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Experimental Protocols 
Patient data and sample tracking 

1,133 patients with severe, undiagnosed, developmental disorders and their 
parents were recruited and systematically phenotyped at 24 clinical genetics 
centres within the UK National Health Service and the Republic of Ireland.	
  
The study has UK Research Ethics Committee approval (10/H0305/83, 
granted by the Cambridge South REC, and GEN/284/12 granted by the 
Republic of Ireland REC). Families gave informed consent for participation 
and specific additional consent for publication of photographs was sought and 
given by a subset of families. 
	
  
Patient records are created by the regional genetics services within a study-
specific area of DECIPHER (https://decipher.sanger.ac.uk), and sample 
barcodes are scanned into this record. Clinical data (growth measurements, 
family history, developmental milestones, etc.) are collected using a standard 
restricted-term questionnaire within DECIPHER, and detailed developmental 
phenotypes for the proband are entered using the Human Phenotype 
Ontology (Köhler et al., 2014). Patient and sample information is transferred 
from DECIPHER into an internal laboratory information management system 
(LIMS). This tracks samples through reception and the laboratory pipelines, 
and provides other internal tools. It is implemented as a set of Java 
webservices on top of a Postgres database.  

Sample collection and processing  
Saliva samples collected in barcoded Oragene-DNA OG-500 (parent) or OG-
575 (child) collection tubes (DNA Genotek Inc.) were received from all family 
trio members. Sample arrival was recorded in a bespoke Laboratory 
Information Management System (LIMS). Samples were heated to 50oC for 4 
hours prior to DNA extraction, with a mix by inversion after 2 hours. Extraction 
of DNA from saliva samples was performed on a QIAsymphony robot 
(Qiagen) using the QIAsymphony DSP Virus/Pathogen Midi kit (Qiagen) with 
a customised purification protocol. DNA was eluted in to 96 well plates, which 
were passed to the Sample Management core facility (Wellcome Trust Sanger 
Institute) for QC analysis. A median DNA yield of 6 or 12ug was achieved 
from the child or adult saliva samples respectively. Blood-extracted DNA 
samples from the child were also sent from the Regional Genetic Service 
Laboratories in 2D barcoded tubes (FluidX). DNA sample arrival was recorded 
in the LIMS and samples were racked in batches of 95 and passed to the 
Sample Management core facility for QC analysis. 

Sample QC (WTSI core facility) 
Automated volume check (BioMicroLab) and assessment of concentration via 
pico green assay (Beckman FX, NX-96, Molecular devices DTX reader) were 
performed on all samples. DNA quality was also assessed via gel 
electrophoresis (Beckman FX and Invitrogen E-Gel system). A Sequenom 
SNP panel (including gender markers) was used to allow the sample identity 
checks following aCGH, genotyping and sequencing. Genotyping was 
performed using the iPLEX™ Gold Assay (Sequenom® Inc.). Assays for all 
SNPs were designed using the eXTEND suite and MassARRAY Assay 
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Design software version 3.1 (Sequenom® Inc.). Following PCR, 
unincorporated dNTPs were SAP digested prior to iPLEX™ Gold allele 
specific extension with mass-modified ddNTPs using an iPLEX Gold reagent 
kit (Sequenom® Inc.). SAP digestion and extension were performed 
according to the manufacturer’s instructions with reaction extension primer 
concentrations adjusted to between 0.7-1.8µM, dependent upon primer mass. 
Extension products were desalted and dispensed onto a SpectroCHIP using a 
MassARRAY Nanodispenser prior to MALDI-TOF analysis with a 
MassARRAY Analyzer Compact mass spectrometer. Genotypes were 
automatically assigned and manually confirmed using MassARRAY 
TyperAnalyzer software version 4.0 (Sequenom® Inc.). 

Array-CGH  
aCGH analysis of 1 or 1.5 µg of child DNA was performed using 2 x 1M probe 
custom designed microarrays (Agilent; Amadid No.s 031220/031221). DNA 
labelling and hybridisation was carried out using protocols based upon the 
Agilent Bravo automated liquid handling platform with Enzymatic Labelling 
protocol V2.1. Child test DNA samples were labelled with Cy-5 and reference 
DNA (a pool of 500 male DNA samples) with Cy-3 using Agilent reagents. 
Labelled samples were cleaned up using AutoScreen-96A well plates (GE 
Healthcare). Combined test and reference DNAs were then co-hybridised to 2 
x 1M probe Agilent microarrays for 3 nights (66 hours) in an Agilent 
hybridisation oven at 65oC. Microarrays were washed using a Little Dipper 
wash station and then scanned at 3 µm resolution using an Agilent scanner C 
2505C. Fluorescent intensities were extracted from the scanned images using 
Agilent Feature Extraction v10.5.1.1. 

SNP Genotyping (WTSI core facility) 
200ng of DNA supplied at 50ng/ul was processed to the standard Illumina 
protocol (Illumina SNP-genotyping protocol) using automated hardware 
(Tecan Freedom Evo). Tasks were performed from Make MSA3 onwards. 
Samples were applied to custom Illumina beadchips 
(SangerDDD_OmniExPlusv1_15019773_A) before hybridisation in an Illumina 
Hybridisation Oven after which the process was continued as instructed. 
Beadchips were scanned on Illumina iScans (Sanger ID N106, N111, N125, 
N127). 

Exome Sequencing (WTSI core facility) 
Genomic DNA (approximately 1 ug) was fragmented to an average size of 
150 bp and subjected to DNA library creation using established Illumina 
paired-end protocols. Adapter-ligated libraries were amplified and indexed via 
PCR. A portion of each library was used to create an equimolar pool 
comprising 8 indexed libraries. Each pool was hybridised to SureSelect RNA 
baits (Agilent Human All Exon V3 Plus with custom ELID # C0338371) and 
sequence targets were captured and amplified in accordance with 
manufacturer’s recommendations. Enriched libraries were subjected to 75 
base paired-end sequencing (Illlumina HiSeq 2000) following manufacturer’s 
instructions. 
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SNV and InDel validation by Capillary sequencing  
Primers were designed to amplifying products 400-600 bp in length centred 
on the site of interest. Primer3 design settings were adjusted as follows: 
primer length - 18 bp +/-3, GC Clamp =1, Tm 60 +/-2, using a human 
mispriming library. Genomic DNA from all trio members, amplified by Whole 
Genome Amplification (WGA) using illustra Genomiphi HY or V2 Amplification 
Kits (GE Healthcare), was used as template DNA in the site-specific PCR 
reactions. PCR reactions were carried out using Thermo-Start Taq DNA 
Polymerase (Thermo Scientific), following the manufacturers protocol. The 
PCR products were assessed by Agarose gel electrophoresis and submitted 
for sequencing to the Faculty Small Sequencing Projects (WTSI core facility). 
Capillary sequence traces from all trio members were aligned and viewed 
using an in-house designed web-based tool and scored for the presence or 
absence of the variant. 

