# **Optical functionalization of human Class A**

# orphan G-protein coupled receptors

Morri et al.

This PDF file includes:

Supplementary Figures 1 to 8

Supplementary Tables 1 to 9



Supplementary Figure 1. High-throughput cloning strategy. The strategy is a modified form of Golden Gate cloning<sup>1</sup>. A rhodopsin (RHO) receiver gene harbors a non-coding genetic element (pink) at each intracellular element insertion site. These non-coding elements contain two recognition sites (black) for a TypeIIS restriction enzyme. Enzymes were Bsal (site 1: ICL1), BsmBI (site 2: ICL2), Bpil/BbsI (site 3: ICL3), and Lgul/SapI (site 4: C-terminus). The recognition sites are oriented in opposite direction (black arrows) to achieve excision of the non-coding element during digest (scissors). After excision and when combined with coding inserts that were obtained by synthesis/digest, the receiver vector can either undergo religation with the non-coding genetic element (pink arrows, yields original receiver vector that will be redigested) or ligation with the inserts (green arrows, yields final construct that is not digested because no recognition sites are present). Temperature cycling allows obtaining high ratios of final construct to receiver gene (>9:1) and the reaction is in one tube with simultaneous ligation. Not shown are sticky end overhangs, VSV-G epitope at N-terminus (light green), and 1D4-epitope of rhodopsin at the C-terminus before the stop codon (red). Refer to Supplementary Table 4 for detailed sequence design and Supplementary Table 6 for reaction performance.



Supplementary Figure 2. Modified mammalian expression vector. (1) Map of the original pcDNA3.1(-) vector with six recognition sites of the TypeIIS restriction enzymes Bsal, Bpil/Bbsl, and Lgul/Sapl. (2) Modified vector termed pcDNA3.1(-)-∆REIIS after removal of all six sites using site-directed mutagenesis. Refer to Supplementary Table 5 for vector sequence. The modified vector is available through Addgene.org.







**Supplementary Figure 4. Light-induced cAMP mobilization.** (**a** and **b**) Baseline RLU (a) and relative responses upon light stimulation (b) of HEK293 cells transfected with chimeric receptors and a real-time sensor for intracellular cAMP. Mean RLU values  $\pm$  s.e.m. (n=13-15 wells, 5 independent experiments) are shown. (**c**) Representative raw data traces (average traces of triplicate wells from the same experiment; blue bars indicate light stimulation).



Supplementary Figure 5. Light-induced  $Ca^{2+}$  mobilization. (a and b) Baseline F340/F380 ratios (a) and relative responses upon light stimulation (b) of HEK293 cells transfected with chimeric receptors and labelled with a  $Ca^{2+}$ -sensitive dye (Fura2). Mean values  $\pm$  s.d. (n=45-75 cells, 3-5 independent experiments) before and after stimulation are shown. (c) Representative raw data traces (5 individual cells; light was applied throughout the traces).



# Supplementary Figure 6. Surface localization of chimeric receptors. Confocal microscopy images of HEK293 cells expressing chimeric receptors with induction or reduction of CRE, SRE-.L and SRE reporters detected using an antibody directed against the extracellular N-terminal VSV-G epitope. Scale bars are 10 $\mu$ m.



Supplementary Figure 7. Internalization of Opto-GPR33(△Ct) detected as mCherry (mCh)

fusion proteins (a) or by labelling of biotinylated receptors with fluorescent streptavidin (b).

Scale bars are 10  $\mu\text{m}.$ 



**Supplementary Figure 8. Analysis of images shown in Supplementary Fig. 7.** Internalization ratios are defined as the number of cells with internalized receptors divided by the number of cells without internalized receptors (see **Methods**). Mean ratios (n=3-6 wells) are shown.

#### Supplementary Table 1. Reference GPCRs.

| Receptor                                                                                                        | Species | Predom.                | Expression        | Source <sup>c)</sup>       |
|-----------------------------------------------------------------------------------------------------------------|---------|------------------------|-------------------|----------------------------|
|                                                                                                                 |         | Gα                     | vector            |                            |
|                                                                                                                 |         | coupling <sup>a)</sup> |                   |                            |
| β2 adrenergic receptor (β2AR)                                                                                   | Human   | G <sub>α</sub> s       | pcDNA3            | Robert Lefkowitz (Duke     |
|                                                                                                                 |         |                        |                   | Univ.) <i>via</i> Addgene, |
|                                                                                                                 |         |                        |                   | (14697)                    |
| $\alpha$ 1 adrenergic receptor ( $\alpha$ 1AR)                                                                  | Rat     | G <sub>α</sub> q       | pCMV5             | Robert Lefkowitz (Duke     |
|                                                                                                                 |         |                        |                   | Univ.) <i>via</i> Addgene, |
|                                                                                                                 |         |                        |                   | (45760)                    |
| Free fatty acid receptor 3 (FFR3)                                                                               | Human   | $G_{\alpha}$ io and    | pcDNA3            | Graeme Milligan (Univ. of  |
|                                                                                                                 |         | G <sub>α</sub> q       |                   | Glasgow)                   |
| Adenosine A2A receptor (A2AR)                                                                                   | Human   | G <sub>α</sub> s       | N/A <sup>b)</sup> | N/A                        |
|                                                                                                                 |         |                        |                   |                            |
|                                                                                                                 |         |                        |                   |                            |
| Dopamine receptor D1 (D1R)                                                                                      | Human   | G <sub>α</sub> s       | pcDNA3.1          | MGC (202856822)            |
|                                                                                                                 |         |                        |                   |                            |
|                                                                                                                 |         |                        |                   |                            |
| Dopamine receptor D2 (D2R)                                                                                      | Human   | Gαio                   | pcDNA3.1          | MGC (202830262)            |
|                                                                                                                 |         |                        |                   |                            |
|                                                                                                                 |         |                        |                   |                            |
| Muscarinic acetylcholine receptor M1                                                                            | Human   | $G_{\alpha}q$ and      | pcDNA3.1          | Klaus Groschner (Med.      |
| (M1R)                                                                                                           |         | $G_{\alpha}s$          |                   | Univ. of Graz)             |
|                                                                                                                 |         |                        |                   |                            |
| Muscarinic acetylcholine receptor M2                                                                            | Human   | Gαio                   | pcDNA3.1          | MGC (211689788)            |
| (M2R)                                                                                                           |         |                        |                   |                            |
|                                                                                                                 |         |                        | b)                |                            |
| Muscarinic acetylcholine receptor M3                                                                            | Human   | G <sub>α</sub> q       | N/A "             | N/A                        |
| (M3R)                                                                                                           |         |                        |                   |                            |
|                                                                                                                 |         |                        |                   |                            |
| (M2R)<br>Muscarinic acetylcholine receptor M3<br>(M3R)<br><sup>a)</sup> G coupling as retrieved from literature | Human   | G <sub>α</sub> q       | N/A <sup>b)</sup> | N/A                        |

 $G_{\alpha}$ -coupling as retrieved from literature.

