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I. ANABAENA GROWTH AND DEVELOPMENT WITHIN DEVICES

To test whether Anabaena growth and developmental features are altered when filaments are grown within de-
vices under our microscope, we measured the doubling time of vegetative cells under nitrogen-rich conditions. We
obtained 17.4 hr, which compares favorably with values measured in the bulk [3]. In addition, the heterocyst spacing
distributions we observe 24 h following nitrogen step-down (S1 Fig) are consistent with those obtained in the bulk
in a wild-type background (see e.g. [21] in the paper). Lastly, we note that the onset of HetN-GFP expression takes
place circa 16 h after nitrogen step-down, consistently with previous experimental observations [5]. Thus under our
experimental conditions, filament growth and development within devices are similar to those in bulk cultures.

II. DETAILS ON THE STOCHASTIC MODEL

We begin this section by listing all the transitions rates that need to be accommodated for in the master equation
for the stochastic model on a static domain:

T1(ri + 1|ri) = αR

T2(ri − 1|ri) = kR
ri
V

T3(ri + 1|ri) = βR
( riV )2

K2 + ( riV )2

T4(ri − 2, si − 1|ri, si) = µS

(ri
V

)2 si
V

T5(ri − 2, ni − 1|ri, ni) = µN

(ri
V

)2ni
V

T6(si + 1|si) = αS

T7(si − 1|si) = kS
si
V

T8(si + 1|si) = βS
( riV )2

K2 + ( riV )2

T9(ni + 1|ni) = αN

T10(ni − 1|ni) = kN
ni
V

T11(si − 1, sj + 1|si, sj) = DS
si
V

T12(ni − 1, nj + 1|ni, nj) = DN
ni
V

(1)

The above transitions rates stem from the chemical equations displayed, and thoroughly discussed, in the main body
of the paper.
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The governing master equation can be written in the compact form

d

dt
P (r, s,n, t) =

N∑
i

[
(ε−1,i − 1)(T1(ri + 1|ri) + T3(ri + 1|ri))+

+(ε+1,i − 1)T2(ri − 1|ri)+

+(ε−2,i − 1)
(
T6(si + 1|si) + T8(si + 1|si)

)
+

+(ε+2,i − 1)T7(si − 1|si)+
+(ε−3,i − 1)T9(ni + 1|ni)+

+(ε+3,i − 1)T10(ni − 1|ni)+
+(ε+1,iε

+
1,iε

+
2,i − 1)T4(ri − 2, si − 1|ri, si)+

+(ε+1,iε
+
1,iε

+
2,i − 1)T5(ri − 2, ni − 1|ri, ni)+

+

N∑
j

Wij [(ε
+
2,iε
−
2,j − 1)T11(si − 1, sj + 1|si, sj)+

+(ε+3,iε
−
3,j − 1)T12(ni − 1, nj + 1|ni, nj)]

]
P (r, s,n, t)

(2)

where use has been made of the so-called step operators. The step operators act on a generic function f as specified
by:

ε±1,if(r, s,n) = f(. . . , ri ± 1, . . . , s,n)

ε±2,if(r, s,n) = f(r, . . . , si ± 1, . . . ,n)

ε±3,if(r, s,n) = f(r, s, . . . , ni ± 1, . . . )

The scalar quantities Wij are the entries of the adjacency matrix W that defines the spatial structure of the model.
As explained in the main body of the paper, the Anabaena filament can be modeled as a one-dimensional lattice,
with non-directional nearest-neighbors couplings. The lattice is open and so the first and last cells of the chain are
connected to just one adjacent neighbor. With an obvious meaning of the symbols involved we therefore posit:

W =


0 1 . . . 0 0
1 0 1 . . . 0
...

...
...

...
...