Digital PCR  
Droplet digital PCR (ddPCR) was performed as described (Hindson et al., 
2011) with some modifications. Genomic DNA was restriction digested with 
EcoR1 (NEB) prior to ddPCR. Droplets were made using a droplet generator 
(Bio-Rad), PCR amplified and loaded into a QX100 droplet reader (Bio-Rad). 
ddPCR data was analysed using QuantaSoft software (Bio-Rad), which 
calculates copy number state per well. Assays targeting the regions of interest 
were designed using the Universal ProbeLibrary (UPL) Assay Design tool 
(Roche). Test regions were labeled in FAM (UPL, Roche) and run in parallel 
with the RPP30 reference assay (Hindson et al., 2011), labelled in either VIC 
(Life Technologies) or HEX (Bio-Rad). All assays were run in triplicate and as 
trios (proband, mother, father) to establish inheritance. At least one assay was 
designed within the variant and one in a region of normal copy number 
adjacent to the site. 

FISH 
Human bacterial artificial chromosome clones and fosmid clones, for 
validation of selected variants by fluorescence in situ hybridisation (FISH), 
were provided by the clone-archive team at the Wellcome Trust Sanger 
Institute. Plasmid DNA was purified using the PhasePrep BAC DNA kit 
(Sigma-Aldrich) following manufacturer’s protocol.  The plasmid DNA was first 
amplified using the whole genome amplification kit (WGA2, Sigma-Aldrich) 
following manufacturer’s recommendations, and subsequently labelled with 
either ChromaTide™ Texas Red®-12-dUTP (Molecular Probes/Invitrogen) or 
Atto 488-dUTP (Jena Bioscience) using the whole genome reamplification kit 
(WGA3, Sigma-Aldrich) as described before (Gribble et al., 2013). For each 
hybridisation, approximately 100 ng of labelled DNA from each clone and 2-4 
µg of human Cot-1 DNA (Invitrogen) were precipitated down using ethanol, 
then resupended in hybridisation buffer containing 50% formamide, 2×SSC, 
10% dextran sulphate, 0.5 M phosphate buffer, pH 7.4.  
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Assays Designs 
Sequenom Assay 
The Sequenom genotyping data consist of two plates containing SNP 
genotypes, W30467 and W1180, for which the combined total of SNPs is 61 
(58 unique, including 4 sex markers). Plate W30467 is the standard Sanger 
Sample Quality Control plex including 31 SNPs while W1180 is a custom 
DDD specific plex that includes an additional 30 CNV tagging SNPs.  

Array-CGH Platform 
The DDD array comparative genomic hybridisation (aCGH) platform is 
composed of 2 x 1M probe Agilent arrays and has been heavily targeted 
towards genes and ultra-conserved elements throughout the human genome. 
The entire set of Gencode genes (version 17), along with some high value 
regulatory and mRNA coding elements have been tiled, using a minimum of 5 
oligo-nucleotide probes per exon. Additionally the array maintains the 
presence of a high-resolution backbone with a median probe spacing of 5Kb 
(Amadid No.s 031220/031221). 

SNP Genotyping Platform 
The DDD single nucleotide polymorphism (SNP) genotyping array is a 
customised version of the Illumina Omni-one quad chip. Extra content has 
been added to standardise the genome coverage, aiming to target the largest 
gaps in array coverage first and additionally inserting the best quality probe 
within the central gap region. The array includes 811,844 mapped markers 
(1,734 are unmapped) and has been designed to minimise gaps between 
probes with a median intermarker distance of 2,378bp 
(SangerDDD_OmniExPlusv1_15019773_A). 

Exome Plus Sequencing Platform 
The exome sequencing bait region design (Exome+) is a version of the 
Agilent Sanger-Exome (Human All Exome 50mb Kit) with an additional 57,680 
bait regions. The bait region design uses normal default parameters of; 1x 
coverage and less than or equal to 20bp overlap with repetitive regions. Out 
of the 57,680 additional bait regions, 34,825 baits are used to cover 4,322 
ultra conserved regions, 10,117 are used to cover 1,664 heart enhancers and 
12,296 are used to cover 622 additional enhancer regions. The total number 
of bait regions used in the Exome+ design is 271,063 (Agilent Human All 
Exon V3 Plus with custom ELID # C0338371). 

Coverage 
For our aCGH experiments our array platform consisted of 1,932,856 probes. 
In protein coding genes (GENCODE v17), every exon encompassed on 
average 2 probes, 11% of exons contained no probes. Every protein-coding 
gene encompassed on average 72 probes, less than 10% of genes 
encompassed fewer than 10 probes. 
 
For our exome sequencing, targeting 58.62 Mb (271,064 baits) of which 51.64 
Mb (213384 baits) consisted of exonic targets (39 Mb) and their flanking 
regions, 6.9 Mb (57680 baits) of regulatory regions were targeted using 
custom baits. The median (n=3,399) average sequencing depth (ASD = bases 
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sequenced/bases targeted) was 90X across the whole targeted sequence or 
93X across autosomal targets only. 95% of all samples had an average 
sequencing depth higher than 63X. At least 90% of all targeted regions have a 
median ASD higher than 15X. Only 16026 baits showed a median ASD 
smaller than 10X, comprising 800kb of protein coding sequence. More than 
85% of all probes were consistently covered (ASD >10X) across the three 
samples of the trio in at least 90% of the 1133 trios. 

Variant Calling 
Array-CGH - CNV Detection  
We have developed CNsolidate, a novel change point detection system. 
CNsolidate makes use of 12 independent change point detection algorithms 
(Pique-Regi et al., 2010; Olshen et al., 2004; Price et al., 2005; Picard et al., 
2005; Benelli et al., 2010; Andersson et al., 2008; Erdman et al., 2007; Barry 
et al., 1993) and an expert voting system to detect CNV regions (CNVRs) 
from aCGH data. Each change point detection algorithm is weighted based on 
its estimated performance (Type 1 and Type 2 error rates) across a range of 
data noise measures. These noise measures are drawn from each input 
dataset and used to calculate a combined CNV confidence measure (w-
score). The w-score is a composite value based on the combined 
performance of all algorithms contributing to the detection of each CNVR, 
given the scale of all data noise values measured. CNsolidate generates an 
annotated single sample VCF file containing the detected CNVRs annotated 
with CNV confidence measures, copy number state estimates, population 
frequency values and gene annotations for each sample.  