<sup>b)</sup> N/A: HEK293 cells endogenously express adenosine receptors (A2A/BR) and muscarinic acetylcholine receptors (M3R)<sup>2</sup>.

<sup>c)</sup> MGC: Mammalian Gene Collection clones obtained from GE Healthcare Dharmacon.

| Receptor(s)  | Ligand (agonists<br>unless noted<br>otherwise) | Stock solvent | Stock concentration | Final concentration   |
|--------------|------------------------------------------------|---------------|---------------------|-----------------------|
| α1AR<br>β2AR | Norepinephrine                                 | DMSO          | 19 mM               | 10 μM <sup>3</sup>    |
| FFR3         | Propionate                                     | water         | 2 M                 | 10 mM⁴                |
| A2AR         | 5'-(N-ethylcarboxamido)<br>adenosine           | DMSO          | 80 mM               | 100 μM <sup>5</sup>   |
| D1R<br>D2R   | Dopamine                                       | DMSO          | 100 mM              | 100 μM <sup>6.7</sup> |
| M2R<br>M3R   | Muscarine                                      | DMSO          | 24 mM               | 100 μM <sup>8,9</sup> |
| M1R          | VU357017 (positive, allosteric modulator)      | DMSO          | 5 mM                | 25 μM <sup>10</sup>   |

# Supplementary Table 2. Ligands used to activate reference GPCRs.

## Supplementary Table 3. Receptors listed by IUPHAR and included in this study. See

**Methods** for gene selection and curation.

| Gene name | SwissProt/Uniprot identifier |
|-----------|------------------------------|
| GPR1      | P46091                       |
| GPR3      | P46089                       |
| GPR4      | P46093                       |
| GPR6      | P46095                       |
| GPR12     | P47775                       |
| GPR15     | P49685                       |
| GPR17     | Q13304                       |
| GPR18     | Q14330                       |
| GPR19     | Q15760 <sup>a)</sup>         |
| GPR20     | Q99678                       |
| GPR21     | Q99679                       |
| GPR22     | Q99680                       |
| GPR25     | O00155                       |
| GPR26     | Q8NDV2                       |
| GPR27     | Q9NS67                       |
| GPR31     | O00270                       |
| GPR32     | O75388                       |
| GPR33     | Q49SQ1                       |
| GPR34     | Q9UPC5                       |
| GPR35     | Q9HC97                       |
| GPR37     | O15354                       |
| GPR37L1   | O60883                       |
| GPR39     | O43194                       |
| GPR42     | O15529 <sup>a)</sup>         |
| GPR45     | Q9Y5Y3                       |
| GPR50     | Q13585                       |
| GPR52     | Q9Y2T5                       |
| GPR55     | Q9Y2T6                       |
| GPR61     | Q9BZJ8                       |
| GPR62     | Q9BZJ7                       |
| GPR63     | Q9BZJ6                       |
| GPR65     | Q8IYL9                       |
| GPR68     | Q15743                       |
| GPR75     | O95800                       |
| GPR78     | Q96P69                       |
| GPR82     | Q96P67                       |
| GPR83     | Q9NYM4                       |
| GPR84     | Q9NQS5                       |

| GPR85                                                              | P60893 |  |  |  |
|--------------------------------------------------------------------|--------|--|--|--|
| GPR87                                                              | Q9BY21 |  |  |  |
| GPR88                                                              | Q9GZN0 |  |  |  |
| GPR119                                                             | Q8TDV5 |  |  |  |
| GPR120                                                             | Q5NUL3 |  |  |  |
| GPR132                                                             | Q9UNW8 |  |  |  |
| GPR135                                                             | Q8IZ08 |  |  |  |
| GPR139                                                             | Q6DWJ6 |  |  |  |
| GPR141                                                             | Q7Z602 |  |  |  |
| GPR142                                                             | Q7Z601 |  |  |  |
| GPR146                                                             | Q96CH1 |  |  |  |
| GPR148                                                             | Q8TDV2 |  |  |  |
| GPR149                                                             | Q86SP6 |  |  |  |
| GPR150                                                             | Q8NGU9 |  |  |  |
| GPR151                                                             | Q8TDV0 |  |  |  |
| GPR152                                                             | Q8TDT2 |  |  |  |
| GPR153                                                             | Q6NV75 |  |  |  |
| GPR160                                                             | Q9UJ42 |  |  |  |
| GPR161                                                             | Q8N6U8 |  |  |  |
| GPR162                                                             | Q16538 |  |  |  |
| GPR171                                                             | O14626 |  |  |  |
| GPR173                                                             | Q9NS66 |  |  |  |
| GPR174                                                             | Q9BXC1 |  |  |  |
| GPR176                                                             | Q14439 |  |  |  |
| GPR182                                                             | O15218 |  |  |  |
| GPR183                                                             | P32249 |  |  |  |
| <sup>a)</sup> Since the start of this study, two SwissProt/Uniprot |        |  |  |  |
| sequences changed in the repository at a single                    |        |  |  |  |
| amino acid site each.                                              |        |  |  |  |

Supplementary Table 4. Design of receiver gene and inserts (here, for GPR1 as an example) for high-throughput cloning. Color coding of receiver gene corresponds to that of Supplementary Fig. 1 and is further described below. Double-stranded inserts (green) can be obtained either by annealing oligonucleotides with sticky ends (e.g. 5'-CGTCACGGGGGTTCAAGTGGAAGAAAACAGTC-3' and 5'-TGAGGACTGTTTTCTTCCACTTGAACCCCGT-3' for GPR1\_insert\_1) or from a vector with orthogonal antibiotics resistance (e.g. 5'-GCTCTTCACGCGCT...CAAACAAGAGAGC-3' for GPR1\_insert\_4).