. . . . . . 1 0 1
0 0 . . . 1 0

 (3)

III. DETAILS ON THE VAN KAMPEN EXPANSION

As explained in the main body of the paper the van Kampen expansion amounts to split the stochastic density of the
regulators into two parts: the first represents the mean-field concentration, as recovered in the thermodynamic limit.
The second qualifies as a stochastic contribution scaled by the amplitude factor 1/

√
V , as dictated by central limit

theorem. For moderate system sizes (i.e. working at finite V ), the quantity 1/
√
V acts as a perturbative parameter

in the expansion technique, pioneered by van Kampen. In the following we provide some key steps to reproduce the
calculations that yield the formulae reported in the main body of the paper.

From the van Kampen ansatz, the left-hand side of the master equation can be written as:

d

dt
P (r, s,n, t) =

Ω∑
i

(
∂Π

∂t
− ∂Π

∂ξ1,i

√
V φ̇i −

∂Π

∂ξ2,i

√
V ψ̇i −

∂Π

∂ξ3,i

√
V η̇i

)
(4)

where Π(ξ1, ξ2, ξ3, t) ≡ P (r, s,n, t) represents the probability distribution function of fluctuations.
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Then, the step operators (and their combinations as appearing in the master equation) can be expanded as follows:

ε±1,i ' 1± 1√
V

∂

∂ξ2,i
+

1

2V

∂2

∂ξ23,i
(5)

(ε+1,iε
−
1,j − 1) ' 1√

V

( ∂

∂ξ1,i
− ∂

∂ξ1,j

)
+

1

2V

( ∂2

∂ξ21,i
+

∂2

∂ξ21,j
− 2

∂

∂ξ1,i

∂

∂ξ1,j

)
(6)

(ε+1,iε
+
1,iε

+
2,i − 1) ' 1√

V

( ∂

∂ξ2,i
+ 2

∂

∂ξ1,i

)
+

1

2V

( ∂2

∂ξ22,i
+ 4

∂2

∂ξ21,i
+ 4

∂

∂ξ1,i

∂

∂ξ2,i

)
(7)

The above (and other homologous) expressions can be inserted in the right hand side of the master equation.
Similarly, one can proceed by expanding the transition rates (details not provided), upon introduction of the van
Kampen ansatz. Scaling time as τ = t/V and collecting the leading terms in the expansion, yields the deterministic
mean field equations for the three coupled species, as reported in the main body of the paper.

At the next to leading order, one obtains a Fokker-Planck equation for the evolution of the distribution Π, namely:

∂

∂τ
Π =

Ω∑
i

(
−

3∑
q=1

∂

∂ξq,i
(Aq,iΠ) +

1

2

3∑
q,l=1

Ω∑
j

(Bql,ijΠ)

)
(8)

with

Aq,i =

3∑
l=1

Ω∑
j

Mrl,ijξs,j (9)

and where the size of matrices M and B is 3Ω × 3Ω. In the following we will assume the above operators to be
evaluated at the fixed point (φ∗, ψ∗, η∗).

Matrix M can be split into two terms, one retaining the spatial contributions (M (SP )) and one with contributions
that come from the reaction terms (M (NS)). In formulae:

Mql,ij = M
(NS)
ql δij +M

(SP )
ql ∆ij (10)

where:

M
(NS)
11 = −

(
kR − 2

βRφ
∗

K2 + (φ∗)2

(
1− (φ∗)2

K2 + (φ∗)2

)
+ 4µSφ

∗ψ∗ + 4µNφ
∗η∗
)

M
(NS)
12 = −2µS(φ∗)2

M
(NS)
13 = −2µN (φ∗)2

M
(NS)
21 = 2

βSφ
∗

K2 + (φ∗)2

(
1− (φ∗)2

K2 + (φ∗)2

)
− 2µSφ

∗ψ∗

M
(NS)
22 = −kS − µS(φ∗)2

M
(NS)
23 = 0

M
(NS)
31 = −2µNφ

∗η∗

M
(NS)
32 = 0

M
(NS)
33 = −kN − µN (φ∗)2

(11)

while the entries of M (SP ) are zeros except those corresponding to the mobile species, namely

M
(SP )
22 = DS

M
(SP )
33 = DN

(12)
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Analogously, B can be split into spatial and non-spatial components as:

Bql,ij = B
(NS)
ql δij +B

(SP )
ql ∆ij (13)

where

B
(NS)
11 = αR + kRφ

∗ + βR
(φ∗)2

K2 + (φ∗)2
+ 4µS(φ∗)2ψ∗ + 4µN (φ∗)2η∗ (14)

B
(NS)
12 = 2µS(φ∗)2ψ∗ (15)

B
(NS)
13 = 2µN (φ∗)2ηi (16)

B
(NS)
21 = 2µS(φ∗)2ψ∗ (17)

B
(NS)
22 = αS + kSψ

∗ + βS
(φ∗)2

K2 + (φ∗)2
+ µS(φ∗)2ψ∗ (18)

B
(NS)
23 = 0 (19)

B
(NS)
31 = 2µN (φ∗)2η∗ (20)

B
(NS)
32 = 0 (21)

B
(NS)
33 = αN + kNη

∗ + µN (φ∗)2η∗ (22)

and the entries of B(SP ) are zeros except

B
(SP )
22 = −2DSψ

∗

B
(SP )
33 = −2DNη

∗ .
(23)

IV. EQUILIBRIUM POINTS

To calculate the homogeneous fixed point of the deterministic model, we look for solutions (φ̇i = ψ̇i = η̇i = 0) such
that φi = φ∗, ψi = ψ∗, ηi = η∗ for all i.

An immediate manipulation of the reference equations yields:
ψ∗ =

1

kS + µS(φ∗)2

(
αS + βS

(φ∗)2

K2 + (φ∗)2

)
η∗ =

αN
kN + µN (φ∗)2

(24)

and, by inserting (24) into the first equation of the deterministic system reported in the main body of the paper, one
ends up with the following seventh-order polynomial:

c7(φ∗)7 + c6(φ∗)6 + c5(φ∗)5 + c4(φ∗)4 + c3(φ∗)3 + c2(φ∗)2 + c1(φ∗) + c0 = 0 (25)

with coefficients

c7 = −kR
c6 = αR + βR − 2αS − 2βS − 2αN

c5 = −kR(K2 + tS + tN )

c4 = αR(K2 + tS + tN ) + βR(tN + tS)− 2αS(tN +K2)− 2βStN − 2αS(tN +K2)

c3 = −kR(K2(tS + tN ) + tStN )

c2 = αR(K2(tS + tN ) + tStN ) + βRtStN − 2αStNK
2 − 2αN tSK

2

c1 = −kRK2tStN

c0 = αRtStNK
2

(26)
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where tS = kS
µS

and tN = kN
µN

. The real and positive roots of the above polynomial return the sought homogeneous

equilibria. The stability of the homogeneous solutions is then determined by computing the eigenvalues of the following
Jacobian matrix:

J =

 F −µS(φ∗)2 −µN (φ∗)2

G −kS − µS(φ∗)2 0
−2µNφ

∗η∗ 0 −kN − µN (φ∗)2

 (27)

with F = −kR + βR
2φ∗K2

(K2+(φ∗)2)2 − 2µSφ
∗ψ∗ − 2µNφ

∗η∗ end G = βS
2φ∗K2

(K2+(φ∗)2)2 − 2µSφ
∗ψ∗.

V. TURING INSTABILITY CONDITIONS FOR A THREE-SPECIES MODEL

This section is aimed at elaborating on the conditions that underlie the Turing instability for a three species model
defined on a one-dimensional support. We will in particular reproduce a selection of the results reported in [1], where
this generalization is thoroughly discussed.