SNP Genotyping - Inheritance Classification 
Log R ratios (LRR) and B-allele Frequencies (BAF) are calculated for each 
SNP for each individual using the Illumina GenomeStudio software. We have 
developed VICAR (Variant Inheritance Classification Algorithm in R), a novel 
Bayesian framework for the classification of inheritance statues using SNP 
genotyping data. VICAR uses the copy number state likelihoods obtained 
using the validate option from PennCNV (Wang et al., 2007) to determine 
whether a CNV identified from the aCGH data in an offspring is de novo or 
inherited. The inheritance classifications determined by VICAR are added as 
an annotation onto each CNV called in the proband using aCGH.  

SNP Genotyping - UPD Detection 
Uniparental disomy was detected using a trio-based strategy as previously 
described (King et al., 2014). For the detection of UPD events in probands 
UPD-informative positions were classified by inheritance (maternal, paternal) 
and by type (isodisomy, heterodisomy), and the number of informative 
genotypes was tallied for each chromosome. Chromosomes harbouring an 
enrichment of UPD-type proportions were flagged as potential UPD events if 
they were statistically unlikely using a binomial test for each chromosome, 
each inheritance-type combination with a multiple test adjusted p value of 
0.000568.  



	
   7 

SNP Genotyping - Mosaicism Detection 
Detection of mosaic large-scale loss of heterozygosity and copy number 
variation events was performed with Mosaic Alteration Detection (MAD) 
(Gonzalez et al., 2011), using default parameter values. This tool identifies a 
putative mosaic event as a segment of SNP genotypes with a consistent 
aberration in B-allele frequency, followed by classification into loss of 
heterozygosity, gain, or loss based on the average log R ratio values of 
positions within the segment.  

Exome Sequencing - SNV and INDEL Detection 
All Binary Alignment/Map (BAM) files are processed using the Genome 
Analysis Production Informatics (GAPI) pipeline at the Wellcome Trust Sanger 
Institute. The GAPI pipeline is used to call single nucleotide variants (SNVs) 
and insertion/deletion variants (INDELs) from whole exome sequence data. 
Reads are mapped to the reference genome (GRCh37_hs37d5), duplicate 
fragments are marked using Picard (version 1.46), local realignment around 
indels is performed with GATK (version 1.1) and GATK is then used to 
recalibrate base qualities. Variants are only reported within the bait regions +/- 
100bp. SNVs are called with GATK using the UnifiedGenotyper, SNVs and 
INDELs are called with samtools (version 0.1.16) mpileup options -d 500 -C50 
-m3 -F0.002 and variants are filtered using the vcfutils.pl utility and options -p 
-d 4 -D 1200 from samtools. A further set of indels is called using a dedicated 
indel caller, Dindel (version 1.01). The GAPI pipeline produces individual 
single sample variant call formatted (VCF) files for each caller (samtools, 
GATK and Dindel) that is then combined into a merged VCF file. Merging 
conflicts are resolved following a caller order; [dindel, gatk, samtools]; where 
the primary caller (the first in the list) defines the position and genotype of the 
variant.  

Exome Sequencing - De novo mutation detection 
DeNovoGear version 0.2 (Ramu et al., 2013) is used to detect de novo 
mutations (SNVs and INDELs) from trio exome data (BAM files). DeNovoGear 
results are merged into proband VCF files and where positional conflicts occur 
the annotations provided by DeNovoGear are added to the existing variant. 

Exome Sequencing - CNV Detection 
We have developed CoNVex, a novel CNV detection algorithm for exome 
sequencing data. CoNVex utilises the read depth information from targeted 
bait regions and computes a log2 ratio by comparing the read depth at each 
position to a reference made up of the median read depth across a number 
highly correlated samples. A GC based correction is applied and the log2 
ratios are converted into an error weighted score (ADM-2 scores). Copy 
number variable regions (CNVRs) are detected using the ADM-2 scores and 
the Smith-Waterman algorithm (Price et al., 2005). CoNVex generates a 
single sample VCF file containing the detected CNVRs for each sample. 

CNVR Merging - CoNVex and CNsolidate 
CNVRs detected by CoNVex and CNsolidate are merged into a single sample 
CNV-VCF formatted file. CNVRs sharing any overlap between the two callers 
are merged and the break point positions are taken from CNsolidate in 
preference due to the superior coverage achieved on the aCGH platform. The 
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CNV-VCF files are then combined with the merged SNV and INDEL VCF file 
to produce a single sample merged (uber-VCF) file for each proband.  

Annotation 
Minor Allele Frequency 
To define the rarity of each SNV and INDEL, the uber-VCF is further 
annotated with minor allele frequency (MAF) data from a variety of different 
sources. A subset of these MAF annotations are used to define a maximum 
allele frequency (MAX_AF) for use in subsequent frequency based variant 
filtering. The MAF annotations used to define the MAX_AF include data from 
4 different populations of the 1000 Genomes project (Abecasis et al., 2010) 
[AMR, ASN, AFR & EUR], the UK10K cohort, the NHLBI GO Exome 
Sequencing Project (ESP) and an internal DDD allele frequency generated 
using unaffected parents. For allele matching of SNVs we use an exact match 
based on a key generated from four values (chromosome, position, reference 
allele and alternative allele). For allele matching of INDELS we use a less 
stringent approach where the key is constructed using a different four values 
(chromosome, position, slice and direction). This key requires both INDELs to 
be at the same locus (chromosome and position) while the slice is computed 
based on the DNA sequence difference between the reference and alternative 
alleles and direction is either deletion or insertion. For the rarity of CNVs a 
number of external and internal normal CNV control data sets (CNV 
Consensus), comprising of merged copy number events (CNVEs) from 
various different studies, are used to add a population frequency estimate to 
each CNVR. These control CNVE sets include the 42M CNV Project Hapmap 
Study (Conrad et al., 2009) the Wellcome Trust Case Control Consortium 
(WTCCC) (Craddock et al., 2010), the 1000 Genomes Project (Abecasis et 
al., 2010) and the DDD normal controls (UKBS and Generation Scotland). 
CNVRs sharing more than 80% of their boundaries with any CNVE of the 
same type (deletion or duplication) observed at more than 1% population 
frequency in any CNVE set are classified as common.  

