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1 Workflow

In order to give further insight regarding the proposed workflow a stepwise description is
given here. We start with the partition of the whole data set D in a set used for model
selection D ;s and a set used for testing D;.s. In the next step D g is divided via CV
into Koy parts. Koy is set to 10, since a CV over all combinations is computational
too intense and does not significantly improve the precision of the estimated accuracy
Kohavi| (1995). In each iteration of the CV the features of the training set are scaled



by subtracting the mean and dividing by the standard deviation. Therefore all features
in the training set have zero mean and a standard deviation of one. The validation set
is scaled by the same procedure using mean and standard deviation of the training set.
Note, that these transformations do not belong to data preprocessing, but are an integral
part of the model building process. The transformation of the whole data set during
model selection is not recommended, since this introduces bias by using information
from the test set for model selection. In principle the same proceeding pertains for
feature selection. Therefore feature selection should be applied during CV resulting in
the selection of different feature subsets in every iteration. In order to elude this difficulty
we relax this proceedings and perform feature selection on Dj;g. Thus, bias might be
introduced in model selection, but the accuracy estimated from the independent test set
is still unbiased and trustworthy.

The classifiers are trained via grid search using all combinations of hyperparameters (e.g.
number of features (all classifiers), number of nearest neighbors (KNN), regularization
parameter (LLSVM), kernel band width (LLSVM)) and validated on the validation set
for all feature selection schemes. We sampled the number of features equidistantly and
the remaining hyperparameters logarithmically. By this we explored the performance
in regard of the parameter space and are able to identify the best models achieving
the highest performance. Especially for the highly nonlinear classifiers i.e. KNN and
SVM, the exploration of the parameter space can be very time consuming, since the
parameter space and training time of these classifiers is bigger compared to LDA and
QDA. Note, that the grid like exploration of the parameter space can be replaced by
other optimization schemes. After identifying the best hyperparameters the process of
model selection is complete. To estimate the models’ unbiased performance they have
to be validated on the independent test set. Therefore Dj);s and Dy.s are scaled as
done before. The models using the best parameters from the model selection part are
trained on Djsg and validated on Dy yielding the unbiased performance. To undertake
further predictions (e.g. the classification of kinetics or titration data) we used the best
models from the model selection part and retrained them on D. By this we end up
with the optimal model trained on the whole data set with an unbiased estimate of its
performance.

2 Case Study 1

In the first case study 120 features extracted from bright and dark field images charac-
terizing morphological properties of CD95 stimulated HeLa-CD95 cells were used. The
cells were stained with Annexin V and PI without prior fixation, which does not allow
the usage of antibodies for intracellular staining. A detailed description of the measured
features can be found in Tab. [l In the manuscript the CV accuracy of the KNN classi-
fier and the LLSVM was only shown for certain values of hyperparameters and feature
selection schemes. Therefore the whole analysis is presented in Fig. [Ij2] The unbiased
performance measured on the independent test set for all winning models is presented
in Tab. 2l Their predictions on the kinetics and titration data is shown in Fig. [3]



3 Model Selection via Genetic Algorithm

As stated in the manuscript model selection can be understood as an optimization prob-
lem with the objective to maximize the classification accuracy. If the model depends
only on a few hyper parameters as in our case, conventional grid search is a popular
choice for optimization. To accelerate the process of model selection heuristic optimiza-
tion schemes are often applied. In this section we demonstrate the effectiveness of a
genetic algorithm. The genetic algorithm is a simple evolutionary optimization tech-
nique, which is inspired by natural selection. In Fig. [4] the model selection via a genetic
algorithm with 20 generations and 8 individuals in each population is displayed. After a
few generations the genetic algorithm finds the region of interest in the parameter space
and converges to solution very close to the optimum computed with grid search. We
provide a MATLAB script illustrating this optimization approach for KNN and LLSVM
Pischel et al.| (2018)).

4 Case Study 2

In the second case study the feature ranking with color coded measurement dependency
(bright field, dark field, 7TAAD and caspase-3) was only shown for MIM. The ranking for
all feature selection techniques is illustrated in Fig. [5] The performance for all classifiers
on the test set excluding caspase-3 was only shown for the best models in the manuscript.
In Tab. Bl the performance is presented for all feature selection techniques and classifiers.
Their predictions on the kinetics data is shown in Fig. [6]

5 MATLAB Implementation

All results shown is this study were performed using MATLAB 2015b. In order to
demonstrate our methodology we provide three scripts [Pischel et al.| (2018). Two scripts
illustrate the classification strategy including feature selection, model selection, perfor-
mance estimation and model application of case study 1 and 2. The third script shows
the usage of a genetic algorithm for efficient model selection (case study 1).



