Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/4/5/eaar2740/DC1

Supplementary Materials for

The fission yeast Stn1-Ten1 complex limits telomerase activity via its SUMO-interacting motif and promotes telomeres replication

Samah Matmati, Mélina Vaurs, José M. Escandell, Laetitia Maestroni, Toru M. Nakamura, Miguel G. Ferreira, Vincent Géli, Stéphane Coulon

> Published 16 May 2018, *Sci. Adv.* **4**, eaar2740 (2018) DOI: 10.1126/sciadv.aar2740

This PDF file includes:

- table S1. Fission yeast strains used in this study.
- table S2. Plasmids used in this study.
- fig. S1. Comparison of Stn1-226 with other Stn1 mutants.
- fig. S2. Deletion of $rifl^+$ and $exol^+$ restores viability of stnl-226 allele.

Figure	Strain no.	Genotype [§]	Source
1 <i>D</i>	SC651	h ⁺ cdc25-22 ts	S. Forsburg
	WT	h ⁻	P. Russell
	SC1124-25	h ⁻ stn1-226	This study
1 <i>E</i>	WT	h ⁻	P. Russell
	SC1124	h ⁻ stn1-226	This study
	YTC6733 ^(SC408)	h ⁻ stn1::13myc-kanMX6 his3-D1	T. Nakamura
	SM1174	h ⁻ stn1-226::13myc-natMX6	This study
1 <i>F</i>	WT	h ⁻	P. Russell
	TN7200	h ⁻ ten1::5Flag-TEV-Avitag-kanMX6 his3-D1	Miyagawa <i>et al</i> ., 2015
	YTC6733 ^(SC408)	h ⁻ stn1::13myc-kanMX6 his3-D1	T. Nakamura
	SM1174	h ⁻ stn1-226::13myc-natMX6	This study
	TN7503 ^(SC1131)	h [?] ten1::5Flag-TEV-Avitag-kanMX6 stn1::13myc-kanMX6	T. Nakamura
	SM1175	h [?] ten1::5Flag-TEV-Avitag-kanMX6 stn1-226::13myc-natMX6	This study
2A	SM1174	h ⁻ stn1-226::13myc-natMX6	This study
	SM1176	h [?] ten1::5Flag-TEV-Avitag-kanMX6 stn1-226	This study
	SM1177	h [?] est1::V5-kanMX6 stn1-226	This study
2 <i>B</i> -C	TN12145 ^(SC1128)	h ⁻ tpz1-K242R::hphMX6 his3-D1 ade-M210	Miyagawa <i>et al</i> ., 2015
	SM1178	h [?] tpz1-K242R::hphMX6 stn1-226	This study
3 <i>A-B</i>	WT	h	P. Russell
	SC1124	h ⁻ stn1-226	This study
3 <i>C-E</i>	SC838	h+ rhp51Δ::ura4+	P. Russell
	SM1179	h [?] rhp51Δ::ura4+ stn1-226	This study
4	WT	h ⁻	P. Russell
	SC1124	h ⁻ stn1-226	This study
5	WT	h	P. Russell
	SC1124	h ⁻ stn1-226	This study
5A	YO 001 ^(SC387)	h+ rpa1-D223Y	M. Ueno
	SM1267	h+ rpa1-D223Y stn1-226	This study
5B-C	CF96 ^(SC388)	h⁺taz1∆::ura4⁺	J. Cooper
	SM1268	<i>h</i> ⁻ <i>taz1∆::ura4</i> + stn1-226	This study
5D	TN3485 ^(SC381)	h⁻rif1∆::ura4⁺	T. Nakamura
	SM1269	h²rif1∆::ura4+ stn1-226	This study
	BAF394 ^(SC1310)	h+ rif1-PP1	A. Bianchi
	MV1332	h [?] rif1-PP1 stn1-226	This study
5E	TN3487 ^(SC392)	h⁻rap1∆::ura4+	T. Nakamura
	SM1331	h²rap1∆::ura4+ stn1-226	This study
6 <i>A-E</i>	WT	h ⁻	P. Russell
	SC1124	h ⁻ stn1-226	This study
	SC1030	h⁺exo1∆::kanMX6	B. Arcangioli
	MV1309	h⁻exo1∆::kanMX6 stn1-226	This study

table S1. Fission yeast strains used in this study.