As discussed in the main body of the paper, the conditions for the instability of a reaction diffusion system defined
on a discrete (symmetric) support can be derived by operating in the limit of a continuum spatial medium, i.e. by
replacing the discrete Laplacian with its continuum counterpart. In the following we shall assume, as in [1], that
the three species are characterized in terms of their concentrations H(x, t), P (x, t), Q(x, t): the species can undergo
generic reactions with each other and relocate in space, as follows standard diffusion. This translates into the following
formulae: 

∂H
∂t = A(H,P,Q) +DH

∂2H
∂x2

∂P
∂t = B(H,P,Q) +DP

∂2P
∂x2

∂Q
∂t = C(H,P,Q) +DQ

∂2Q
∂x2

(28)

where A(H,P,Q), B(H,P,Q), C(H,P,Q) are non-linear functions denoting the reaction terms. The homogeneous
equilibrium point (H∗, P ∗, Q∗) satisfies 

A(H∗, P ∗, Q∗) = 0

B(H∗, P ∗, Q∗) = 0

C(H∗, P ∗, Q∗) = 0

We introduce small non homogeneous perturbations to the steady state (H∗, P ∗, Q∗):
H(x, t) = H∗ + h(x, t)

P (x, t) = P ∗ + p(x, t)

Q(x, t) = Q∗ + q(x, t)

(29)

and choose the perturbations in the form 
h(x, t) = h0e

λt+ikx

p(x, t) = p0e
λt+ikx

q(x, t) = q0e
λt+ikx

(30)

where h0, p0 and q0 are constant parameters and k stands for the continuum wavenumber.
Inserting (29) and (30) into (28), after some algebraic manipulations, one ends up with the following condition∣∣∣∣∣∣

λ−AH +DHk
2 −AP −AQ

−BH λ−BP +DP k
2 −BQ

−CH −CP λ− CQ +DQk
2

∣∣∣∣∣∣ = 0 (31)

where we have adopted the notation AH = ∂A
∂H |(H∗,P∗,Q∗) (the same for the other species). The dispersion relation

becomes

λ3 + d1(k2)λ2 + d2(k2)λ+ d3(k2) = 0 (32)
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with

d1(k2) =−AH − CQ −BP + k2(DH +DP +DQ)

d2(k2) =AHCQ +AHBP +BPCQ − CPBQ −APBH −AQCH
− k2(DQBP +DPCQ +DHCQ +DHBP +DPAH +DQAH)

+ k4(DPDQ +DPDH +DHDQ)

d3(k2) =−AHBPCQ +AHCPBQ +APBHCQ+

−APCHBQ −AQBHCP + CHBPAQ

+ k2(−DQAPBH −DPCHAQ −DHCPBQ+

+DHBPCQ +DPCQAH +DQBPAH)

− k4(DPDHCQ +DHDQBP +DPDQAH)

+ k6DHDPDQ

(33)

The conditions for the steady states to be stable (Re(λ) < 0), implies:

d1(k2) > 0, d3(k2) > 0, d1(k2)d2(k2)− d3(k2) > 0 (34)

Since in our model only two species diffuse, we set to zero the diffusion coefficient of the first species, namely
DH = 0. In this way, d3(k2) becomes a quadratic function of k2, namely:

d3(k2) = −DPDQAHk
4 + k2[DP (CQAH − CHAQ) +DQ(BPAH −APBH)] + d3(0) (35)

If d3(k2) < 0, the aforementioned conditions (34) are violated and the system can turn unstable. This necessary
condition can be further analyzed in terms of AH . In particular, following the analysis reported in [1], one finds:

• If AH > 0, d3(k2)→ −∞ if k2 → +∞. No bounded domain in k2 exists, where the instability is localized.

• If AH = 0, there exist infinite values of k2 which let the system unstable

• If AH < 0, d3(k2) < 0 over a bounded domain in k2, if and only if:

F1 =DP (CQAH − CHAQ) +DQ(BPAH −APBH) < 0

F2 =[DP (CQAH − CHAQ) +DQ(BPAH −APBH)]2 + 4DPDQAHd3(0) > 0
(36)

Summarizing, for a model with three species, two diffusing and one immobile, the deterministic Turing instability is
possible if AH is negative and constrains (36) are satisfied.