Variant Effect Predictor 
To define the functional consequence of each variant (SNVs, INDELs and 
CNVs) annotations from the ensembl variant effect predictor 2.6 (VEP) 
(McLaren et al., 2010) based on ensemble gene build 68 are added to the 
uber-VCF file. VEP produces a number of annotations including, SIFT and 
Polyphen predictions, ensemble transcripts, HGNC gene names and a 
prediction of the functional consequence for each variant. The transcript with 
the most severe consequence is selected and all associated VEP annotations 
are based on the effect that the variant has on that particular transcript. 
Furthermore, based on the functional consequence prediction form ensembl 
VEP variants are categorised into one of 4 different broad consequence 
terms: 

-­‐ Loss of function (VEP consequences: transcript ablation, splice donor 
variant, splice acceptor variant, stop gained, frameshift variant) 
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-­‐ Functional (VEP consequences: stop lost, initiator codon variant, 
inframe insertion, inframe deletion, missense variant, coding sequence 
variant) 

-­‐ Silent (VEP consequences: synonymous variant, stop retained variant 
-­‐ Other (VEP consequences: transcript amplification, splice region 

variant, incomplete terminal codon variant, mature miRNA variant, 5 
prime UTR variant, 3 prime UTR variant, intron variant, NMD transcript 
variant, non coding exon variant, nc transcript variant, upstream gene 
variant, downstream gene variant, TFBS ablation, FBS amplification, 
TF binding site variant, regulatory region variant, regulatory region 
ablation, regulatory region amplification, feature elongation, feature 
truncation, intergenic variant) 

Quality Control 
Sequenom 
Analysis of the Sequenom data is performed at the SNP, individual, and 
family level. This is the first quality control (QC) step and occurs as soon as 
any sample arrives at the Wellcome Trust Sanger Institute. Individual samples 
are evaluated for DNA sample quality, call rate and average heterozygosity. 
Individual samples with a call rate < 0.74 or a heterozygosity value below 
0.195 or above 0.756 are failed. Families are evaluated for discrepancies 
between the stated gender versus the genotyped gender and for the likelihood 
of the pedigree structure recorded in DECIPHER. The most plausible 
pedigree structure given the data for a family is determined using an algorithm 
that calculates the Bayes factor for six different possible pedigree states 
[Standard Trio, Father-offspring swap, Mother-offspring swap, Non-paternity, 
Non-maternity, All unrelated]. We use a relatively generous threshold to 
determine which families are classified as standard trios and all families 
where the log(Bayes Factor) for the standard trio is the maximum will pass the 
pedigree structure check. Any trio that appears to be non-standard is 
evaluated manually before any further sample processing is allowed to occur. 

Array-CGH  
For call QC of the aCGH data we apply the recommended detection quality 
filtering criteria from CNsolidate; comprising of a w-score above 0.468, a p-
value below 0.01, and the mean log2 ratio below -0.41 for deletions and 
above 0.36 for duplications when passing individual CNV calls. For sample 
QC we use an exclusively post-calling approach and apply a robust clustering 
algorithm (“Aberrant”) for outlier identification and exclusion (Bellenguez et al., 
2012) to the total number of passed CNVRs per sample versus the proportion 
of passed rare CNVRs per sample. We define rare as CNVRs that do not 
share greater than 80% of their boundaries with a copy number event (CNVE) 
of the same type, deletion or duplication, observed at more than 1% in the 
CNV Consensus list. Each aCGH sample is made up of 2 slides (2 x 1 million 
probe Agilent arrays) and any slides defined as outliers by the “Aberrant” 
clustering method are failed, where either slide fails for a sample the overall 
sample is also failed. Additionally we apply further exclusions, at the sample 
level, based on a low sensitivity cut-off of less than 40 QC passed detections 
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and a deletion / duplication ratio of greater than 10. Finally we apply a data 
tracking check to ensure that the CNV data is consistent with the Sequenom 
data linked to the same sample identifier. We make use of 28 copy number 
tagging SNPs to allow the aCGH data to be correlated with the SNP 
genotypes obtained via the Sequenom assay run at sample reception. Both 
slides on the aCGH platform contain dedicated probes tiling the 28 CNVRs 
tagged by SNPs present on the Sequenom assay. First, CNVtools (Barnes et 
al., 2008) is used to assign a copy number state to each SNP-tagged CNVR 
and the probability of observing all copy number states (aCGH data) given all 
observed genotypes (Sequenom data) is calculated using a Bayesian 
framework. The probabilities of observing individual copy number state - SNP 
genotype pairs are derived empirically and continually updated as more data 
is processed through the system.  

SNP Genotyping  
For sample QC on the SNP genotyping array we use the average 
heterozygosity and call rate for each individual and discard samples with a 
call rate below 0.95 and/or average heterozygosity greater than 3 standard 
deviations from the mean of the batch. We examine the relationships between 
members of a trio or duo using the kinship coefficient from KING (Manichaikul 
et al., 2010) for each pair within the family. We check whether individuals 
within a family are related in the way specified by the defined pedigree and 
whether the parents appear to be related. The default thresholds 
recommended by KING are used for defining different levels of relatedness 
between individuals. Finally we calculate the concordance between the 
genotypes from the SNP-array and the Sequenom assay using 53 SNP 
markers, individuals with less than 90% concordance between the SNP-array 
and the Sequenom assay are flagged as potential errors. 

Mosaicism  
As mosaicism disrupts commonly implemented SNP-genotyping sample-level 
QC metrics, such as standard deviations of B-allele frequency and log R ratio, 
we did not institute these sample-level QC metrics. Instead, we devised a 
downstream filtering strategy to filter at the level of detected segments. 
Manual inspection of a large subset of initial MAD putative detections 
identified four sources of technical error: 1) hypersegmentation, 2) constitutive 
duplications, 3) segments with absence of heterozygous genotypes (reflecting 
constitutive regions of homozygosity), and 4) segments with heterozygous 
BAFs skewed unimodally. We developed a computational strategy to mitigate 
these errors. First, we managed hypersegmentation by merging nearby 
(within 1 Mb) segments representing the same event type (loss, gain, or loss 
of heterozygosity). Second, we filtered constitutive duplications if the segment 
had a log R ratio or B deviation within the constitutive duplication centroid 
identified from 1,813 high-quality inherited copy number variations. Third, we 
identified constitutive homozygosity as segments with a very low (<5%) ratio 
of heterozygous to homozygous genotypes. Lastly, we avoided false 
segments in genomic waves by using the R language density function to 
calculate the peak heights of heterozygous BAF clusters, and filtered 
segments with a great relative difference of tallest peak to next-tallest peak 
height, a signal reflecting a single band of heterozygous genotypes, and thus 
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non-mosaic. By implementing these strategies we reduced the number of 
putative detections to a few dozen and were able to manually curate this 
number. Copy number mosaic events were validated by FISH. 