[§]All fission yeast strains are *leu1-32 ura1-D18*

Plasmid name	Description	Plasmid n°
pSH18-34	LexAop(x8)-LacZ, URA3, amp ^r	
pJG4-5	acidic activator B42, TRP1, amp ^r , HA epitope tag	
pEG202	LexA(1-202)DNA-BD, HIS3, amp ^r	
pJG4-5-SUMO	B42-Pmt3	This study, p207
pJG4-5-SUMO-Tpz1	B42-Pmt3-Tpz1 ₂₄₃₋₄₂₀	This study, p238
pJG4-5-Tpz1	B42-Tpz1	This study, p194
pJG4-5-Tpz1-K242R	B42-Tpz1-K242R	This study, p448
pJG4-5-Ten1	B42-Ten1	This study, p167
pGAD-Ten1	B42-Ten1	B. Moser, p423
pEG202-Ten1Stn1	LexA-Ten1 _{Gly5} Stn1	This study, p193
pEG202-NStn1	LexA-NStn1 ₁₋₁₅₆	This study, p217
pEG202-CStn1	LexA-CStn1 ₁₅₇₋₃₂₅	This study, p219
pEG202-CStn1-195	LexA-CStn1-195 (¹⁹⁵ AAYA ¹⁹⁸)	This study, p242
pEG202-CStn1-226	LexA-CStn1-226 (²²⁶ AAAA ²²⁹)	This study, p243
pEG202-Stn1	LexA-Stn1	This study, p162
pEG202-Stn1-226	LexA-Stn1-226 (²²⁶ AAAA ²²⁹)	This study, p359
pREP41-Pol1		T. Wang, p379
pJK210-Stn1	ura4, stn1+	This study, p323
pJK210-Stn1-226	ura4, stn1-226 (²²⁶ AAAA ²²⁹)	This study, p331
pTopo-Stn1-myc	stn1-13myc :KanMX6	This study, p348
pTopo-Stn1-195-mvc	stn1-195-13myc :KanMX6	This study, p382
pTopo-Stn1-226-myc	stn1-226-13myc :KanMX6	This study, p383

table S2. Plasmids used in this study.

Figure S1

fig. S1. Comparison of Stn1-226 with other Stn1 mutants. (**A**) Fission yeast Stn1 protein sequence: N-terminal domain (1-155) in grey and the C-terminal domain (156-325), including the winged-helix-turn-helix domain (WH1, 188-251) in blue and the WH2 domain (252-325) are represented. The ¹⁷⁷IRQM, ¹⁹⁵IIYL and ²²⁶ILAL that

are mutated in *stn1-1, stn1-195* and *stn1-226* alleles are underlined, respectively. (**B**) Interaction of Stn1 fragments with SUMO and SUMO-Tpz1 analyzed by Y2H. Y2H interaction was quantified by measurement of β -galactosidase activity. (**C**) Level of LexA fusion proteins used in this study (Anti LexA (N-19) antibody, Santa Cruz Biotechnology). (**D**) Tetrad dissections at 25°C of *stn1+/ stn1-myc, stn1+/ stn1-195-myc* and *stn1+/ stn1-226-myc* heterozygous diploid strains. Spore colonies with the indicated genotypes are shown. (**E**) Five-fold serial dilutions of the indicated cell cultures. (**F**) Telomere length analysis of the indicated spore colonies. *Apa*I-digested genomic DNA was analyzed by Southern blotting with a radiolabelled telomeric probe.

fig. S2. Deletion of *rif1*⁺ **and** *exo1*⁺ **restores viability of** *stn1-226* **allele.** (**A**, **B**) Analysis of viability of the indicated strains at different temperatures. Cells were grown at 25°C, then serially diluted and plated on YES rich medium supplemented by the indicated amounts of CPT, MMS and HU.