| >receiver_gene                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\textbf{ACCATG}_{AAAAACGATCATCGCCCTGAGCTACATCTTCTGCCTGGTATTCGCCATGTACACCGATATAGAGATGAACAGGCTGGGAAAGGATAGCCTC \\ \textbf{ATGAACGGGACCGAGGGCCCAAACTTCTACGTGCCTTTCTCCAACACACAC$ |
| AGACGGGCGTGGTGCGCAGCCCCTTCGAGGCCCCGCAGTACTACCTGGCGGAGCCATGGCAGTTCTCCATGCTGGCCGCCTACATGTTCCTGGCTGG                                                                             |
| CC CAGTCCAGCA ACCGGT CAAGAAGCTG GGTCTC CTCAACCTCCTCCTCCAACCTGGCCGTGGCCGACCTCTTCATGGTGTTCGGGGGGCTTCACCACCTCTCTGCACGGGTACTTCGTCTTTGGGCC                                         |
| CACGGGCTGCAACCTGGAGGGCTTCTTTGCCACCTTGGGCGGTGAAATTGCACTGTGGTCCTTGGTGGTCGTGGCGATCGAGGGGTGGTGTGTGGTGGTGGGGGCGAGGCCCATGGGGGGGG                                                    |
| ATCATEGECCTTCACCTGGGTCATGGCTCTGGCCTGTGCCGCGCCCCCCCC                                                                                                                           |
| AGTCGTTCGTCATCTACATGTTCGTGGTCCACTTCATCATCCCCCCTGATTGTCATATTCTTCTGCTACGCACAGGTCTTCGCTGGTGTTGATAGGCGCAGGGAAGACAGGCGCATGGTGATCATCATGGTCATCGCTTT                                  |
| <b>CCTAATCTGCTGGCTGCCCTACGCTGGGGTGGCGTTCTACATCTTCACCCATCAGGGCTCTGACTTTGGCCCCATCTTCATGACCATCCGGCTTTCTTT</b>                                                                    |
| ATGAACAAGCAGTTCCGN <mark>A</mark> GAAGAGC <mark>ACTGCATGGT</mark> GCGGCCGC <mark>CACCACTCTC</mark> GCTCTTC <mark>TACA</mark> GAAACCAGCCAAGTGGCGCCTGCC <mark>TAA</mark>        |
| >GPR1_insert_1 (ICL1)                                                                                                                                                         |
| CGTCACGGGGTTCAAGTGGAAGAAACAGTCCTCA                                                                                                                                            |
| >GPR1_insert_2 (ICL2)                                                                                                                                                         |
| GGTGATCCATCCTGTCTTATCTCATCGGCATCGAACCCTCAAGAACGCCA                                                                                                                            |
| >GPR1_insert_3 (ICL3)                                                                                                                                                         |
| CGGATGTCTCATCTTCAAGGTGAAGAAGCGAAGCATCCTGATCTCCAGTAGGCATTTCCGCA                                                                                                                |
| >GPR1_insert_4 (C-terminus)                                                                                                                                                   |
| CGC GCTCGCTTCCGGTCCTCAGTTGCTGAGATACTCAAGTACACACTGTGGGAAGTCAGCTGTTCTGGCACAGTGAGTG                                                                                              |

| >final_assembled_gene_Opto-GPR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCATGAAAACGATCATCGCCCTGAGCTACATCTTCTGCCTGGTATTCGCCATGTACACCGATATAGAGATGAACAGGCTGGGAAAGGATAGCCTCATGAACGGGACCGAGGGCCCAAACTTCTACGTGCCTTTCTCCAACA                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AGACGGGCGTGGTGCGCAGCCCCTTCGAGGCCCCGCAGTACTACCTGGCGGAGCCATGGCAGTTCTCCATGCTGGCCGCCTACATGTTCCTGCTGATCATGCTTGGCTTCCCCATCAACTTCCTCACGCTGTA <mark>CGTC</mark> ACGGG                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| GTTCAAGTGGAAGAAAACAGTCCTCAACTGCTCAACCTGGCCGTGGCCGACCTCTTCATGGTGTTCGGGGGGCTTCACCACCACCTCTCTGCACGGGTACTTCGTCTTTGGGCCCACGGGCTGCAAC                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CTGGAGGGCTTCTTTGCCACCTTGGGCGGTGAAATTGCACTGTGGTCCTTGGTGGTCCTGGCCATCGAGCGGTACGTGGTGGTCCTGTCTTATCTCATCGGCATCGAACCCTCAAGAACGCCATCATGGGCGTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ccttcacctgggtcatggcctgtgcccgcgcccccccccc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CTACATGTTCGTGGTCCACTTCATCATCCCCCTGATTGTCATATTCTTCTGCTACGGATGTCTCATCTTCAAGGTGAAGAAGCGAAGCATCCTGATCTCCAGTAGGCATTTCCGCGATGGTGATCATCGTCATCGTCTCCAGTAGGCATTCCCAGTAGGCATTTCCGCTGATCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTCATCGTGAAGAAGCGAAGCGAAGCATCCTGATCTCCAGTAGGCATTTCCGCTGATCGTCATCGTCATCGTCTCCAGTGAAGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGCGAAGGCGAGGCATTTCCGCAGTGGTGATCGTCGCTGATCGTCATCGTCGTGATCGTCATCGTCGTGATCGTCGTGATCGCTGTCGTGAGGAAGGA |
| ${\tt CTAATCTGCTGGCTGCCCTACGCTGGGGTGGCGTTCTACATCTTCACCCATCAGGGCTCTGACTTTGGCCCCATCTTCATGACCATCCGGCTTTCTTT$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| TGAACAAGCAGTTCCGCCTCCGCTTCCGGTCCTCAGTTGCTGAGATACTCAAGTACACACTGTGGGAAGTCAGCTGTTCTGGCACAGTGAGCAGCTCAGGAACTCAGAAACCAAGAATCTGTGTCTCCTGGAAACAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TCAAACAGAAACCAGCCAAGTGGCGCCTGCCTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Color code:

Kozak sequence and start codon

Signal peptide and VSV-G epitope (not shown in **Supplementary Fig. 1**)

Rhodopsin coding sequence

Insert coding sequence

- Type IIs restriction sites: BsaI (ICL1), BsmBI (ICL2), BpiI/BbsI (ICL3), LguI/SapI (C-terminus)
- Overhangs (not shown in Supplementary Fig. 1)
- Additional restrictions sites: AgeI, BlpI, EcoRV, NotI (not shown in Supplementary Fig. 1)

N: C or T (not shown in Supplementary Fig. 1)

Stop codon

#### Supplementary Table 5. Nucleotide sequence of modified expression vector. See

**Supplementary Fig. 2** for description of vector. Removed recognition sites for Bsal, Bbsl and Sapl restriction enzymes are highlighted in gray (two sites), dark green (one site) and light blue (three sites), resp. Red highlights point to introduced substitutions. The modified vector is available through Addgene.org.