Exome Sequencing - SNVs and INDELs 
Low confidence variant calls from each caller are failed and are not including 
during any variant merging steps. Variants displaying the following criteria 
from samtools are failed: read depth (DP) less than 4, DP greater than 1200, 
mapping quality (MQ) less than or equal to 10, strand bias p value 
(StrandBiasPval) less than 0.0001, base quality bias p value (BaseqBiasPval) 
less than 1e-100, mapping quality bias p value (MapqBiasPval) less than 0 
and the number of base pairs from a gap in the genome build 
(MinbpfromGap) less than 10. Variants displaying the following criteria from 
GATK are failed: DP less than 4, DP greater than 1200, variant quality 
(QUAL) less than 30, quality by depth (QD) less than 5, homopolymer run 
length (HRun) greater than 5, strand bias (SB) greater than 10, mapping 
quality zero (MQO) greater or equal to 4 and MQO greater than or equal to 
MQO/(1*DP). Variants displaying the following criteria from Dindel are failed: 
HRun greater than 10, and quality score less than 20.  
 
Variants from DeNovoGear are further filtered based on the following set of 
pass criteria: internal minor allele frequency less than or equal to 0.01, 
UK10Ktwin minor allele frequency less than or equal to 0.01, segmental 
duplications and tandem repeat regions excluded, and variant present in child 
VCF but not the parental VCF files.  
 
To ensure that each VCF file is associated to the correct sample we calculate 
the concordance between SNP genotypes in each VCF file and the 
Sequenom assay, files with less than 90% concordance are flagged as 
potential errors. We exclude data sets displaying high levels of sample 
contamination based on the extreme alternative allele fraction. For each site, 
we compute the allelic depth for the alternative allele divided by total depth, 
(AD/DP). For heterozygous SNVs if AD/DP is less than 0.15 or AD/DP is 
greater than 0.8 the SNV is classed as an outlier; for homozygous SNVs if 
AD/DP is less than 0.95 the SNV is classed as an outlier. Samples with 
greater than 4000 common extreme levels of heterozygous SNVs are failed 
due to high levels of sample contamination. 

Exome Sequencing - CNVs 
For sample QC of the exome CNV data we fit a lowess between the median 
absolute deviation and the mean number of detections for deletions and 
duplication separately per sample. Samples that are greater than 3x the 
standard deviation away from the lowess curve for either deletions or 
duplications are failed. To fail CNV calls we use a number of different filters 
aimed at increasing the specificity for rare CNVRs. The fail criteria for all 
autosomal CNVRs called by CoNVex are: type is DUP and convex score less 
than 7, size greater than 500,000 bp and convex score less than 10, size 
greater than 200,000 bp and convex score less than 10 and number of probes 
greater than or equal to 10, mean log2 ratio greater than or equal to 1.5, 
forward overlap with common CNVEs from the CNV consensus is equal to 0 
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and the internal frequency (rc50) is greater than 0.05, mean log2 ratio greater 
than 0 and type is DEL, mean log2 ratio less than 0 and type is DUP. For rare 
CNVRs an additional set of fail criteria are applied, where rarity is defined as 
CNVRs that do not share greater than 50% of their boundaries with a copy 
number event (CNVE) of the same type, deletion or duplication, observed at 
more than 1% in the CNV Consensus list. The rare CNVR fail criteria are: type 
is DUP and number of probes equals 1 and convex score less than 10, 
convex score less than 10 and number of probes equals 1 and size less than 
500 bp, mean log2 ratio greater than -0.5 and type is DEL and convex score 
less than 10, mean log2 ratio less than 0.29 and type is DUP and convex 
score less than 10, size less than 15000 bp and convex score less than 10 
and internal frequency (rc50) greater than 0.01, type is DUP and number of 
probes greater than 5 and convex score less than 8. Finally, for CNV calls 
made by CoNVex on chromosome X we apply a differential absolute size cut-
of depending on how far away the sample is from the lowess curve fitted 
during sample QC. All CNV calls on chromosome X greater than 10,000,000 
bp in size are failed and additionally, for samples defined as outliers during 
sample QC, all CNV calls greater than 500,000 bp in size on chromosome X 
are failed. 

Family History and Consanguinity 
Family history 
 
Family history was assessed by a brief online questionnaire in DECIPHER 
completed by the patient’s local clinical team. Relevant phenotypes for 
affected parents were also recorded using the Human Phenotype Ontology 
(Köhler et al., 2014).  
 

Trio Number (%) 
Proband only affected 812 (72%) 
One parent affected 93 (9%) 
Both parents affected 18 (2%) 
Siblings affected 157 (14%) 
Second degree relatives affected 87 (8%) 
Unknown 37 (3%) 

	
  

Consanguinity 
 
Self-assessed consanguinity was record online in DECIPHER by the patient’s 
local clinical team. Identity-by-descent (IBD) was also calculated from exome 
data using KING (Manichaikul et al., 2010). 
 

 

IBD-defined 
No Yes 

Self-
declared 

No 1068 14 
Yes 18 33 
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Analysis of Known Causes of Developmental 
Disorders 
	
  
To facilitate the scalable identification and clinical review of possibly 
pathogenic variants in genes known to harbour variants causing 
developmental disorders, we established a Developmental Disorder Gene to 
Phenotype database, DDG2P (Wright et al. 2014). We systematically 
classified the confidence with which a gene-phenotype relationship has been 
established (e.g. Confirmed, Probable, Possible) as well as the underlying 
genetic mode of inheritance (e.g. dominant, recessive) and the likely 
mechanism by which variants cause the disorder (e.g. Loss-of-function, 
Activating, etc). The November 2013 version of DDG2P used in these 
analyses contains 1,129 genes and 1,636 gene-phenotype pairs that are 
sufficiently established to identify variants with a high likelihood of diagnostic 
relevance. Rare (minor allele frequency < 1%) variants predicted to alter the 
encoded protein and consistent with the known allelic requirement and 
mutational mechanism of that gene-phenotype pair were reviewed by a multi-
disciplinary team including senior clinical geneticists. DDG2P is available for 
download from DECIPHER (https://decipher.sanger.ac.uk). 