Supplementary Tables

Table 1: List of features used in case study 1 and 2.

# feature descriptopn CS
1 area area [pm?2] 1,2
2 aspect ratio intensity minor axis intensity divided by major axis intensity 1,2
3 modulation intensity range 1,2
4 gradient rms average gradient of a pixel 1,2
5 mean pixel intensity divided by number of pixels 1,2
6 max pixel largest value of pixels 1,2
7 raw min pixel smallest value of pixels (no background subtraction) 1,2
8 width width 1,2
9 bright detail intensity r3 intensity of localized bright spots 1,2
10 perimeter boundary length of mask [pm] 1,2
11 compactness compactness 1,2
12 lobe count number of lobes 1,2
13 symmetry 2 tendency of lobe symmetry 1,2
14 symmetry 4 tendency of lobe symmetry 1,2
15 major axis longest dimension of surrounding ellipsis 1,2
16 minor axis shortest dimension of surrounding ellipsis 1,2
17 spot area min area of smallest spot 1,2
18 thickness min smallest width 1,2
19 angly intensity angle of major axis intensity from horizontal plane 1
20 centroid x intensity intensity weighted x centroid 1
21 centroid y intensity intensity weighted y centroid 1
21 valley x x coordinates of minimum intensity within skeletal mask 1
23 bright detail intensity r7 intensity of localized bright spots 1,2
24 h contrast mean Haralick et al. 1,2
25 h correlation mean Haralick et al. 1,2
26 h energy mean Haralick et al. 1,2
27 h entropy mean x Haralick et al. 1,2
28 h homogeneity mean Haralick et al. 1,2
29 h variance mean Haralick et al. 1,2
30 spot count number of spots 1
31 area threshold area of the nucleus 2
32 aspect ratio minor axis divided by major axis 1,2
33 bkgd mean average background 1
34 contrast sharpness quality 1,2
35 intensity mc intensity 1,2
36 median pixel median of pixels 1,2
37 raw max pixel smallest value of pixels (no background subtraction) 1,2
38 length length 1,2
39 height heigths 1,2
40 diameter diameter 1,2
41 circularity degree of deviation from a circle 1,2
42 elongatedness heigth divided by width 1,2
43 shape ratio thickness min divided by length 1,2
44 symmetry 3 tendency of lobe symmetry 1,2
45 min pixel smallest value of pixel 1,2
46 major axis intensity intensity weighted longest dimension of surrounding ellipsis 1,2
47 minor axis intensity intensity weighted shortest dimension of surrounding ellipsis 1,2
48 thickness max largest width 1,2
49 angle angle of major axis from horizontal plane 1
50 centroid x x centroid 1
51 centroid y y centroid 1
52 spot distance min shortest distance between two spots [um] 1
53 valley y y coordinates of minimum intensity within skeletal mask 1
54 gradient max largest gradient of a pixel 1,2
55 h contrast std Haralick et al. 1,2
56 h correlation std Haralick et al. 1,2
57 h energy std Haralick et al. 1,2
58 h entropy std Haralick et al. 1,2
59 h homogeneity std Haralick et al. 1,2
60 h variance std Haralick et al. 1,2
61 std standard deviation o 1,2




Table 2: Model performance of case study 1.

Fisher MIM MRMR
classifier A hyperparameters A hyperparameters A hyperparameters
LDA || 0.947 n: 116 0948 n: 118 0947 n: 120
QDA || 0938 n: 117 0939 n: 117 0937 n: 113
KNN || 0933 n: 83 0935 mn: 93 0.937 mn: 106
k: 8 k: 8 k: 16
SVM || 0.941 n: 95 0948 n: 99 0947 n: 102
c: 10 c: 10 c: 1
v: 1072 v: 1072 v: 1072
Table 3: Model performance of case study 2.
Fisher MIM MRMR
classifier A hyperparameters A hyperparameters A hyperparameters
LDA || 0986 n: 40 098 n: 44 098 n: 71
QDA || 0981 n: 42 0.979 n: 47 0981 mn: 93
KNN || 0984 n: 26 0.985 mn: 47 0984 n: 29
k: 16 k: 8 k: 16
SVM || 0983 n: 39 0.980 mn: 48 0979 n: 55
C: 10 C: 10 c: 1
R (e R (e v:o 1073
Supplementary Figures
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Figure 1: Model selection for KNN.
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Figure 2: Model selection for SVM.
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Figure 3: Model predictions on kinetics and titration data.
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Figure 4: Model selection via genetic algorithm.
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Figure 5: Feature ranking via Fisher score, MIM and MRMR.
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