GACGGATCGGGAGATCTCCCGATCCCCTATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATAGTTAAGCCAGTATCTGCTCCCTGCTTGTG TGTTGGAGGTCGCTGAGTAGTGCGCGAGCAAAATTTAAGCTACAACAAGGCAAGGCTTGACCGACAATTGCATGAAGAATCTGCTTAGGGTTAGGC GTTTTGCGCTGCTTCGCGATGTACGGGCCAGATATACGCGTTGACATTGATTATTGACTAGTTATTAATAGTAATCAATTACGGGGTCATTAGTTC ATAGCCCATATATGGAGTTCCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCCATTGACGTCAATAATGA  ${\tt CGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGT$ ATCATATGCCAAGTACGCCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCAGTACATGACCTTATGGGACTTTCCTACTT GGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACGGGGAT CGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCTCTCTGGCTAACTAGAGAACCCACTGCTTACTGGCTTATCGAAATTA ATACGACTCACTATAGGGAGACCCACAGCGTGGCTAGCGTTTAAACGGGCCCTCTAGACTCGAGCGGCCGCCACTGTGCTGGATATCTGCAGAATTCC TTTGCCCCTCCCCGTGCCTTCCTTGACCCTGGAAGGTGCCACTCCCACTGTCCTTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTA GCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTTCTCGCCACGTTCGCCGGCCTTTCCCCGTCAAG CATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACCCCTA TCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAACAAAAATTTAACGCGAATTAAT GCTATTCCAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTCCCGGGAGCTTGTATATCCATTTTCGGATCTGATCAAGA GACAGGATGAGGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCGGCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGC GGACTGGCTGCTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCG CGATCAGGATGATCTGGACGAGGAGAGACACCGCGCCGCCAGCCGAACTGTTCGCCAGGCCCAAGGCGCGCGACGGCGAGGATCTCGT  ${\tt CGTGACCCATGGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCTGGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCG$ CTATCAGGACATAGCGTTGGCTACCCGTGATATTGCT<mark>GAAGAAC</mark>TTGGCGGCGGAATGGGCTGACCGCTTCCTCGTGGTTTACGGTATCGCCGCTCC GATCTCATGCTGGAGTTCTTCGCCCACCCCAACTTGTTTATTGCAGCTTATAATGGTTACAAAATAAAGCAATAGCATCACAAAATTTCACAAAATAAA GCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGGC CAACGCGCGGGGAGAGGCGGTTTGCGCTATTGGGC<mark>GCTCTTC</mark>CGCTTCCTCGCTCACTGACTCGCTCGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTA TCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAAGGCCAGCAAAAGGCCAGGAAC CGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCG ACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCCTTACCGGATACCTGTCCGCCTTT  ${\tt CTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAA$  $\tt CCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACT$ GGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGT AAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAA ACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTG TAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGGGCCCACGGCTCCAGATTTATCAGCAATA AAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTG  ${\tt CTCATCATTGGAAAACGTTCTTCGGGGGGGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGA$ TCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAAATGCCGCAAAAAAGGGAATAAGGGCAACACGGAAAATGT  ${\tt TGAATACTCATACTCCTTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAT$ AAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC

# Supplementary Table 6. Evaluation of parameters for high-throughput cloning technique.

| Condition | Cycles | Additional digest | Colony forming units | Positive clones |  |
|-----------|--------|-------------------|----------------------|-----------------|--|
|           |        | Receptor 1:       | GPR33                |                 |  |
| 1         | 33     | Yes               | 600                  | 10/10           |  |
| 2         | 33     | No                | 400                  | 10/10           |  |
| 3         | 60     | Yes               | 100                  | 10/10           |  |
|           |        | Receptor 2        | α1AR                 |                 |  |
| 1         | 33     | Yes               | 450                  | 7/10            |  |
| 2         | 33     | No                | 1500                 | 3/10            |  |
| 3         | 60     | Yes               | 300                  | 9/10            |  |