Mutation Rates 
Modelling mutation rates 
Gene-specific mutation rates for different functional classes of single 
nucleotide variants (missense, silent, nonsense, canonical splice site, loss of 
stop codon) were provided for 18,272 genes by Mark Daly and Kaitlin 
Samocha (Samocha, Robinson et al. 2014). These gene-specific mutation 
rates are based primarily on estimated triplet-specific mutation rates, thus 
taking into account sequence context and gene size, and accurately predict 
the amount of synonymous variation seen in coding sequences. We estimated 
the frameshift mutation rate by scaling the nonsense mutation rate by the ratio 
of the number of experimentally validated de novo frameshift variants (N=95) 
and the number of experimentally validated nonsense variants (N=102). We 
estimated the rate of inframe deletions and insertions by scaling the frameshift 
mutation rate by the ratio of inframe and frameshift indels (1/9) observed 
genome-wide, predominantly regions not under strong negative selection 
(Mills et al., 2006). The mutation rate of genes on chrX was estimated 
separately for the paternal and maternal germline by applying an estimate for 
the male driven mutation parameter (alpha) of 3.4, based on an unpublished 
dataset of 199 de novo mutations phased in an unbiased manner to the 
paternal or maternal haplotype. The loss-of-function mutation rate for each 
gene was estimated by summing the mutation rates of nonsense, canonical 
splice sites and frameshift variants. The ‘functional’ mutation rate was 
estimated by summing the loss-of-function mutation rate with the rate of 
missense variants and inframe indels.	
  
 
Estimating expected numbers of mutations of different functional 
classes in sets of genes in a specified number of individuals 
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For autosomal genes the gene-specific mutation rates of different functional 
classes of variant were multiplied by the number of transmissions (twice the 
number of probands) to give the total expected number of mutations per gene 
given the number of probands sequenced. For X-linked genes, the gene-
specific mutation rates of different functional classes of variant in paternal and 
maternal germlines were multiplied by the number of paternal and maternal 
transmissions, respectively, and then summed, to give the total expected 
number of mutations per gene given the number of male and female 
probands. For a given set of genes, the expected number of mutations of 
different functional classes per gene was summed to give the expected 
number of mutations of different functional classes across the set of genes. 
To estimate the significance of the observed number of mutations of a given 
functional class in a specific gene set, the expected number of mutations in 
that class was assumed to be the mean of a Poisson distribution, and the 
probability of drawing from that distribution a number of mutations equal or 
greater than the observed number of mutations was calculated. 
 
Estimating number of genes expected to be recurrently mutated under 
the null hypothesis of no gene-specific mutation enrichment 
We simulated the number of genes expected to be recurrently mutated by 
chance given a specified number of observed mutations (functional or loss-of-
function only), by assigning mutations at random to genes according to their 
mutation rate (estimated as described above) and tabulating the number of 
genes with more than one mutation. Each scenario was simulated 10,000 
times to estimate the shape of this distribution. The excess of recurrently 
mutated genes was estimated as the number of observed recurrently mutated 
genes minus the median from the simulated distribution. This simulation was 
run for four different scenarios; 
- all functional mutations in all DDD families 
- loss-of-functional mutations in all DDD families 
- all functional mutations in undiagnosed DDD families 
- loss-of-functional mutations in undiagnosed DDD families 

 
Assessing significance of gene-specific mutation enrichment 
To evaluate the statistical significance of mutation enrichment in individual 
genes, we estimated the expected total number of mutations in each gene 
(separately for functional and loss-of-function mutations) in the 1,133 DDD 
probands, as described above. To estimate the significance of the observed 
number of mutations of a given functional class in a gene, the expected 
number of mutations in that class was assumed to be the mean of a Poisson 
distribution, and the probability of drawing from that distribution a number of 
mutations equal or greater than the observed number of mutations was 
calculated. This test was performed on DDD families under four scenarios: 
- all functional mutations in all DDD families 
- loss-of-functional mutations in all DDD families 
- all functional mutations in undiagnosed DDD families 
- loss-of-functional mutations in undiagnosed DDD families 

 
This test was also run on the meta-analysis of DDD families plus published 
mutations in parent-offspring trios with intellectual disability, autism, 
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schizophrenia, epileptic encephalopathies and congenital heart defects (Zaidi 
et al., 2013; Fromer et al., 2014; de Ligt et al., 2012; Rauch et al., 2012; Allen 
et al., 2013; Iossifov et al., 2012; Sanders et al., 2012; Neale et al., 2012; 
O'Roak et al., 2012). All published mutations were re-annotated for functional 
consequences using the same pipeline as was used for the DDD families. In 
these meta-analyses, only genes with mutations in the DDD trios were 
evaluated for statistical significance. The test was performed under four 
scenarios: 
- all functional mutations in all DDD families + published studies 
- loss-of-functional mutations in all DDD families + published studies 
- all functional mutations in undiagnosed DDD families + published 

studies 
- loss-of-functional mutations in undiagnosed DDD families + published 

studies 
 
The results of the significance testing of mutations in all DDD families (in 
isolation and in the meta-analysis with published studies) was used for 
demonstrating the power of this approach by re-discovering known DD genes, 
but was not used for the novel gene discovery analyses. For the novel gene 
discovery analyses only the testing of mutations in undiagnosed DDD families 
was used (in isolation and in the meta-analysis with published studies). 

Mutation Clustering Analysis 
De novo SNV mutations were analysed for clustering within genes. De novo 
SNVs identified in genes were compared to simulated dispersions of 
mutations within each gene. De novo variants originated from two sources – 
1) the DDD study, and 2) a meta-analysis including de novos from DDD and 
nine independent studies (Zaidi et al., 2013; Fromer et al., 2014; de Ligt et al., 
2012; Rauch et al., 2012; Allen et al., 2013; Iossifov et al., 2012; Sanders et 
al., 2012; Neale et al., 2012; O'Roak et al., 2012). Exon coordinates and 
sequences for de novo containing genes were retrieved from Ensembl, using 
the longest transcript available that contained all the source de novo variants. 
Nucleotide mutation rates in trinucleotide contexts were provided by Kaitlin 
Samocha and Mark Daly. De novo mutations were simulated within each 
gene, weighted by the context specific mutation rates. Each nucleotide within 
the coding sequence of a gene was evaluated against the possible alternate 
bases. Alternate nucleotides that modified the amino acid sequence, or that 
altered splice sites were randomly sampled. Mutations were randomly 
sampled within each gene, matching the number of sampled mutations to the 
number of known de novos. The de novos were assessed for their tendency 
to cluster within close proximity to each other. The clustering distance was 
calculated as the geometric mean coding distance between all the possible de 
novo pairs. The distances for the observed de novos were compared to 
distributions obtained from the simulated de novos. P-values were determined 
as the proportion of permutations with a distance less than or equal to the 
known de novo distance. Each gene underwent 1 million permutations to 
obtain a P-value. A small subset, genes with P-values at the minimum 
possible value, underwent additional permutations, up to a maximum of 64 
million permutations per gene test.  
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Combining p values for mutation clustering and mutation enrichment 
Fisher’s method was used to combine the significance testing of mutation 
enrichment and mutation clustering (described above). This combined p value 
was only generated for significance testing of all functional mutations and was 
not used for significance testing for loss-of-function mutations. The intuition 
behind this is that genes enriched for loss-of-function mutations will be 
predominantly operating by a mechanism of haploinsufficiency, which does 
not predict significant clustering of mutations, whereas gene enriched for 
other classes of functional mutations, predominantly missense mutations, 
could be operating by dominant negative of activating mechanisms, which are 
likely to be clustered at particular sites within the coding sequence of the 
gene. 
 