VI. DETAILS ON THE MODEL WITH GROWTH: THE MEAN FIELD DYNAMICS

Starting from the master equation modified so to account for the growth of the filament, one can obtain, via a
straightforward manipulation, the mean field equations that govern the evolution of the system in the deterministic
limit. These are the following 3Ω(t)× 3Ω(t) differential equations [2]:

φ̇i = αR − kRφi + βR
φ2
i

K2+φ2
i
− 2µSφ

2
iψi − 2µNφ

2
i ηi + ρ̃

[(
i− 3

2

)
φi−1 −

(
i− 1

2

)
φi

]
ψ̇i = αS − kSψi + βS

φ2
i

K2+φ2
i
− µSφ2

iψi +DS

Ω∑
j

∆ijψi + ρ̃

[(
i− 3

2

)
ψi−1 −

(
i− 1

2

)
ψi

]
η̇i = αN − kNηi(L)− µNφ2

i ηi +DN

Ω∑
j

∆ijηi(L) + ρ̃

[(
i− 3

2

)
ηi−1 −

(
i− 1

2

)
ηi

] (37)

where ρ̃ = V ρ.
Taking the spatial continuum limit returns:

φ̇ = αR − kRφ+ βR
φ2

K2 + φ2
− 2µSφ

2ψ − 2µNφ
2η − ρ̃

[
x
∂φ

∂x
+ φ

]
ψ̇ = αS − kSψ + βS

φ2

K2 + φ2
− µSφ2ψ +DS

∂2

∂x2
ψ − ρ̃

[
x
∂ψ

∂x
+ ψ

]
η̇ = αN − kNη − µNφ2η +DN

∂2

∂x2
η − ρ̃

[
x
∂η

∂x
+ η

] (38)
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where now φ = φ(x, t), ψ = ψ(x, t) and η = η(x, t). Moreover DS,N = lim
∆x→0

∆x2DS,N , ∆x labeling the linear size

of the discrete mesh. The effect of the growth can be formally scaled out by performing the following change of

variables (x, τ) → (x̃, τ̃) =

(
x

Ω(τ) , τ

)
. Here, Ω(τ) = Ω0 exp(ρ̃τ) and Ω0 stands for the number of cells that compose

the filament at τ = 0.
An immediate calculation yields:

φ̇ = αR − kRφ+ βR
φ2

K2 + φ2
− 2µSφ

2ψ − 2µNφ
2η − ρ̃φ

ψ̇ = αS − kSψ + βS
φ2

K2 + φ2
− µSφ2ψ +

DS

Ω(t)2

∂2

∂x2
ψ − ρ̃ψ

η̇ = αN − kNη − µNφ2η +
DN

Ω(t)2

∂2

∂x2
η − ρ̃η

(39)

where, for the ease of notation, we consistently dropped, in the above equations, the tilde sign in (x̃, τ̃). The growth
materializes in the rescaled equations as (i) linear dilution terms, which affect all involved species, and (ii) time
dependent diffusion coefficients. System (39) can be readily simulated and the results displayed back in the original
spatial support so to make the effect of the growth visible. Reflecting boundary conditions are assumed at the edges.

VII. SIMULATIONS WITH DS/DN = 1

Endogenous demographic noise makes the region of Turing instability larger, and hence facilitates the process of
pattern formation in Anabaena. This contribution is particularly relevant when DS/DN = 1. In this case, in fact,
the domain of parameters that promotes the instability is very small (see S2 Fig panel b). Noise enlarges the domain
of deterministic instability, yielding robust patterns also for a choice of the parameters that would return a stable
homogeneous fixed point in the mean field approximation (see S3 Fig panels g-i). Notice that parameters could be in
principle optimized so as to return the spacing between heterocysts, as displayed in real experiments.

VIII. LINEARLY GROWING WAVE MODES

The growth of the filament increases the size of the domain in k that corresponds to a positive dispersion relation
(see S4 Fig). For a given length Ω, we have applied the Turing instability analysis to system (39) and recorded the
position of the maximum of the dispersion relation (solid line). The dashed and dotted lines identify the values of k
that yield a dispersion relation equal to zero. In other words, the dashed and dotted lines delimit the interval in k
where the modes triggered unstable are located.
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