# Supplementary Table 7. Tabulated results for data shown in Fig. 3 (mean $\pm$ s.e.m., n=6-9, 3-4

## independent experiments).

|              | C             | RE              | SRE             |                 | SRE.L                             |                   | CRE+stim.       |                 |
|--------------|---------------|-----------------|-----------------|-----------------|-----------------------------------|-------------------|-----------------|-----------------|
| Gene name    | Dark          | Light           | Dark            | Light           | Dark                              | Light             | Dark            | Light           |
| Opto-GPR1    | $1.52\pm0.42$ | 8.94 ± 3.52     | $0.52\pm0.17$   | 0.61 ± 0.22     | $0.74\pm0.25$                     | 0.57 ± 0.20       | 1.39 ± 0.12     | $1.45\pm0.26$   |
| Opto-GPR3    | $0.45\pm0.16$ | $0.33\pm0.07$   | $0.68\pm0.23$   | $3.63 \pm 2.95$ | $0.63\pm0.19$                     | $0.44\pm0.17$     | 1.03 ± 0.13     | $0.92\pm0.18$   |
| Opto-GPR4    | 0.47 ± 0.18   | 0.30 ± 0.07     | 1.61 ± 1.00     | 1.84 ± 1.36     | 0.67 ± 0.25                       | 0.50 ± 0.38       | 0.60 ± 0.12     | 0.36 ± 0.11     |
| Opto-GPR6    | $0.49\pm0.26$ | $0.25\pm0.08$   | 1.26 ± 0.84     | 1.09 ± 0.46     | 0.69 ± 0.21                       | 0.51 ± 0.20       | 1.02 ± 0.08     | $0.83\pm0.2$    |
| Opto-GPR12   | $0.19\pm0.08$ | $0.20\pm0.06$   | 1.17 ± 0.58     | $0.76\pm0.30$   | $0.80\pm0.28$                     | $0.58 \pm 0.27$   | 1.14 ± 0.19     | $0.95\pm0.15$   |
| Opto-GPR15   | $0.26\pm0.14$ | 0.21 ± 0.07     | $0.54\pm0.29$   | $0.65\pm0.31$   | 0.77 ± 0.25                       | $0.73\pm0.32$     | 1.02 ± 0.13     | 0.77 ± 0.13     |
| Opto-GPR17   | $0.32\pm0.10$ | $0.27\pm0.08$   | $0.49\pm0.25$   | $0.60\pm0.24$   | $0.87 \pm 0.34$                   | $0.54\pm0.17$     | 1.00 ± 0.08     | $0.83 \pm 0.15$ |
| Opto-GPR18   | $0.19\pm0.06$ | $0.22\pm0.06$   | $0.32\pm0.07$   | $0.80\pm0.49$   | $0.87 \pm 0.28$                   | $0.56\pm0.21$     | $1.00\pm0.12$   | $1.14\pm0.33$   |
| Opto-GPR19   | $0.21\pm0.08$ | $0.24\pm0.09$   | $0.46\pm0.23$   | $0.55\pm0.25$   | $0.73\pm0.22$                     | $0.63 \pm 0.28$   | 1.03 ± 0.14     | $0.90\pm0.21$   |
| Opto-GPR20   | $0.23\pm0.03$ | $0.49\pm0.20$   | $0.49\pm0.20$   | $0.86\pm0.29$   | $0.59\pm0.15$                     | $0.64\pm0.24$     | $0.88\pm0.10$   | $0.74\pm0.19$   |
| Opto-GPR21   | $0.36\pm0.07$ | $10.36\pm5.73$  | $1.66 \pm 1.36$ | $0.57\pm0.22$   | $0.62\pm0.19$                     | $0.64\pm0.22$     | $0.86\pm0.08$   | $0.99 \pm 0.31$ |
| Opto-GPR22   | $0.27\pm0.09$ | $0.41\pm0.12$   | $1.41\pm0.74$   | $1.27\pm0.59$   | $0.69\pm0.18$                     | $0.86 \pm 0.31$   | 1.05 ± 0.29     | $2.45 \pm 1.34$ |
| Opto-GPR25   | $0.29\pm0.08$ | $0.40\pm0.08$   | $0.97 \pm 0.61$ | 1.44 ± 1.03     | $0.64\pm0.22$                     | $0.45\pm0.15$     | $1.29\pm0.17$   | $0.98 \pm 0.19$ |
| Opto-GPR26   | $0.36\pm0.10$ | $0.41\pm0.09$   | $1.20\pm0.84$   | $0.54\pm0.14$   | $0.53\pm0.17$                     | $0.44\pm0.15$     | 1.15 ± 0.11     | $0.86\pm0.15$   |
| Opto-GPR27   | $0.32\pm0.10$ | $0.23\pm0.04$   | $0.56\pm0.20$   | $0.59\pm0.21$   | $0.58\pm0.17$                     | $0.41\pm0.15$     | 1.01 ± 0.06     | $0.89\pm0.14$   |
| Opto-GPR31   | $0.27\pm0.11$ | $0.57\pm0.27$   | $0.56\pm0.19$   | $0.79\pm0.38$   | $0.57\pm0.21$                     | $0.51\pm0.17$     | $1.02\pm0.10$   | $0.80\pm0.15$   |
| Opto-GPR32   | $0.21\pm0.07$ | $4.89 \pm 2.32$ | $0.81\pm0.38$   | $0.67\pm0.36$   | $0.54\pm0.16$                     | $0.44\pm0.13$     | 1.04 ± 0.09     | $0.66\pm0.15$   |