Estimation of multiple-testing correction for gene-specific enrichment 
and clustering of de novo mutations 
To establish a genome-wide significance threshold, we used Bonferroni 
correction for multiple testing. Bonferroni testing assumes that tests are 
independent of one another, which is clearly not the case when loss-of-
function mutations are included in both the loss-of-function test of enrichment 
and the functional test for enrichment. However, this lack of independence 
testing means that a Bonferroni significance correction assuming 
independence will be overly conservative. In the testing of mutations in DDD 
families in isolation, all 18,272 genes for which mutation rates could be 
estimated were tested. Whereas for the meta-analysis testing of the combined 
dataset of published mutations and mutations in DDD families, only genes 
with at least one functional mutation in DDD families were tested. Genes 
without any functional mutations in DDD families were not tested in these 
meta-analyses. 
 
When demonstrating the power of the mutation significance testing by re-
discovering known genes, four tests were performed [number of tests]: 
- all functional mutations in all DDD families (enrichment + clustering) 

[18,272] 
- loss-of-functional mutations in all DDD families (enrichment only) 

[18,272] 
- all functional mutations in all DDD families + published studies 

(enrichment + clustering) [980] 
- loss-of-functional mutations in all DDD families + published studies 

(enrichment only) [980] 
 
Thus the total number of tests for demonstrating the power of mutation 
significance testing was 38,504 and thus we applied a significance threshold 
of 0.05/38,504 = 1.30 x10-6 
 
For novel gene discovery, in the meta-analysis only genes with at least two 
functional mutation in DDD families were tested, and four tests were 
performed [number of tests]: 
- all functional mutations in undiagnosed DDD families (enrichment + 

clustering) [18,272] 
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- loss-of-functional mutations in undiagnosed DDD families (enrichment 
only) [18,272] 

- all functional mutations in undiagnosed DDD families + published 
studies (enrichment + clustering) [97] 

- loss-of-functional mutations in undiagnosed DDD families + published 
studies (enrichment only) [97] 

 
Thus the total number of tests for novel gene discovery testing were: 36,738. 
Thus we applied a significance threshold of 0.05/36,738= 1.36 x10-6. 

Loss of Function Saturation analysis 
To evaluate how the discovery of haploinsufficient genes might saturate with 
increasing sample size, we estimated the power to detect a significant 
enrichment of loss-of-function mutations, for each gene in the genome, across 
a range of sample sizes, from 1,000 to 12,000 trios. For a given gene and a 
given sample size, to estimate power to detect a significant enrichment of 
loss-of-function mutations we first calculated the integer number of mutations 
required to give a p value for the mutation enrichment test described above 
that exceeds 0.05/18,000, which represents an approximate Bonferroni 
correction for testing all genes in the genome. We then estimated the Poisson 
probability of observing at least this many loss-of-function mutations given the 
loss-of-function mutation rate of the gene, under the assumption that all 
individuals with loss-of-function mutations will be observed within the fraction 
of the population with severe developmental disorders. This analysis requires 
several assumptions: (i) there are no significant differences in mutability 
between haploinsufficient and haplosufficient genes in the genome, (ii) the 
penetrance of loss-of-function variants in haploinsufficient genes is 100%, (iii) 
the prevalence of severe developmental disorders is 0.5%, (iv) the most 
powerful way to identify haploinsufficient genes is significance testing of 
mutation enrichment for truncating variants, (v) loss-of-function variants in 
haploinsufficient genes do not result in increased rates of spontaneous 
miscarriage. 

Untransmitted Diplotypes Control Dataset  
 
We generated a population based control dataset of untransmitted diplotypes 
using the untransmitted haplotypes from the parents of the affected probands 
in 1,080 non-consanguineous trios. We hypothesised that if the cause of the 
proband’s developmental disorder is genetic then it results from a variant or 
variants they carry or a structural rearrangement or imprinting defect within 
their genome. Therefore an individual who inherited the variants carried by 
both parents, that the proband did not inherit, is predicted to be healthy. To 
prevent generating untransmitted diplotypes with homozygosity by descent, 
consanguineous families defined by KING score > 0 (Manichaikul et al., 2010) 
were removed from this analysis. 
 
An exome variant profile for the untransmitted diplotypes control was 
generated for each trio. The trio VCF files (mother, father, child) were merged 
and the following variants removed: Non ‘PASS’ variants, INDELS, variants 
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involving a multiallelic reference or alternate allele, CNVs, X and Y 
chromosome variants, intronic and upstream variants and variants with a 
QUAL score <179. The genotype in the untransmitted diplotype controls was 
calculated based on the genotypes of the mother, father and proband. 
Variants that did not fit with Mendelian inheritance were removed.  
 
Variants were categorised according to the following classification adapted 
from (Purcell et al., 2014): 
- Loss of Function (LoF): Stop gained, transcript ablation, splice donor 

variant, splice acceptor variant, frameshift variant 
- Damaging (Dam): Functional variants predicted to be damaging by two 

algorithms: (SIFT = deleterious and PolyPhen = Probably damaging) 
- Functional: Missense, inframe deletion, inframe insertion, coding 

sequence variant stop lost (not fulfilling the above criteria for 
‘Damaging’) 

- Silent: Synonymous variant 
 

Cumulative counts of rare (MAF < 5%) homozygous and compound 
heterozygous loss of function and damaging functional variants were 
generated for the probands and untransmitted diplotype controls (see 
Supplementary Table S5 and Extended Data Table 3).  The probands’ exome 
variant profiles used in analysis were processed in the same way as the 
controls, i.e. they had had specific variant types removed as above.  
Probands with a likely dominant cause of their disorder (either a diagnostic de 
novo mutation or an affected parent) were identified and analysed as a 
separate group ‘likely dominant probands’ (Extended Data Table 3).  

