converting subuniform p-values to uniform p-values in
sections A.2 and 5.

A.5 p-Value Transformation. The standard elementary approach for
constructing p-values for a random variable X when the null hypothesis
or conditional null hypothesis is a unique (and computable) distribution is
as follows. Construct a random variable Y that has the same distribution
as X and is also independent. Then let p(X) = Pr(Y ≥ X|X) (this is an
application of the definition of a p-value, equation A.2, in this setting). It is
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readily apparent that p(X) is subuniform (see equation 3.1; see also lemma
3.3.1 in Lehmann & Romano, 2005). The corresponding tests have power for
alternative distributions that tend to be “greater” than that of X. However,
p(X) will not be strictly uniform, if X is discrete.

Here is an intuitive construction for generating strictly uniform p-values,
which involves randomizing the data. For simplicity, consider the case that
X is integer-valued. Construct a new random variable Xc = X + ϵX, where
ϵX is independent of X and uniformly distributed on [−1/2, 1/2]. Anal-
ogous to the above, suppose Xc and Yc are independent and identically
distributed. Compute p′(X) = Pr(Yc ≥ Xc|Xc). Then p′(X) will be subuni-
form and absolutely continuous. Thus, p′(X) will be uniform.

To compute p′(X), note that

p′(X) = Pr(Yc ≥ Xc|Xc)

= [(X + 1/2) − Xc]Pr(Y = X|X) + Pr(Y > X|X). (A.6)

Since [(X + 1/2) − Xc] is uniformly distributed on [0,1], this is equivalent
to drawing a sample U independently from a uniform distribution on [0,1]
and computing

p′(X) = Pr(Yc ≥ Xc|Xc) = U · Pr(Y = X|X) + Pr(Y > X|X). (A.7)

Since, by construction,Y > X ⇐⇒ Yc > Xc, it follows that tests constructed
from p(X) and p′(X) will behave identically except for those outcomes
exactly at the critical threshold. There is no loss of generality if X is not an
integer, or if 1/2 above is replaced with a different constant b. The main
ingredient is only that b and the bounds on ϵX are chosen so as to preserve
Y > X ⇐⇒ Yc > Xc.