| Opto-GPR33   | $0.31\pm0.14$ | $0.46\pm0.10$   | $0.30\pm0.07$   | $2.45 \pm 1.33$ | $0.62\pm0.16$                     | $30.56 \pm 10.23$ | 0.97 ± 0.09     | $0.65\pm0.13$   |
| Opto-GPR34   | $0.30\pm0.11$ | $0.30\pm0.09$   | $0.49\pm0.16$   | $0.50\pm0.14$   | $0.61\pm0.27$                     | $0.65\pm0.16$     | $0.95\pm0.09$   | $0.81\pm0.09$   |
| Opto-GPR35   | $0.32\pm0.11$ | $0.22\pm0.04$   | $0.33\pm0.08$   | $0.47\pm0.16$   | $0.63 \pm 0.16$                   | $0.64\pm0.21$     | 1.03 ± 0.10     | $0.74\pm0.12$   |
| Opto-GPR37   | $0.30\pm0.08$ | $0.25\pm0.07$   | $0.50\pm0.11$   | $0.41\pm0.13$   | $0.53\pm0.12$                     | $0.47\pm0.16$     | 0.91 ± 0.08     | $0.91\pm0.15$   |
| Opto-GPR37L1 | $0.25\pm0.08$ | $0.31\pm0.09$   | $0.33\pm0.11$   | $0.33\pm0.08$   | $0.49\pm0.13$                     | $0.50\pm0.19$     | $0.89\pm0.11$   | $1.06\pm0.20$   |
| Opto-GPR39   | $0.39\pm0.19$ | $0.51\pm0.21$   | $0.67\pm0.21$   | $0.35\pm0.10$   | $0.52\pm0.15$                     | $0.63\pm0.19$     | $0.87\pm0.05$   | $0.92\pm0.21$   |
| Opto-GPR42   | $0.30\pm0.14$ | $1.05\pm0.68$   | $0.59\pm0.21$   | $0.49\pm0.18$   | $0.61\pm0.15$                     | $0.60\pm0.20$     | $0.88\pm0.05$   | $1.22\pm0.46$   |
| Opto-GPR45   | $0.43\pm0.16$ | $0.56\pm0.12$   | $1.38\pm0.60$   | $0.71\pm0.24$   | $0.53\pm0.13$                     | $0.48\pm0.15$     | 1.16 ± 0.18     | $0.85\pm0.07$   |
| Opto-GPR50   | $0.40\pm0.16$ | $0.43\pm0.06$   | $0.81\pm0.20$   | $0.86\pm0.28$   | 0.51 ± 0.15                       | $0.34\pm0.12$     | 1.07 ± 0.19     | 1.07 ± 0.13     |
| Opto-GPR52   | $0.26\pm0.09$ | $0.30\pm0.07$   | $0.93 \pm 0.49$ | $0.65\pm0.24$   | $0.54\pm0.15$                     | $0.45\pm0.17$     | $0.99\pm0.07$   | $0.88\pm0.11$   |
| Opto-GPR55   | $0.32\pm0.12$ | $0.46\pm0.09$   | $0.74\pm0.20$   | $0.66\pm0.20$   | $0.50\pm0.15$                     | $0.40\pm0.10$     | 1.12 ± 0.10     | $0.75\pm0.15$   |
| Opto-GPR61   | $0.62\pm0.17$ | 6.11 ± 3.10     | $0.58\pm0.20$   | $0.66\pm0.29$   | 0.51 ± 0.15                       | $0.62\pm0.18$     | 1.07 ± 0.12     | $0.82\pm0.12$   |
| Opto-GPR62   | $0.32\pm0.09$ | $0.51\pm0.14$   | $0.57\pm0.22$   | $0.77\pm0.22$   | $0.55\pm0.16$                     | $0.60\pm0.11$     | $0.89\pm0.04$   | $0.83\pm0.15$   |
| Opto-GPR63   | $0.37\pm0.11$ | 0.51 ± 0.13     | $0.42\pm0.12$   | $0.44\pm0.16$   | $0.53\pm0.18$                     | $0.78\pm0.16$     | 1.16 ± 0.28     | $0.74\pm0.15$   |
| Opto-GPR65   | $0.39\pm0.15$ | $0.53\pm0.21$   | $0.59\pm0.19$   | $0.67\pm0.26$   | $0.54\pm0.14$                     | $0.58\pm0.16$     | $1.02\pm0.05$   | $0.80\pm0.08$   |
| Opto-GPR68   | $0.81\pm0.45$ | $0.78\pm0.31$   | $0.97\pm0.27$   | $2.61\pm0.76$   | $0.52\pm0.15$                     | $0.58\pm0.17$     | $0.84\pm0.05$   | $1.02\pm0.09$   |
| Opto-GPR75   | $0.33\pm0.14$ | $0.30\pm0.08$   | $0.99 \pm 0.45$ | $1.28\pm0.93$   | 0.61 ± 0.18                       | $0.62\pm0.15$     | $0.89\pm0.09$   | $0.86\pm0.13$   |
| Opto-GPR78   | $0.29\pm0.05$ | $0.65\pm0.24$   | $1.00\pm0.34$   | $5.05\pm2.87$   | $0.54\pm0.12$                     | 35.1 ± 11.47      | 0.96 ± 0.13     | $1.38\pm0.32$   |
| Opto-GPR82   | $0.28\pm0.07$ | $0.50\pm0.14$   | $0.59\pm0.19$   | $0.54\pm0.21$   | $\textbf{0.68} \pm \textbf{0.17}$ | $0.71\pm0.15$     | $0.93 \pm 0.14$ | $1.31\pm0.43$   |
| Opto-GPR83   | $0.81\pm0.18$ | 0.67 ± 0.14     | $0.95\pm0.19$   | $0.86\pm0.25$   | $0.56\pm0.22$                     | $0.51\pm0.16$     | $1.23\pm0.26$   | $1.09\pm0.17$   |