Model Organisms 
Gene selection 
We first identified all de novo nonsense, splice damaging, and frameshift 
variants classified as loss of function, as well as homozygous and compound 
heterozygous LOF variants from our cohort. The clinical phenotypes of the 
cases were assessed for likelihood of being picked up by zebrafish larval 
phenotyping following antisense-based knockdown. The assessment took into 
consideration comparative anatomy, phenotyping approaches, as well as the 
effective window of antisense activity (decreasing over 5 days). Our candidate 
gene list was further refined using a number of criteria including novelty (no 
informative animal model), literature background, available expression data, 
and burden in our cohort. A number of de novo missense variants deemed 
likely pathogenic were also selected for this analysis. The gene selection 
process identified 32 candidate genes for functional analysis. 

Zebrafish morpholino and primer selection 
Zebrafish orthologues of candidate human genes were identified through the 
ENSEMBL Compara database, ZFIN gene database, or blast searches, and 
refined through sequence and synteny comparisons. Morpholinos (MOs, 
Genetools LLC) are modified synthetic antisense oligonucleotides that bind 
mRNA and pre-mRNA, and knockdown protein expression through steric 



	
   19 

hindrance of translational machinery, or disruption or normal splicing. MOs 
were mostly targeted to preferentially 5' exon splice donor sites, such that MO 
induced exon skipping should result in frame shifted transcripts, and intron 
retention should introduce a premature stop codon into the aberrant transcript. 
The specific MO sequences were selected from our target regions by the 
manufacturer (Genetools, LLC, Supplemental table "MODELING Morpholinos 
and Primers "). To verify the specific knockdown activity of each splice 
blocking MO, we designed PCR primers in the region surrounding the target 
sequence (Supplemental table "MODELING Morpholinos and Primers "). RNA 
was isolated from injected embryos at 2 days post injection using 
TRIZOL(Invitrogen), followed by reverse transcription using random hexamer 
primers (SuperscriptIII kit, Invitrogen) to generate cDNA. This cDNA was used 
in splice detecting PCRs to determine MO efficacy: loss of wildtype spliced 
product and/or increase in intron retention in mRNA was taken as an 
indication of specific activity (Bill et al., 2009). (see Extended Data Figure 8). 

Replication 
From the initial round of MO injections, a subset of genes with knockdown 
phenotypes was selected for replication. A second, non-overlapping MO was 
designed for these experiments (Supplemental table 6). Phenotypic analysis 
was performed as above on these replication MOs to assess the specificity of 
our screen. 

Zebrafish morpholino injections 
Zebrafish were maintained in accordance with UK Home Office regulations, 
UK Animals (Scientific Procedures) Act 1986, under project license 80/2192, 
which was reviewed by the Wellcome Trust Sanger Institute Ethical Review 
Committee. Wild-type and transgenic zebrafish embryos were obtained by 
natural spawning and raised at 28.5°C, as described (Westerfield 1993). All 
injections were performed alongside control MO within the same clutch. As 
co-knockdown of tp53 expression has been shown to eliminate all known 
morpholino toxicity (Bill et al., 2009; Gerety et al., 2011; Robu et al., 2007), 
gene specific MOs were co-injected with 6ng of tp53 MO 
(GCGCCATTGCTTTGCAAGAATTG) (Langheinrich et al., 2002). Any injected 
clutches that displayed the distinctive head/eye apoptosis phenotype 
associated with morpholino toxicity were also discarded (Bill et al., 2009; 
Gerety et al., 2011; Robu et al., 2007). These preventative and remedial 
measures ensured that clutches with phenotypes related to known MO toxicity 
were not analysed. All morpholinos were dissolved in water for 10 min at 65 
°C, at 1 mM and stored at room temperature in glass vials. One- to four-cell 
embryos were microinjected with 1.8 nl of MO diluted in water. A dose curve 
was performed in which we established that 6ng of specific MO plus 6ng of 
tp53 MO would not induce off-target toxicity, and was therefore selected for all 
knockdown experiments. Knockdowns were repeated a minimum of two times 
at this dose (6ng specific MO + 6ng tp53 MO). Additional injections at lower 
doses of specific MO were performed when the severity of the knockdown 
precluded interpretation. When single knockdowns gave no phenotype, and a 
second zebrafish orthologue was present, double knockdown animals were 
phenotyped (5ng of each specific MO + 6ng tp53 MO). 
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Phenotyping 
All MO injected embryos and their controls were observed over 3-5 days of 
development for abnormal phenotypes by two independent observers using 
light microscopy, based on published criteria (Kettleborough et al., 2013). 
Phenotypic findings were recorded and compared. Patient phenotype-aware 
observations ensured that relevant observations were made (i.e. head size 
measurements for potential microcephaly genes). 

Microcephaly assays 
For genes from patients with microcephaly, 10-20 knockdown embryos were 
photographed from dorsal and lateral aspects at day 2. These photos were 
measured for microcephalic changes using interocular distance as a 
surrogate for head size (Dauberet al., 2013; Golzio et al., 2012). These were 
repeated a minimum of 2 times. Statistical significance and p-values were 
determined using a two-tailed student's t-test. Significant changes in head 
size were followed up by imaging of neuronal tissue using anti-HuC/D 
antibody staining and confocal imaging (see below), with subsequent 
measurements of brain width at the level of the diencephalon to establish the 
effect on brain tissue. 

In situ hybridisation, immunohistochemistry, and cartilage staining 
Injected embryos were collected at the desired stage and fixed in 4% 
paraformaldehyde/PBS overnight. Fixed embryos were then stored in 100% 
methanol, or processed immediately for in situ hybridisation or 
immunohistochemistry. For in situ hybridisation, probe synthesis, 
hybridisation, and detection for cmcl2 was performed as described (Chocron 
et al.,; Xu et al., 1994). Embryos were then re-fixed in 4% paraformaldehyde, 
cleared in 70% gycerol/PBS, and mounted for photography. Additional 
experiments were performed in cmcl2::GFP zebrafish (Rottbauer et al., 2006) 
in which the heart tissue expresses GFP. In this case embryos were fixed and 
photographed on a Leica M205FA fluorescent stereoscope (Leica 
Microsystems, UK). For antibody detection of neurons in zebrafish embryos, 
we used mouse anti-HuC/D (clone 16A11, A-21271, Invitrogen) as described 
previously (Gerety et al., 2013). Fluorescent images were captured using a 
Leica TCS SP2 confocal microscope (Leica Microsystems, UK). Cartilage 
staining was performed as described previously (Clement et al., 2008), and 
photographed on a Zeiss Axioplan microscope equipped with an Zeiss 
Axiocam digital camera. 
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