| Opto-GPR84  | $0.47\pm0.09$ | $1.02\pm0.27$   | $0.75\pm0.23$                     | $0.67\pm0.19$   | $0.49\pm0.16$   | $0.45\pm0.13$   | $1.03\pm0.14$                     | $1.04\pm0.12$                     |
|-------------|---------------|-----------------|-----------------------------------|-----------------|-----------------|-----------------|-----------------------------------|-----------------------------------|
| Opto-GPR85  | $0.55\pm0.15$ | $1.10\pm0.38$   | $0.54\pm0.16$                     | $0.43\pm0.10$   | $0.39\pm0.10$   | $0.49\pm0.15$   | $0.97 \pm 0.13$                   | $0.72\pm0.15$                     |
| Opto-GPR87  | $0.44\pm0.09$ | $0.53\pm0.09$   | $0.59\pm0.18$                     | $0.66\pm0.18$   | $0.44\pm0.12$   | $0.45\pm0.13$   | $1.06\pm0.05$                     | $1.00\pm0.24$                     |
| Opto-GPR88  | $0.52\pm0.08$ | $0.44\pm0.04$   | $0.55\pm0.17$                     | $1.88\pm0.92$   | $0.48\pm0.15$   | $0.55\pm0.19$   | $1.04\pm0.06$                     | $1.02\pm0.12$                     |
| Opto-GPR119 | $1.27\pm0.45$ | $0.87\pm0.23$   | $0.64\pm0.17$                     | $0.67\pm0.14$   | $0.47\pm0.09$   | $0.52\pm0.10$   | $1.06\pm0.14$                     | $0.90\pm0.10$                     |
| Opto-GPR120 | 0.69 ± 0.18   | $0.46\pm0.20$   | $1.78\pm0.79$                     | 1.59 ± 1.02     | $1.22\pm0.54$   | $0.80\pm0.64$   | $0.65\pm0.24$                     | 0.77 ± 0.19                       |
| Opto-GPR132 | $1.33\pm0.43$ | $0.66\pm0.20$   | $0.57\pm0.18$                     | $0.55\pm0.15$   | $0.50\pm0.11$   | $0.69 \pm 0.17$ | $0.96\pm0.09$                     | $\textbf{0.89} \pm \textbf{0.07}$ |
| Opto-GPR135 | $0.57\pm0.12$ | $6.78 \pm 3.09$ | $0.64\pm0.09$                     | 1.11 ± 0.45     | $0.58\pm0.14$   | $0.55\pm0.14$   | 1.07 ± 0.10                       | $1.09\pm0.23$                     |
| Opto-GPR139 | $0.42\pm0.09$ | $0.43\pm0.11$   | $0.41\pm0.08$                     | $0.53\pm0.11$   | $0.46\pm0.11$   | $0.55\pm0.12$   | $0.80\pm0.03$                     | 1.18 ± 0.41                       |
| Opto-GPR141 | $0.55\pm0.13$ | $0.37\pm0.08$   | $0.58\pm0.15$                     | $0.45\pm0.12$   | $0.63 \pm 0.16$ | $0.68\pm0.20$   | $0.93 \pm 0.08$                   | $1.28\pm0.41$                     |
| Opto-GPR142 | $0.33\pm0.12$ | $0.30\pm0.05$   | $0.67\pm0.29$                     | $0.46\pm0.14$   | $0.70\pm0.17$   | 0.91 ± 0.19     | $0.76\pm0.04$                     | $0.95\pm0.23$                     |
| Opto-GPR146 | $0.65\pm0.15$ | $1.06\pm0.43$   | $0.96 \pm 0.21$                   | $1.62\pm0.89$   | $0.60\pm0.17$   | $0.58\pm0.12$   | $1.50\pm0.45$                     | $1.09\pm0.24$                     |
| Opto-GPR148 | $0.55\pm0.13$ | $0.78 \pm 0.39$ | $1.05\pm0.29$                     | $0.68 \pm 0.25$ | $0.81\pm0.4$    | $0.58\pm0.16$   | $1.09\pm0.07$                     | $0.95\pm0.13$                     |
| Opto-GPR149 | $0.46\pm0.10$ | $1.01\pm0.39$   | $0.88\pm0.3$                      | $0.69\pm0.17$   | $0.66 \pm 0.28$ | $0.54\pm0.18$   | $1.21\pm0.15$                     | $0.91 \pm 0.19$                   |
| Opto-GPR150 | $0.74\pm0.26$ | $1.05\pm0.32$   | $1.43\pm0.31$                     | 1.26 ± 0.33     | $0.48\pm0.12$   | $0.70\pm0.23$   | 1.15 ± 0.10                       | $0.73\pm0.14$                     |
| Opto-GPR151 | $0.52\pm0.09$ | $0.75\pm0.18$   | $0.65\pm0.17$                     | $1.17\pm0.25$   | $0.87 \pm 0.49$ | $0.49\pm0.12$   | $0.83\pm0.06$                     | $0.90\pm0.09$                     |
| Opto-GPR152 | $0.42\pm0.08$ | $0.48\pm0.10$   | $0.56\pm0.17$                     | $0.74\pm0.26$   | $0.52\pm0.10$   | $0.68\pm0.16$   | $0.87\pm0.13$                     | $0.88\pm0.17$                     |
| Opto-GPR153 | $0.67\pm0.15$ | $0.67\pm0.09$   | $0.66\pm0.21$                     | $0.69 \pm 0.18$ | $0.54\pm0.12$   | $0.75\pm0.19$   | $0.93 \pm 0.10$                   | $1.10\pm0.16$                     |
| Opto-GPR160 | $0.44\pm0.04$ | $0.58\pm0.15$   | $0.67\pm0.26$                     | $0.86 \pm 0.51$ | $0.87 \pm 0.13$ | $0.83 \pm 0.13$ | $1.13\pm0.12$                     | $1.02\pm0.15$                     |
| Opto-GPR161 | $0.57\pm0.08$ | $0.67\pm0.13$   | $0.66\pm0.21$                     | $0.65\pm0.21$   | $0.70\pm0.18$   | $0.74\pm0.20$   | $\textbf{0.88} \pm \textbf{0.11}$ | $1.04\pm0.25$                     |
| Opto-GPR162 | $0.39\pm0.10$ | $0.57\pm0.08$   | $0.61\pm0.13$                     | $0.88 \pm 0.34$ | $0.73\pm0.14$   | $0.95\pm0.24$   | $0.98 \pm 0.06$                   | $1.68\pm0.79$                     |
| Opto-GPR171 | $0.54\pm0.09$ | $0.54\pm0.11$   | $\textbf{0.70} \pm \textbf{0.10}$ | $0.73 \pm 0.21$ | $0.63\pm0.12$   | $0.74\pm0.13$   | $1.08\pm0.06$                     | $\textbf{2.19} \pm \textbf{1.20}$ |
| Opto-GPR173 | $0.37\pm0.09$ | $0.38\pm0.09$   | $0.59\pm0.14$                     | $0.57\pm0.13$   | 1.98 ± 1.18     | $0.80\pm0.11$   | 1.1 ± 0.06                        | $1.46\pm0.27$                     |
| Opto-GPR174 | $1.01\pm0.23$ | $0.87 \pm 0.19$ | $1.28\pm0.69$                     | $0.68 \pm 0.16$ | $0.55\pm0.17$   | $0.74\pm0.09$   | $1.14\pm0.26$                     | $1.02\pm0.23$                     |
| Opto-GPR176 | $0.53\pm0.12$ | $0.64\pm0.12$   | $0.96\pm0.2$                      | $0.72\pm0.13$   | $0.67\pm0.22$   | $0.65\pm0.14$   | $0.91\pm0.06$                     | $1.02\pm0.12$                     |
| Opto-GPR182 | 0.71 ± 0.18   | $0.75\pm0.32$   | 0.70 ± 0.11                       | $1.72\pm0.96$   | $0.52\pm0.15$   | $0.56\pm0.11$   | $0.98\pm0.07$                     | 1.13 ± 0.12                       |
| Opto-GPR183 | $0.43\pm0.09$ | $0.65\pm0.07$   | $0.88 \pm 0.16$                   | $2.02\pm1.01$   | $0.76\pm0.23$   | $0.68\pm0.18$   | $0.96 \pm 0.08$                   | 0.91 ± 0.11                       |
| ·           |               |                 |                                   | 1               | 1               |                 |                                   |                                   |

#### Supplementary Table 8. Substitutions in fourteen Class A GPCRs. Receptors with at least

one non-conservative substitution in the E/DRY motif and at least one non-conservative substitution in conserved contacts involved in active and inactive states (3x46, 6x37 and 7x53) are listed. Non-conservative substitutions are highlighted in red. Residues not found in non-orphan Class A GPCRs are highlighted with a star (\*). Colors denote side chain chemistry (blue: aliphatic, orange: aromatic, red: basic, green: acidic, purple: polar, grey: other).

|           | E/DRY motif |       |          | Conserved contacts |             |          |  |
|-----------|-------------|-------|----------|--------------------|-------------|----------|--|
| Receptor  | 3x49        | 3x50  | 3x51     | 3x46               | 6x37        | 7x53     |  |
| GPR27     | T*          | R     | Y        | V                  | F           | C*       |  |
| GPR62     | А           | R     | Y        | L                  | Р           | Y        |  |
| GPR75     | Н           | R     | L*       | I                  | С           | Y        |  |
| GPR84     | G           | R     | Y        | I                  | С           | Y        |  |
| GPR85     | T*          | R     | Y        | I                  | F           | C*       |  |
| GPR141    | T*          | R     | Y        | I                  | N           | F        |  |
| GPR148    | Н           | Т     | Y        | I                  | H*          | P*       |  |
| GPR149    | N           | F*    | Y        | V                  | A           | ۷*       |  |
| GPR151    | V           | С     | F        | V                  | L           | F*       |  |
| GPR152    | D           | R     | С        | L                  | A           | C*       |  |
| GPR153    | Н           | R     | М        | L                  | Т           | L        |  |
| GPR162    | Н           | R     | М        | L                  | S           | I        |  |
| GPR173    | T*          | R     | Y        | I                  | F           | C*       |  |
| Class A   | Acidic      | Basic | Aromatic | Aliphatic          | Alinhatic   | Aromatic |  |
| consensus | (E/D)       | (R)   | (Y)      | , apricato         | / inpriotio |          |  |

## Supplementary Table 9. Oligonucleotide PCR primers utilized in this study. Restriction sites

are underlined where applicable.

| Number | Sequence                                                    |
|--------|-------------------------------------------------------------|
| 1      | GATC <u>GCGGCCGC</u> ACCATGAGGACTCTGAACACCTCTGC             |
| 2      | GATC <u>GGTACC</u> TCAGGTTGGGTGCTGACCG                      |
| 3      | GATC <u>GCGGCCGC</u> ACCATGGATCCACTGAATCTGTCCTG             |
| 4      | GATC <u>GGTACC</u> TCAGCAGTGGAGGATCTTCAGG                   |
| 5      | GATCGCGGCCGCACCATGAACACTTCAGCCCCAC                          |
| 6      | GATC <u>AAGCTT</u> TCAGCATTGGCGGGAGGG                       |
| 7      | GATC <u>GCGGCCGC</u> ACCATGAATAACTCAACAAACTCCTCTAACAATA     |
| 8      | GATC <u>AAGCTT</u> TTACCTTGTAGCGCCTATGTTC                   |
| 9      | CACTATAGGGAGACACAAGCTGGCTAGC                                |
| 10     | GCTAGCCAGCTTGTGTCTCCCTATAGTG                                |
| 11     | AATGATACCGCGGGACCCACGCTCA                                   |
| 12     | TGAGCGTGGGTCCCGCGGTATCATT                                   |
| 13     | GAGGATTGGGAAGAGAATAGCAGGCATGC                               |
| 14     | GCATGCCTGCTATTCTCTTCCCAATCCTC                               |
| 15     | GATCTGGACGAAGAACATCAGGGGCTCG                                |
| 16     | CGAGCCCCTGATGTTCTTCGTCCAGATC                                |
| 17     | GATATTGCTGAAGAACTTGGCGGCGAATGG                              |
| 18     | CCATTCGCCGCCAAGTTCTTCAGCAATATC                              |
| 19     | TATTGGGCGCTCTTGCGCTTCCTCGCTCA                               |
| 20     | TGAGCGAGGAAGCGCCAAAGAGCGCCCAATA                             |
| 21     | CAGATCGGCGCGCCTTAAGAATTCCACCACACTGGACTAGT                   |
| 22     | GTCTAG <u>GGCGCGCC</u> GGCAGGCGCCACTTGGCTG                  |
| 23     | CAAATT <u>GGCGCGCC</u> TGCGGTGAGCAAGGGCGAGGAGGATAAC         |
| 24     | GTCTAG <u>GGCGCGCC</u> CTTGTACAGCTCGTCCATGCCGCC             |
| 25     | GCCCAGAAGATCGAGTGGCACGAGGGCAGCAGCGGCGATAGCCTCATGAACGGGACCGA |
| 26     | CTCGAAGATATCGTTCAGGCCGCCGCTGCTGCCGGCGAATACCAGGCAGAAGATGT    |
| 27     | CAGATCATCGATACAGAAACCAGCCAAGTGGC                            |
| 28     | CAGATCATCGATGCGGAACTGCTTGTTCATCATG                          |
| 29     | GATC <u>GCTAGC</u> ATGGCTTCCAAGGTG                          |
| 30     | GATC <u>TCTAGA</u> ATTACTGCTCGTTC                           |

#### Supplementary References

- 1. Engler, C. & Marillonnet, S. Golden Gate cloning. *Methods Mol. Biol.* **1116**, 119-131 (2014).
- 2. Atwood, B. K., Lopez, J., Wager-Miller, J., Mackie, K. & Straiker, A. Expression of G protein-coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. *BMC Genomics* **12**, 14 (2011).
- 3. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. *Nature* **458**, 1025-1029 (2009).
- 4. Schmidt, J. *et al.* Selective orthosteric free fatty acid receptor 2 (FFA2) agonists: identification of the structural and chemical requirements for selective activation of FFA2 versus FFA3. *J. Biol. Chem.* **286**, 10628-10640 (2011).
- 5. Cusack, N. J. & Hourani, S. M. 5'-N-ethylcarboxamidoadenosine: a potent inhibitor of human platelet aggregation. *Br. J. Pharmacol.* **72**, 443-447 (1981).
- 6. Werner, P., Hussy, N., Buell, G., Jones, K. A. & North, R. A. D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes. *Mol. Pharmacol.* **49**, 656-661 (1996).
- 7. Arnt, J., Bogeso, K. P., Hyttel, J. & Meier, E. Relative dopamine D1 and D2 receptor affinity and efficacy determine whether dopamine agonists induce hyperactivity or oral stereotypy in rats. *Pharmacol. Toxicol.* **62**, 121-130 (1988).
- 8. Pan, Z. Z. & Williams, J. T. Muscarine hyperpolarizes a subpopulation of neurons by activating an M2 muscarinic receptor in rat nucleus raphe magnus in vitro. *J. Neurosci.* **14**, 1332-1338 (1994).
- 9. Benson, J. A. Electrophysiological pharmacology of the nicotinic and muscarinic cholinergic responses of isolated neuronal somata from locust thoracic ganglia. *J. Exp. Biol.* **170**, 203-233 (1992).
- 10. Lebois, E. P. *et al.* Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M(1) receptor function in the central nervous system. *ACS Chem. Neurosci.* **1**, 104-121 (2010).